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Abstract. In our earlier work, we proposed an architecture for
a Web-based video database management system (VDBMS)
providing an integrated support for spatiotemporal and seman-
tic queries. In this paper, we focus on the task of spatiotemporal
query processing and also propose an SQL-like video query
language that has the capability to handle a broad range of
spatiotemporal queries. The language is rule-based in that it
allows users to express spatial conditions in terms of Prolog-
type predicates. Spatiotemporal query processing is carried
out in three main stages: query recognition, query decompo-
sition, and query execution.

Keywords: Spatiotemporal query processing – Content-
based retrieval – Inference rules – Video databases – Mul-
timedia databases

1 Introduction

Interest in multimedia databases, especially video databases,
is growing rapidly. Research that started out tackling the issue
of content-based image retrieval by low-level features (color,
shape, and texture) and keywords [4,6,12,35] has progressed
over time to video databases dealing with spatiotemporal and
semantic features of video data [5,16,20,27,29,41]. There has
also been some work on picture retrieval systems to enhance
their query capabilities using the spatial relationships between
objects in images [6,7].

First attempts at supporting content-based video retrieval
were initiated by applying the techniques devised for image
retrieval to video databases since video can basically be re-
garded as a consecutive sequence of images ordered in time
[12,39]. Some prototype systems were designed and imple-
mented such asVideoQ, KMED, QBIC, and OVID [5,7,12,31].
Furthermore, querying video objects by motion properties has
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also been studied extensively [13,22,24,30,38]. Some exam-
ples of the use of semantic properties of video data for querying
video collections can be found in [1,16,18]. Nonetheless, to
the best of our knowledge no proposal has been made thus far
for a generic, application-independent video database man-
agement system (VDBMS) that aims to support spatiotem-
poral, semantic, and low-level queries on video data in an
integrated manner.

In our earlier work, we proposed a novel architecture
for a VDBMS that provides integrated support for both spa-
tiotemporal and semantic queries on video data [9]. A spa-
tiotemporal query may contain any combination of directional,
topological, third dimension (3D) relation, external-predicate,
object-appearance, trajectory-projection, and similarity-based
object-trajectory conditions. The system responds to spa-
tiotemporal queries using its knowledge base, which consists
of a fact base and a comprehensive set of rules implemented
in Prolog, while semantic queries are handled by an object-
relational database. The query processor interacts with both
the knowledge base and object-relational database to respond
to user queries that contain a combination of spatiotempo-
ral and semantic queries. Intermediate query results returned
from these two system components are integrated seamlessly
by the query processor and sent to Web clients. The architec-
ture is extensible in that it can be augmented easily to provide
integrated support for low-level video queries in addition to
spatiotemporal and semantic queries on video data.

The focus and contributions of this paper are on the spa-
tiotemporal video query processing; therefore, issues related
to semantic and low-level video queries are not discussed.
Our rule-based spatiotemporal video query processing strat-
egy is explained in detail. Moreover, an SQL-like textual query
language is proposed for spatiotemporal queries on video
data. The language can be used to query the knowledge base
of the system, proposed in [9], for object trajectories, spa-
tiotemporal relations between video objects, external predi-
cates, and object-appearance relations. It is very easy to use
even for novice users. In fact, it is easier to use compared
with other proposed query languages for video databases such
as CVQL, MOQL, and VideoSQL [19,25,31]. Furthermore, it
offers great expressiveness for creating complex spatiotem-
poral queries thanks to its rule-based structure. Similarity-
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based object-trajectory and trajectory-projection query con-
ditions are processed separately from spatiotemporal, object-
appearance, and external-predicate query conditions. The lat-
ter type of conditions are grouped together to form the maxi-
mal subqueries. Given a query, a maximal subquery is defined
as the longest sequence of conditions that can be processed by
Prolog without changing the semantics of the original query.
Grouping the spatial conditions in a query into maximal sub-
queries minimizes the number of subqueries to be processed
by our inference engine Prolog, thereby reducing the inter-
val processing time and improving the overall performance
of the system for spatiotemporal query processing. Our ap-
proach can be seen as reducing spatiotemporal video retrieval
to metadata queries on a rule-based fact base; nonetheless, in-
terval and similarity-based trajectory processing is carried out
outside of the Prolog engine. Spatiotemporal query processing
is carried out in three main stages: query recognition, query
decomposition, and query execution.

In [9], we also proposed a novel video segmentation tech-
nique specifically for spatiotemporal modeling of video data
that is based on the spatiotemporal relations between salient
video objects. In our approach, video clips are segmented into
shots whenever the current set of relations between video ob-
jects changes, thereby helping us to determine parts of the
video where the spatial relationships do not change at all. Spa-
tiotemporal relations are represented as Prolog facts partially
stored in the knowledge base, and those relations that are not
stored explicitly can be derived by our inference engine Prolog
using the rules in the knowledge base. The system has a com-
prehensive set of rules that reduces the storage space needed
for the spatiotemporal relations considerably while keeping
the query response time at interactive rates, as proven by our
performance tests using both synthetic and real video data [9].
Our rule-based spatiotemporal query processing strategy and
query language take advantage of this segmentation technique
to provide precise (fine-grained) answers to spatiotemporal
video queries. Consequently, the smallest unit of retrieval is
not a scene (a single camera shot) but a single frame in our
VDBMS that we call BilVideo.

To the best of our knowledge, allVDBMSs proposed in the
literature associate the spatiotemporal relations between video
objects, as well as object trajectories, with scenes defined as
single camera shots. Hence these systems are unable to return
arbitrary segments of video clips in response to user queries
that consist of spatiotemporal conditions. Nonetheless, users
may not be interested in seeing an entire scene as a result of a
query if the query conditions are satisfied only in some parts
of the scene. Moreover, since object trajectories are conven-
tionally defined within the scenes, and thereby do not span
over the entire video as one entity, trajectory matching is re-
stricted to the subtrajectories of objects that fall into scenes in
the entire video. We believe that such a restriction limits the
flexibility and power of a VDBMS for spatiotemporal query
processing: users should be able to retrieve arbitrary video
segments if there is a match for a given query trajectory with a
part of an object trajectory, where the object trajectory spans
the entire video. To the best of our knowledge, only BilVideo
provides this support thanks to its unique video segmenta-
tion technique that is based on the spatiotemporal relations
between video objects.

The rest of the paper is organized as follows. Section 2
presents a discussion of some of the VDBMS and query lan-
guages proposed in the literature and their comparison to Bil-
Video and its query language. BilVideo’s overall architecture
and our rule-based approach to representing spatiotemporal
relations between salient video objects are briefly mentioned
in Sect. 3. Section 4 presents the proposed SQL-like textual
query language and demonstrates the capabilities of the lan-
guage with some query examples on three different applica-
tion areas: soccer event analysis, bird migration tracking, and
movie retrieval systems. Section 5 provides a detailed discus-
sion on the proposed rule-based spatiotemporal query pro-
cessing strategy with some example queries. The results of
our preliminary performance and scalability tests conducted
on the knowledge base of BilVideo, which are presented in
detail in [9], are summarized in Sect. 6. We draw our con-
clusions and state possible future research areas in Sect. 7.
Finally, the grammar of the proposed query language is given
in Appendix A.

2 Related work

In this section, we compare BilVideo and its query language
with some other systems and query languages proposed in the
literature. One point worth noting at the outset is that the Bil-
Video query language is, to the best of our knowledge, unique
in its support for retrieving any segment of a video clip, where
the given query conditions are satisfied, regardless of how
video data are semantically partitioned. None of the systems
discussed here can return a subinterval of a scene as part of a
query result because video features are associated with scenes
defined to be the smallest semantic units of video data. In
our approach, object trajectories, object-appearance relations,
and spatiotemporal relations between video objects are repre-
sented as Prolog facts in a knowledge base, and they are not
explicitly related to semantic units of videos. Thus the BilVideo
query language can return precise answers for spatiotemporal
queries in terms of frame intervals. Moreover, our assessment
of the directional relations between two video objects is also
novel in that two overlapping objects may have directional
relations defined for them with respect to one another, pro-
vided that center points of the objects’ minimum bounding
rectangles (MBRs) are different. It is because Allen’s tempo-
ral interval algebra, [2], is not used as a basis for the direc-
tional relation definition in our approach: to determine which
directional relation holds between two objects, center points
of the objects’ MBRs are used [9]. Furthermore, the BilVideo
query language provides three aggregate functions, average,
sum, and count, that may be very attractive for some applica-
tions such as sports statistical analysis systems for collecting
statistical data on spatiotemporal events. Moreover, the Bil-
Video query language provides full support for spatiotemporal
querying of video data.

VideoSQL. VideoSQL is an SQL-like query language devel-
oped for OVID to retrieve video objects [31]. Before exam-
ining the conditions of a query for each video object, target
video objects are evaluated according to the interval inclusion
inheritance mechanism. A VideoSQL query consists of the ba-
sic select, from, and where clauses. Conditions may contain
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attribute/value pairs and comparison operators. Video num-
bers may also be used in specifying conditions. In addition,
VideoSQL has the ability to merge the video objects retrieved
by multiple queries. Nevertheless, the language does not con-
tain any expression to specify spatial and temporal conditions
on video objects. Thus VideoSQL does not support spatiotem-
poral queries, which is a major weakness of the language.

MOQL and MTQL. In [26], multimedia extensions to the
Object Query Language (OQL) and TIGUKAT Query Lan-
guage (TQL) are proposed. The extended languages are called
Multimedia Object Query Language (MOQL) and Multime-
dia TIGUKAT Query Language (MTQL), respectively. The
extensions made are spatial, temporal, and presentation fea-
tures for multimedia data. MOQL has been used in the STARS
system [23] as well as in an object-oriented SGML/HyTime-
compliant multimedia database system [32], both developed
at the University of Alberta.

MOQL and MTQL support content-based spatial and tem-
poral queries as well as query presentation. Both languages in-
clude support for 3D-relation queries, as we call them, by front,
back, and their combinations with other directional relations,
such as front left, front right, etc. The BilVideo query language
has a different set of third-dimension (3D) relations, though.
The 3D relations supported by the BilVideo query language
are infrontof, behind, strictlyinfrontof, strictlybehind, touch-
frombehind, touchedfrombehind, and samelevel. Definitions
of these 3D relations are given in Sect. 4.2.2. The moving-
object model integrated in MOQL and MTQL [22] is also
different from our model. The BilVideo query language does
not support similarity-based retrieval on spatial conditions as
MOQL and MTQL do. Nonetheless, it does allow users to
specify separate weights for the directional and displacement
components of the trajectory conditions in queries, which both
languages lack.

AVIS. In [28], a unified framework for characterizing mul-
timedia information systems is proposed. Some user queries
may not be answered efficiently using these data structures;
therefore, for each media instance, some feature constraints
are stored as a logic program. Nonetheless, temporal aspects
and relations are not taken into account in the model. More-
over, complex queries involving aggregate operations as well
as uncertainty in queries require further work to be done. In
addition, although the framework incorporates some feature
constraints as facts to extend its query range, it does not pro-
vide a complete deductive system as we do.

The authors extend their work defining feature–subfeature
relationships in [27]. When a query cannot be answered, it is
relaxed by substituting a subfeature for a feature. This re-
laxation technique provides some support for reasoning with
uncertainty.

In [1], a prototype video information system, called Ad-
vanced Video Information System (AVIS), is introduced. The
authors propose a special kind of segment tree, namely, frame
segment tree, and a set of arrays to represent objects, events,
activities, and their associations. The proposed data model
is based on the generic multimedia model described in [28].

Consequently, temporal queries on events are not addressed
in AVIS.

In [15], an SQL-like video query language based on the
data model developed by Adalı et al. [1] is proposed. Thus the
language does not provide any support for temporal queries
on events, nor does it have any language construct for spa-
tiotemporal querying of video clips since it was designed for
semantic queries on video data. In the BilVideo query model,
temporal operators, such as before, during, etc., would also be
used to specify order in time between events just as they are
used for spatiotemporal queries.

VideoSTAR. VideoSTAR proposes a generic data model that
makes possible sharing and reusing video data [14]. Thematic
indexes and structural components might implicitly be related
to one another since frame sequences may overlap and be
reused. Therefore, considerable processing is needed to ex-
plicitly determine the relations, making the system complex.
Moreover, the model does not support spatiotemporal relations
between video objects.

CVQL. A content-based logic video query language, CVQL,
is proposed in [20]. Users retrieve video data specifying
some spatial and temporal relationships for salient objects.
An elimination-based preprocessing for filtering unqualified
videos and a behavior-based approach for video function eval-
uation are also introduced. For video evaluation, an index
structure called M-index is proposed. Using this index struc-
ture, frame sequences satisfying a query predicate can be
efficiently retrieved. Nevertheless, topological relations be-
tween salient objects are not supported since an object is rep-
resented by a point in two-dimensional (2D) space. Conse-
quently, the language does not allow users to specify topolog-
ical and similarity-based object-trajectory queries.

3 BilVideo VDBMS

This section is intended only to provide a very brief overview
of the BilVideo system architecture. Further information and
details can be found in our earlier paper [9].

3.1 Overall system architecture

Figure 1 illustrates the system architecture of BilVideo. In the
heart of the system lies the query processor, which is respon-
sible for processing and responding to user queries in a mul-
tiuser environment. The query processor communicates with a
knowledge base and an object-relational database. The knowl-
edge base stores fact-based metadata used for spatiotemporal
queries, whereas semantic and histogram-based (color, shape,
and texture) metadata are stored in the feature database main-
tained by the object-relational database. Raw video data and
video data features are stored separately. Semantic metadata
stored in the feature database is generated and updated by a
video-annotator tool, and the fact base is populated by a fact-
extractor tool, both developed as Java applications [3,8]. The
fact-extractor tool also extracts the color and shape histograms
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Fig. 1. BilVideo system architecture

of objects of interest in video keyframes to be stored in the fea-
ture database [37].

BilVideo can currently handle only spatiotemporal queries
on video data, which is the focus of this paper; however, we are
in the process of extending it to provide an integrated support
for semantic and low-level (color, shape, and texture) queries
as well.

3.2 Knowledge-base structure

In the knowledge base, each fact has a single frame number that
is of a keyframe.1 This representation scheme allows our in-
ference engine Prolog to process spatiotemporal queries faster
and easier compared to using frame intervals for the facts. It
is because the frame interval processing that forms the final
query results is carried out efficiently by some optimized code,
written in C++, outside the Prolog environment. Therefore, the
rules used for querying video data, which we call query rules,
have frame-number variables associated with them. A second
set of rules that we call extraction rules was also created to
work with frame intervals so as to extract spatiotemporal rela-
tions from video data. Extracted spatiotemporal relations are
then converted to be stored as facts with frame numbers of the
keyframes in the knowledge base, and these facts are used by
the query rules for query processing in the system.

The rules in the knowledge base significantly reduce the
number of facts that need to be stored for spatiotemporal
querying of video data. Our storage space savings was about
40% for some real video data we experimented on. Moreover,
the system’s response time for different types of spatiotem-
poral queries posed on the same data was at interactive rates.
We provide a brief summary of our performance tests con-
ducted on the knowledge base of BilVideo in Sect. 6. Details on
the knowledge-base structure of BilVideo, our fact-extraction
(video segmentation) algorithm, types of rules/facts used,
their definitions, and a detailed discussion of our performance
tests involving spatial relations can be found in [9].

1 This does not include appear and object-trajectory facts, which
have frame intervals as a component instead of frame numbers be-
cause of storage space, ease of processing, and processing cost con-
siderations.

4 BilVideo query language

Retrieval of video data by their spatiotemporal content is a very
important and challenging task. Query languages designed
for relational, object, and object-relational databases do not
provide sufficient support for spatiotemporal video retrieval;
consequently, either a new language should be designed and
implemented or an existing language should be extended with
the required functionality.

In this section, we present a new video query language
that is similar to SQL in structure. The language can be
used for spatiotemporal queries that contain any combination
of directional, topological, 3D-relation, external-predicate,
object-appearance, trajectory-projection, and similarity-based
object-trajectory conditions.

4.1 Features of the language

The BilVideo query language has four basic statements for
retrieving information:

select video from all [where condition];
select video from videolist where condition;
select segment from range where condition;
select variable from range where condition.

The target of a query is specified in the select clause. A
query may return videos (video), or segments of videos (seg-
ment), or values of variables (variable) with or without seg-
ments of videos. Regardless of the target type specified, video
identifiers for videos are always returned as part of the query
answer. The aggregate functions (sum, average, and count),
which operate on segments, may also be used in the select
clause. Variables might be used for the object identifiers and
trajectories. Moreover, if the target of a query is videos (video),
users may also specify the maximum number of videos to be
returned as a result of a query. If the keyword random is
used, video fact files to process are selected randomly in the
system, thereby returning a random set of videos as a result.
The range of a query is specified in the from clause, which
may be either the entire video collection or a list of specific
videos. The query conditions are given in the where clause.
In the BilVideo query language, the condition is defined recur-
sively, and consequently it may contain any combination of
spatiotemporal query conditions.

Supported Operators: The BilVideo query language sup-
ports a set of logical and temporal operators to be used
in the query conditions. The logical operators are and, or,
and not, while the temporal operators are before, meets,
overlaps, starts, during, finishes, and their inverse opera-
tors.

The language also has a trajectory-projection operator,
project, which can be used to extract subtrajectories of
video objects on a given spatial condition. The condition
is local to project, and it is optional. If it is not given, entire
object trajectories rather than subtrajectories of objects are
returned.

The language has two operators, “=” and “!=”, to be
used for assignment and comparison. The left argument of
these operators should be a variable, whereas the right ar-
gument may be either a variable or a constant (atom). The
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“!=” operator is used for inequality comparison, while the
“=” operator may take on different semantics depending on
its arguments. If one of the arguments of the “=” operator
is an unbound variable, it is treated as the assignment oper-
ator. Otherwise, it is considered the equality-comparison
operator. These semantics were adopted from the Prolog
language.

Operators that perform interval processing are called
interval operators. Hence all temporal operators are in-
terval operators. Logical operators are also considered as
interval operators when their arguments contain intervals.

In the BilVideo query language, precedence values
of the logical, assignment, and comparison operators fol-
low their usual order. Logical operators assume the same
precedence values when they are considered as interval
operators as well. Temporal operators are given a higher
priority over logical operators when determining the ar-
guments of operators, and they are left associative, as are
logical operators.

The BilVideo query language also provides a keyword,
repeat, that can be used in conjunction with a temporal
operator, such as before, meets, etc., or a trajectory condi-
tion. Video data may be queried by repetitive conditions
in time using repeatwith an optional repetition number
given. If a repetition number is not given with repeat,
then it is considered indefinite, thereby causing the proces-
sor to search for the largest intervals in a video, where the
conditions given are satisfied at least once over time. The
keyword tgap may be used for the temporal operators
and a trajectory condition. However, it has rather different
semantics for each type. For temporal operators, tgap is
only meaningful when repeat is used because it speci-
fies the maximum time gap allowed between the pairs of
intervals to be processed for repeat. Therefore, the lan-
guage requires that tgap be used along with repeat for
temporal operators. For a trajectory condition, it may be
used to specify the maximum time gap allowed for con-
secutive object movements as well as pairs of intervals to
be processed for repeat if repeat is also given in the
condition.

Aggregate Functions: The BilVideo query language has
three aggregate functions, average, sum, and count, which
take a set of intervals (segments) as input. Average and
sum return a time value in minutes, while count returns
an integer for each video clip satisfying given conditions.
Average is used to compute the average of the time dura-
tions of all intervals found for a video clip, whereas sum
and count are used to calculate, respectively, the total time
duration for and the total number of all such intervals.
These aggregate functions might be very useful to collect
statistical data for some applications such as sports event
analysis systems, motion tracking systems, etc.

External Predicates: The BilVideo query language is generic
and designed to be used for any application that requires
spatiotemporal query processing capabilities. It has a con-
dition type external defined for application-dependent
predicates, which we call external predicates. This con-
dition type is generic; consequently, a query may contain
any application-dependent predicate in the where clause
of the language with a name different from any predefined
predicate and language construct and with at least one ar-

gument that is either a variable or a constant (atom). Ex-
ternal predicates are processed just like spatial predicates
as part of the maximal subqueries. If an external predicate
is to be used for querying video data, facts and/or rules
related to the predicate should be added to the knowledge
base beforehand.

In our design, each video segment returned as an answer
to a user query has an associated importance value ranging be-
tween 0 and 1, where 1 denotes an exact match. The results are
ordered with respect to these importance values in descending
order. Maximal subqueries return segments with importance
value 1 because they are exact-match queries, whereas the
importance values for the segments returned by similarity-
based object-trajectory queries are the similarity values com-
puted. Interval operators not and or return the complements
and union of their input intervals, respectively. Interval op-
erator or returns intervals without changing their importance
values, while the importance value for the intervals returned
by not is 1. The remaining interval operators take the average
of the importance values of their input interval pairs for the
computed intervals. Users may also specify a time period in
a query to view only the parts of videos returned as an an-
swer. The grammar of the BilVideo query language is given in
Appendix A.

4.2 Basic query types

This section presents the basic query types that the BilVideo
query language supports. These types of queries can be com-
bined to construct complex spatiotemporal queries without
any restriction, which makes the language very flexible and
powerful in terms of expressiveness. In this section, we pro-
vide some examples of the object and similarity-based object-
trajectory queries; examples of the other types used in combi-
nation are introduced later in Sects. 4.3 and 5.5.

4.2.1 Object queries

This type of query may be used to retrieve salient objects for
each video queried that satisfies the conditions, along with
segments if desired, where the objects appear. Some example
queries of this type are given below:

Query 1: “Find all video segments from the database in which
object o1 appears.”

select segment
from all
where appear(o1).

In this query, the appear predicate returns the frame in-
tervals (segments) of each video in the database where object
o1 appears. The segments returned are grouped by videos, and
each group is sorted in the linear timeline based on the starting
frames, where smaller segments appear before larger ones if
the starting frames of the intervals are the same.

Query 2: “Find the objects that appear together with object
o1 in a given video clip, and also return such segments.”
(Video identifier for the given video clip is assumed to
be 1.)
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select segment, X
from 1
where appear(o1, X) and X != o1.

4.2.2 Spatial queries

This type of query may be used to query videos by spatial
properties of objects defined with respect to each other. Sup-
ported spatial properties for objects can be grouped into three
main categories: directional relations that describe order in 2D
space, topological relations that describe neighborhood and
incidence in 2D space, and 3D relations that describe object
positions on the z-axis of 3D space.

There are eight distinct topological relations: disjoint,
touch, inside, contains, overlap, covers, coveredby, and equal.
The fundamental directional relations are north, south, east,
west, northeast, northwest, southeast, and southwest. Fur-
thermore, our 3D relations consist of infrontof, strictlyin-
frontof, touchfrombehind, samelevel, behind, strictlybehind,
and touchedfrombehind.

Definitions of the topological and 3D relations are based
on Allen’s temporal interval algebra [2]. Table 1 presents the
semantics of our 3D relations. We, however, do not provide
in this paper the semantics for the topological relations since
they are given in a number of papers in the literature (e.g., [11]
and [33]). We also include the relations left, right, below, and
above in the group of directional relations, and these relations
are defined in terms of the fundamental directional relations.
However, directional components of the object trajectories can
only contain the fundamental directional relations in query
specifications. Our definitions for the directional relations are
given in [9].

4.2.3 Similarity-based object-trajectory queries

In our data model, for each moving object in a video clip, a
trajectory fact is stored in the fact base. A trajectory fact is
modelled as tr(ν, ϕ, ψ, κ), where

ν: object identifier,
ϕ (list of directions): [ϕ1, ϕ2, . . . , ϕn], where ϕi ∈ F2

(1≤i≤n),
ψ (list of displacements): [ψ1, ψ2, . . . , ψn], where

ψi ∈ Z+ (1≤i≤n),
κ (list of intervals): [[s1, e1], . . . , [sn, en]], where si,

ei ∈ N and si ≤ei (1≤i≤n).
A trajectory query is modeled as

tr(α, λ) [sthreshold σ [dirweight β |
dspweight η]][tgap γ]

or
tr(α, θ) [sthreshold σ] [tgap γ],

where
α: object identifier,
λ: trajectory list ([θ, χ])

θ: list of directions,
χ: list of displacements,

sthreshold (similarity threshold): 0< σ <1,
dirweight (directional weight): 0≤ β ≤1 and 1-

β = η,
2 set of fundamental directional relations

dspweight (displacement weight): 0≤ η ≤1 and
1-η = β,

tgap: time threshold, γ ∈ N, for the gap between
consecutive object movements.

In a trajectory query, variables may be used for α and
λ, and the number of directions is equal to the number of
displacements in λ, just like in trajectory facts, because each
element of a list is associated with an element of the other list
that has the same index value. The list of directions specifies a
path an object follows, while the displacement list associates
each direction in this path with a displacement value. However,
it is optional to specify a displacement list in a query in which
case no weights are used in matching trajectories. Such queries
are useful when displacements are not important to the user.

In a trajectory query, similarity and time threshold values
are also optional. If a similarity threshold is not given, the
query is considered as an exact-match query. A query without
a tgap value implies a continuous motion without any stop
between consecutive object movements. The time threshold
value specified in a query is considered in seconds.A trajectory
query may have either a directional or a displacement weight
supplied because the other is computed from the one given.
Moreover, for a weight to be specified, a similarity threshold
value must also be provided. If a similarity value is supplied
and no weight is given, then the weights of the directional
and displacement components are considered equal by default.
The key idea in measuring the similarity between a pair of
trajectories is to find the distance between the two, and this is
achieved by computing the distances between the directional
and displacement components of the trajectories when both
lists are available. If a displacement list is not specified in
a query, then trajectory similarity is measured by comparing
the directional lists. Furthermore, when a weight value is 0,
its corresponding list is not taken into account in computing
the similarity between trajectories.

Directional Similarity:

Definition 4.1. A directional region is an area between neigh-
boring directional segments in the directional coordinate sys-
tem depicted in Fig. 2.

Definition 4.2. Let da and db be two directions in the direc-
tional coordinate system. The distance between da and db,
denoted as D(da, db), is defined to be the minimum number of
directional regions between da and db.

Definition 4.3. The directional normalization factor,ω, is de-
fined to be the number of directional regions between two op-
posite directions in the directional coordinate system (w = 4).

LetA and B be two directional lists each havingn elements
such thatA = [A1,A2, . . . ,An] and B = [B1,B2, . . . ,Bn]. The
directional similarity between A and B is specified as follows:

ς(A,B) = 1 − 1
w

√√√√ 1
n

n∑
i=1

D(Ai, Bi)2. (1)

Displacement Similarity:

Definition 4.4. The displacement normalization factor of a
displacement list A is defined to be the maximum displacement
value in the list, and it is denoted by Aµ.
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Table 1. Definitions of our 3D relations on the z-axis of 3D space

Relation Inverse Meaning

AAA
BBB (A overlaps B)

A infrontof B B behind A or
AAABBB (A meets B)

or
AAA BBB (A before B)

AAA BBB (A before B)
A strictlyinfrontof B B strictlybehind A or

AAABBB (A meets B)

AAA
BBBBBB (A starts B)

or
AAA

BBBBBB (A finishes B)
A samelevel B B samelevel A or

AAA
BBBBBB (A during B)

or
AAA
BBB (A equal B)

A touchfrombehind B B touchedfrombehind A BBBAAA (B meets A)

North−east

West

North

South−west

East

North−west

South

South−east Fig. 2. Directional coordinate
system

Let A and B be two displacement lists each having n ele-
ments such that A = [A1, A2, . . . , An] and B = [B1, B2, . . . ,
Bn]. Furthermore, let us suppose thatDnr(Ai,Bi) denotes the
normalized distance between Ai and Bi for 1 ≤ i ≤ n. Then,
the displacement similarity between A and B is specified as
follows:

ς(A,B) = 1 −
√√√√ 1
n

n∑
i=1

Dnr(Ai, Bi)2 ,

where Dnr(Ai,Bi) =
BµAi −AµBi

AµBµ
. (2)

Trajectory Matching:
Similarity-based object-trajectory queries are processed by the
trajectory processor, which takes such queries as input and re-
turns a set of intervals, each associated with an importance
value (similarity value), along with some other data needed
by the query processor for forming the final set of answers to
user queries such as variable bindings (values) if variables are

used. Here we formally discuss how similarity-based object-
trajectory queries with no variables are processed by the tra-
jectory processor. In doing so, it is assumed without loss of
generality that trajectory queries contain both the directional
and displacement lists. Moreover, we restrict our discussion to
such cases as those where the time gaps between consecutive
object movements in trajectory facts are equal to or below the
time threshold given in a query. These assumptions are made
simply for the sake of simplicity because our main goal here is
to explain the theory that provides a novel framework for our
similarity-based object-trajectory matching mechanism rather
than presenting our query processing algorithm in detail.

Let Q and T be, respectively, a similarity-based object-
trajectory query and a trajectory fact for an object stored in the
fact base for a video clip such that Q =tr(α,λ)sthreshold
σ dirweight β and T = (ν, ϕ, ψ, κ), where λ = [θ, χ]. Let
us assume that there is no variable used in Q or all variables
are bound, α = ν, ‖ϕ‖ = n, and ‖θ‖ = m. Let us also assume
that there is no gap between any consecutive pairs of intervals
in κ such that κei = κsi+1 (1 ≤ i < m).

Case 1 (n = m): The similarity between the two trajectories
Qt = (θ, χ) and Tt = (ϕ, ψ) is computed as follows:

ς(Qt, Tt) = βς(θ, ϕ) + ης(χ, ψ), where β = 1 − η .(3)

In this case, the trajectory processor returns only one in-
terval, ξ = [κs1 , κen

], iff ς(Qt, Tt)≥σ. Otherwise (ς(Qt,
Tt)<σ), the answer set is empty because there is no simi-
larity between Qt and Tt with a given threshold σ.

Case 2 (n > m): In this case, the trajectory processor returns
a set of intervals φ such that

φ = {[si, ei]|1 ≤ i ≤ n−m+ 1 ∧ si = κsi
∧

ei = κei+m−1 ∧
ς(Qt, Tt[i,i+m−1]) ≥ σ}, (4)
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where

Tt[i,i+m−1] = ([ϕi, . . . , ϕi+m−1], [ψi, . . . , ψi+m−1]). (5)

If there is no match found for anyTti for1 ≤ i ≤ n−m+1,
where Tti = Tt[i,i+m−1] , then the answer set is empty.

Case 3 (n < m): As in Case 1, the trajectory processor returns
only one interval, ξ = [κs1 , κen],

iff ∃ς(Qt[i,i+n−1] , Tt) ≥ m

n
σ

for 1 ≤ i ≤ m− n+ 1,

where

Qt[i,i+n−1] = ([θi, . . . , θi+n−1], [χi, . . . , χi+n−1]).

The importance value (similarity value) associated and re-
turned with ξ is

ς =
n

m
MAX{ς|ς(Qt[i,i+n−1] , Tt)(1 ≤ i ≤ m− n+ 1)}.

If no match is found, the answer set is empty because there
is no similarity betweenQt andTt with a given thresholdσ.

Following is an example similarity-based object-trajectory
query specification in the BilVideo query language. In this
example query, we are interested in retrieving the segments
of a video whose identifier is specified as 1, where object o1
follows a similar path to the query trajectory with no time gap
value given (continuous movement). For the sake of simplicity,
let us assume that the trajectory of object o1 stored in the
knowledge base for the video queried is

tr(o1, [east, north, east, north,
south], [10, 20, 10, 30, 15], [[1, 100],
[100, 150], [150, 200], [200, 250],
[250, 300]]).

select segment
from 1
where tr(o1,

[[east, north, east, northwest],
[10, 20, 15, 25]])
sthreshold 0.6 dirweight 0.7.

Hence for this query example,α = ν = o1, ‖ϕ‖ = n = 5, ‖θ‖
= m = 4, σ = 0.6, and β = 0.7 (η = 1 - β = 0.3). Moreover, T =
(ν, ϕ, ψ, κ) and Q = tr(α, λ) sthreshold σ dirweight
β, where

ϕ = [east, north, east, north, south],

ψ = [10, 20, 10, 30, 15],
κ = [[1, 100], [100, 150], [150, 200], [200, 250], [250, 300]],
λ = [θ, χ]
θ = [east, north, east, northwest],

χ = [10, 20, 15, 25].

Since n > m, this query falls into case 2. Thus, from Eq. 5

Tt[1,4] = [[east, north, east, north], [10, 20, 10, 30]] and

Tt[2,5] = [[north, east, north, south], [20, 10, 30, 15]].

According to Eq. 4, ς(Qt, Tt[1,4]) and ς(Qt, Tt[2,5]) are
computed using the formula given in Eq. 3. Therefore,

ς(Qt, Tt[1,4]) = 0.7ς(θ, ϕTt[1,4]
) + 0.3ς(χ, ψTt[1,4]

)

ς(Qt, Tt[2,5]) = 0.7ς(θ, ϕTt[2,5]
) + 0.3ς(χ, ψTt[2,5]

),

where

ϕTt[1,4]
= [east, north, east, north],

ϕTt[2,5]
= [north, east, north, south],

ψTt[1,4]
= [10, 20, 10, 30],

ψTt[2,5]
= [20, 10, 30, 15].

ς(θ, ϕTt[1,4]
) and ς(θ, ϕTt[2,5]

) are computed using Eq. 1,

while ς(χ, ψTt[1,4]
) and ς(χ, ψTt[2,5]

) are computed us-

ing Eq. 2. After the computations, ς(θ, ϕTt[1,4]
) = 0.875,

ς(θ, ϕTt[2,5]
) = 0.427, ς(χ, ψTt[1,4]

) = 0.949, and ς(χ, ψTt[2,5]
)

= 0.156. Therefore, ς(Qt, Tt[1,4]) = 0.897 and ς(Qt, Tt[2,5]) =
0.346.

Since ς(Qt, Tt[1,4])> 0.6, but ς(Qt, Tt[2,5])< 0.6, the only
interval, [s, e], returned as a result of this query is [κs1 , κe4 ],
where κs1 = 1 and κe4 = 250. Hence, φ = {[1, 250]}.

Projection Operator:
The BilVideo query language provides a trajectory-projection
operator, project(α [, β]), to extract subtrajectories from the
trajectory facts, where α is an object identifier for which a
variable might be used and β is an optional condition. If a
condition is not given, then the operator returns the entire
trajectory that an object follows in a video clip. Otherwise,
subtrajectories of an object, where the given condition is sat-
isfied, are returned. Hence the output of project is a set ϑ =
{λ | λ = [θ, χ]}, where λ is a trajectory and θ and χ are the
directional and displacement components of λ, respectively.
The condition, if it is given, is local to project, and it is of type
<spatial-condition> as specified in Appendix A.

4.2.4 Temporal queries

This type of query is used to specify the order of occurrence
of conditions in time. Conditions may be of any type, but tem-
poral operators process their arguments only if they contain
intervals. The BilVideo query language implements all tem-
poral relations, defined by Allen’s temporal interval algebra,
as temporal operators, except for equal: our interval operator
and yields the same functionality as that of equal because its
definition, given in Sect. 5.4, is the same as that of equal for
interval processing. Supported temporal operators, which are
used as interval operators in the BilVideo query language, are
before, meets, overlaps, starts, during, finishes, and their in-
verse operators. A user query may contain repeating temporal
conditions specified by repeat with an optional repetition
number given. If tgap is not provided with repeat, then
its default value for the temporal operators (equivalent to one
frame when converted) is assumed. Definitions of the temporal
relations can be found in [2].
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4.2.5 Aggregate queries

This type of query may be used to retrieve statistical data about
objects and events in video data. The BilVideo query language
supports three aggregate functions, average, sum, and count,
as explained in Sect. 4.1.

4.3 Example applications

To demonstrate the capabilities of the BilVideo query lan-
guage, three application areas, soccer event analysis, bird mi-
gration tracking, and movie retrieval systems, have been se-
lected. However, it should be noted that the BilVideo system
architecture and BilVideo query language provide a generic
framework to be used for any application that requires spa-
tiotemporal query processing capabilities.

4.3.1 Soccer event analysis system

A soccer event analysis system may be used to collect statis-
tical data on events that occur during a soccer game, such as
finding the number of goals, offsides and passes, average ball
control time for players, etc., as well as to retrieve video seg-
ments where such events take place. The BilVideo query lan-
guage can be used to answer such queries, provided that some
necessary facts, such as players and goalkeepers for the teams,
as well as some predicates, such as player to find the players of
a certain team, are added to the knowledge base. This section
provides some query examples based on an imaginary soccer
game fragment between England’s two teams Liverpool and
Manchester United. The video identifier of this fragment is
assumed to be 1.

Query 1: “Find the number of direct shots to the goalkeeper
of Liverpool by each player of Manchester United in a
given video clip and return such video segments.”
This query can be specified in the BilVideo query language
as follows:

select count(segment), segment, X
from 1
where goalkeeper(X, liverpool) and
player(Y, manchester)
and touch(Y, ball)
meets not(touch(Z, ball))
meets touch(X, ball).

In this query, the external predicates are goalkeeper and
player. For each player of Manchester United found in the
specified video clip, the number of direct shots to the goal-
keeper of Liverpool by the player, along with the player’s
name and video segments found, is returned provided
that such segments exist. In the BilVideo system architec-
ture, semantic metadata are stored in an object-relational
database. Hence video identifiers can be retrieved from
this database by querying it with some descriptional data.

Query 2: “Find the average ball control (play) time for each
player of Manchester United in a given video clip.”
This query can be specified in the BilVideo query language
as follows:

select average(segment), X
from 1

where player(X, manchester)
and touch(X, ball).

In answering this query, it is assumed that when a player
touches the ball, it is in his control. Then, the ball control
time for a player is computed with respect to the time
interval during which he is in touch with the ball. Hence
the average ball control time for a player is simply the sum
of all time intervals where the player is in touch with the
ball divided by the number of these time intervals. This
value is computed by the aggregate function average.

Query 3: “Find the number of goals of Liverpool scored
against Manchester United in a given video clip.”
This query can be specified in the BilVideo query language
as follows:

select count(segment)
from 1
where samelevel(ball, net) and

overlap(ball, net).
In this query, the 3D relation samelevel ensures that an
event that is not a goal because the ball does not go into
the net but rather passes somewhere near the net, is not
considered as a goal. The ball may overlap with the net
in 2D space while it is behind or in front of the net on
the z-axis of 3D space. Hence by using the 3D relation
samelevel, such false events are discarded.

4.3.2 Bird migration tracking system

A bird migration tracking system is used to determine the mi-
gration paths of birds over a set of regions in certain times.
In [30], an animal movement querying system is discussed,
and we have chosen a specific application of such a system to
show how the BilVideo query language might be used to an-
swer spatiotemporal, especially object-trajectory, queries on
the migration paths of birds.

Query 1: “Find the migration paths of bird o1 over region r1
in a given video clip.”
This query can be specified in the BilVideo query language
as follows:

select X
from 2
where X = project(o1, inside(o1, r1)).
In this query,X is a variable used for the trajectory of bird
o1 over region r1. The video identifier of the video clip
where the migration of bird o1 is recorded is assumed to
be 2. This query returns the paths bird o1 follows when it
is inside region r1.

Query 2: “How long does bird o1 appear inside region r1 in
a given video clip?”
This query can be specified in the BilVideo query language
as follows:

select sum(segment)
from 2
where inside(o1, r1).
The result of this query is a time value that is computed
by the aggregate function sum adding up the time intervals
during which bird o1 is inside region r1.
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Query 3: “Find the video segments where bird o1 enters re-
gion r1 from the west and leaves from the north in a given
video clip.”
This query can be specified in the BilVideo query language
as follows:
select segment
from 2
where (touch(o1, r1)
and west(o1, r1)) meets

overlap(o1, r1)
meets coveredby(o1, r1) meets
inside(o1, r1) meets
coveredby(o1, r1)
meets overlap(o1, r1) meets
(touch(o1, r1) and north(o1, r1));

Query 4: “Find the names of birds following a similar path to
that of bird o1 over region r1 with a similarity threshold
value of 0.9 in a given video clip and return such seg-
ments.”
This query can be specified in BilVideo query language as
follows:

select segment, X
from 2
where Y = project(o1, inside(o1, r1))
and

inside(X, r1) and X ! = o1 and
tr(X, Y) sthreshold 0.9.

Here, X and Y are variables representing the bird names
and subtrajectories of bird o1 over region r1, respectively.
Projected subtrajectories of bird o1, where the given con-
dition is to be inside region r1, are used to find similar
subtrajectories of other birds over the same region.

4.3.3 Movie retrieval system

A movie retrieval system contains movies and series from dif-
ferent categories such as cartoon, comedy, drama, fiction, hor-
ror, etc. Such a system may be used to retrieve videos or seg-
ments from a collection of movies with some spatiotemporal,
semantic, and low-level conditions given. In this section, a spe-
cific episode of Smurfs (a cartoon series), titled Bigmouth’s
Friend, is used for the two spatiotemporal query examples
given. The video identifier of this episode is assumed to be 3.

Query 1: “Find the segments from Bigmouth’s Friend where
Bigmouth is below RobotSmurf, while RobotSmurf starts
moving westward and then eastward, repeating this as
many times as it happens in the video clip.”

select segment
from 3
where below(bigmouth, robotsmurf) and
(tr(bigmouth, [west, east])) repeat.

Query 2: “Find the segments from Bigmouth’s Friend where
RobotSmurf and Bigmouth are disjoint, and RobotSmurf is
to the right of Bigmouth, while there is no other object of
interest that appears.”

select segment
from 3
where disjoint(RobotSmurf, Bigmouth)

and right(RobotSmurf, Bigmouth)
and appear alone(RobotSmurf,

Bigmouth).
In this query, appear alone is an external predicate defined
in the knowledge base as follows:

appear alone(X, Y, F) :-
keyframes(L1),
member(F, L1), findall(W,

p appear(W, F), L2),
length(L2, 2),
forall(member(Z, L2), (Z=X; Z=Y)).

5 Spatiotemporal query processing

This section explains our rule-based spatiotemporal query pro-
cessing strategy in detail. The query processing is carried out
in three phases, namely, query recognition, query decomposi-
tion, and query execution. These phases are depicted in Fig. 3,
and they are explained in Sects. 5.1 through 5.3. The interval
processing is performed in the query execution phase, and it
is discussed in Sect. 5.4 through some case studies.

In the BilVideo query model, the conditions are evaluated
in a single timeline. For each internal node in the query tree,
the child nodes are evaluated first and the results obtained from
the child nodes are propagated to the parent node for interval
processing, going up in the query tree until the final query
results are obtained.

5.1 Query recognition

The lexical analyzer and parser for the BilVideo query lan-
guage were implemented using Linux-compatible versions
of Flex and Bison [10,34], which are the GNU versions of
the original Lex&Yacc [17,21] compiler–compiler generator
tools.The lexical analyzer partitions a query into tokens, which
are passed to the parser with possible values for further pro-
cessing. The parser assigns structure to the resulting pieces
and creates a parse tree to be used as a starting point for query
processing. This phase is called the query recognition phase.

5.2 Query decomposition

The parse tree generated after the query recognition phase
is traversed in a second phase, which we call the query de-
composition phase, to construct a query tree. The query tree is
constructed when the parse tree decomposes a query into three
basic types of subqueries: plain Prolog subqueries or maxi-
mal subqueries that can be directly sent to the inference engine
Prolog, trajectory-projection subqueries that are handled by
the trajectory projector, and similarity-based object-trajectory
subqueries that are processed by the trajectory processor. Tem-
poral queries are handled by the interval-operator functions
such as before, during, etc. Arguments of the interval opera-
tors are handled separately because they should be processed
before the interval operators are applied. Since a user may give
any combination of conditions in any order while specifying
a query, a query is decomposed in such a way that a mini-
mum number of subqueries are formed. This is achieved by



96 M.E. Dönderler et al.: Rule-based spatiotemporal query processing for video databases

DECOMPOSER

Query

PARSERLEXER QUERY
EXECUTOR

QUERY Result SetQuery Parse Tree Query TreeTokens

Query Execution PhaseQuery Decomposition PhaseQuery Recognition Phase Fig. 3. Query processing phases

Processor
Interval

Unit

Processing

Central Query

Answers Trajectory

Processor

Queries

Subqueries
Maximal

Answers

Knowledge−base

      Set
Query Result

Query Tree

Interval
Operator

Input

Interval
Operator
Output

Object
Trajectories

Trajectory
Queries

Trajectory
Projector

Similarity−Based
Object−Trajectory

Answers

Trajectory−Projection
Queries

Trajectory Queries

Condition Queries

Answers

Fig. 4. Query execution

grouping the Prolog-type predicates into maximal subqueries
without changing the semantic meaning of the original query.

5.3 Query execution

The input for the query execution phase is a query tree. In
this phase, the query tree is traversed in postorder, executing
each subquery separately and performing interval processing
in internal nodes so as to obtain the final set of results. Since
it would be inefficient and very difficult, if not impossible,
to fully handle spatiotemporal queries by Prolog alone, the
query execution phase is mainly carried out by some efficient
C++ code. Thus Prolog is utilized only to obtain intermediate
answers to user queries from the fact base. The intermediate
query results returned by Prolog are further processed, and
the final answers to user queries are formed after the interval
processing. Figure 4 illustrates the query execution phase.

The BilVideo query language is designed to return vari-
able values, when requested explicitly, as part of the query
result as well. Therefore, the language not only supports
video/segment queries but also variable-value retrieval for the
parts of videos satisfying given query conditions, utilizing a
knowledge base. Variables may be used for the object identi-
fiers and trajectories.

One of the main challenges in query execution is to handle
such user queries where the scope of a variable used extends
to several subqueries after the query is decomposed. It is a
challenging task because subqueries are processed separately,
accumulating and processing the intermediate results along
the way to form the final set of answers. Hence the values
assigned to variables for a subquery are retrieved and used
for the same variables of other subqueries within the scope
of these variables. Therefore, it is necessary to keep track of
the scope of each variable for a query. This scope information

is stored in a hash table generated for the variables. Dealing
with variables makes the query processing much harder, but it
also empowers the query capabilities of the system and yields
much richer semantics for user queries.

5.4 Interval processing

In the BilVideo query model, intervals are categorized into two
types: nonatomic and atomic intervals. If a condition holds for
every frame of a part of a video clip, then the interval represent-
ing an answer for this condition is considered to be a nonatomic
interval. Nonatomicity implies that the condition holds for ev-
ery frame within an interval in question. Hence the condition
holds for any subinterval of a nonatomic interval as well. This
implication is not correct for atomic intervals, though. The
reason is that the condition associated with an atomic interval
does not hold for all its subintervals. Consequently, an atomic
interval cannot be broken into its subintervals for query pro-
cessing. On the other hand, subintervals of an atomic interval
are populated for query processing, provided that conditions
are satisfied in their range. In other words, the query proces-
sor generates all possible atomic intervals for which the given
conditions are satisfied. This interval population is necessary
since atomic intervals cannot be broken down into subinter-
vals, and all such intervals, where the conditions hold, should
be generated for query processing. The intervals returned by
the plain Prolog subqueries (maximal subqueries) that contain
directional, topological, object-appearance, 3D-relation, and
external-predicate conditions are nonatomic, whereas those
obtained by applying the temporal operators to the interval
sets, as well as those returned by the similarity-based object-
trajectory subqueries, are atomic intervals. Since the logical
operators and, or, and not are considered as interval operators
when their arguments contain intervals to process, they also
work on intervals. The operators and and or may return atomic
and/or nonatomic intervals depending on the types of their in-
put intervals. The operator and takes the intersection of its
input intervals, while the operator or performs a union opera-
tion on its input intervals. The unary operator not returns the
complement of its input interval set with respect to the video
clip being queried, and the intervals in the result set are of the
nonatomic type, regardless of the types of the input intervals.
Semantics of the interval intersection and union operations are
given in Tables 2 and 3, respectively.

The rationale behind classifying the video frame intervals
into two categories as atomic and nonatomic may be best de-
scribed with the following query example: “Return the video
segments in the database, where object A is to the west of
object B and object A follows a similar trajectory to the one
specified in the query with respect to the similarity thresh-
old given.” Let us assume that the intervals [10, 200] and
[10, 50] are returned as part of the answer set for a video for
the trajectory and spatial (directional) conditions of this query,
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Table 2. Interval intersection (AND)

Input interval 1 Input interval 2 Result set Result interval
type

I1 iff I1 ⊇ I2

I1s ≤ I2s ∧ I1e ≥ I2e

I1 (Atomic) I2 (Atomic) I2 iff I1 ⊂ I2 Atomic
I2s < I1s ∧ I2e > I1e

otherwise, Ø

I1 (Atomic) I2 (Nonatomic) I1 iff I2 ⊇ I1 Atomic
otherwise, Ø

I1 (Nonatomic) I2 (Atomic) I2 iff I1 ⊇ I2 Atomic
otherwise, Ø

[Is, Ie] iff I1 overlaps I2

Is = I1s iff I1s ≥ I2s

I1 (Nonatomic) I2 (Nonatomic) otherwise, Is = I2s Nonatomic
Ie = I1e iff I1e ≤ I2e

otherwise, Ie = I2e

otherwise, Ø

Table 3. Interval union (OR)

Input interval 1 Input interval 2 Result set Result interval
type

I1 (Atomic) I2 (Atomic) {I1, I2} Atomic
Atomic

I1 (Atomic) I2 (Nonatomic) {I1, I2} and
Nonatomic

Nonatomic
I1 (Nonatomic) I2 (Atomic) {I1, I2} and

Atomic

[I1s , I2e ] if I2s = I1e + 1
[I2s , I1e ] if I1s = I2e + 1
[Is, Ie] if I1 overlaps I2

I1 (Nonatomic) I2 (Nonatomic) Is = I1s iff I1s ≥ I2s Nonatomic
otherwise, Is = I2s

Ie = I1e iff I1e ≤ I2e

otherwise, Ie = I2e

otherwise, {I1, I2}

respectively. Here, the first interval is of the atomic type be-
cause the trajectory of objectA is only valid within the interval
[10, 200], and therefore a trajectory-similarity computation is
not performed for any of its subintervals. However, the second
interval is nonatomic since the directional condition given is
satisfied for each frame in this interval. When these two inter-
vals are processed to form the final result by the and operator,
no interval is returned as an answer because there is no such
interval where both conditions are satisfied together. If there
were no classification of intervals and all intervals were to be
breakable into subintervals, then the final result set would in-
clude the interval [10, 50]. However, the two conditions obvi-
ously cannot hold together in this interval due to the fact that
the trajectory of object A spans over the interval [10, 200].
As another case, let us suppose that the intervals [10, 200] and
[10, 50] are returned as part of the answer set for the spatial (di-
rectional) and trajectory conditions of this query, respectively,
and the intervals are to be unbreakable to subintervals. Then,

the result set would be empty for these two intervals. This
is not correct since there is an interval, [10, 50], where both
conditions hold. These two cases clearly show that intervals
must be classified into two groups as atomic and nonatomic
for query processing. Following is a discussion with another
example query that has a temporal predicate provided to make
all these concepts much clearer.

Let us suppose that a user wants to find the parts of a video
clip satisfying the following query:

Query: (A before B) and west(x, y), whereA and B are Prolog
subqueries and x and y are atoms (constants).

The interval operator “before” returns a set of atomic in-
tervals, where first A is true and B is false and then A is false
and B is true in time. If A and B are true in the intervals [4, 10]
and [20, 30], respectively, and if these two intervals are both
nonatomic, then the result set will consist of [10, 20], [10, 21],
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[9, 20], [10, 22], [9, 21], . . ., [4, 30]. Now, let us discuss two
different scenarios.

Case 1: west(x, y) holds for [9, 25]. This interval is nonatomic
because west(x, y) returns nonatomic intervals. If the op-
erator “before” returned only the atomic interval [4, 30]
as the answer for “A before B”, then the answer set to the
entire query would be empty. However, the user is inter-
ested in finding the parts of a video clip where “(A before
B) and west(x, y)” is true. The intervals [10, 20], [10, 21],
. . ., [4, 29] also satisfy “A before B”; however, they would
not be included in the answer set for “before”. This is
wrong! All these intervals must be part of the answer set
for “before” as well. If they are included, then the answer
to the entire query will be [9, 25] because [9, 25] (atomic)
and [9, 25] (nonatomic) => [9, 25] (atomic). Nonetheless,
note that such intervals as [10, 19], [11, 25], etc. are not
included in the answer set of “A before B” since they do
not satisfy the condition “A before B”.

Case 2: west(x, y) holds for [11, 25]. Let us suppose that “be-
fore” returned nonatomic intervals rather than atomic in-
tervals and that the answer for “A before B” was [4, 30].
Then the answer to the entire query would be [11, 25] for
[4, 30] (nonatomic) and [11, 25] (nonatomic) => [11, 25]
(nonatomic). Nevertheless, this is wrong due to the fact
that “A before B” is not satisfied within this interval. Hence
“before” should return atomic intervals so that such incor-
rect results are not produced.

These two cases clearly show that the temporal operators
should return atomic intervals and that the results should also
include the subintervals of each largest interval that satisfy
the given conditions, rather than consisting only of the set of
largest intervals. It also demonstrates why such a classifica-
tion of the intervals as atomic and nonatomic is necessary for
interval processing.

5.5 Query examples

In this section, three example spatiotemporal queries are given
to demonstrate how the query processor decomposes a query
into subqueries. Intermediate results obtained from these sub-
queries are integrated step by step to form the final answer
set.

Query 1: select segment, X, Y
from all
where west(X, Y) and west(Y, o1)
and west(o1, o2)
and tr(o2, [west, east], [24, 40]])
sthreshold 0.4 dspweight 0.3 and
disjoint(X, Y) before
touch(X, Y) and
disjoint(Y, o1);

This example query is decomposed into the following sub-
queries:

Subquery 1: tr(o2, [[west, east], [24, 40]])
sthreshold 0.4 dspweight 0.3

Subquery 2: disjoint(X, Y)
Subquery 3: touch(X, Y)

AND

AND

from all
where west(X, Y) and west(Y, a), and west(a, b) and

disjoint(X, Y) before touch(X, Y) and disjoint(Y, a);

Query: select segment, X, Y

tr(b, [[west, east], [24, 40]]) sthreshold 0.4 dspweight 0.3 and

BEFORE

touch(X, Y)disjoint(X, Y)

west(X, Y) and west(Y, a) and

tr(b, [[west, east], [24, 40]], 0.4, 0.7, 0.3)

west(a, b) and disjoint(Y, a)

Fig. 5. Query tree constructed for query 1

Subquery 4: west(X, Y) and west(Y, o1)
and west(o1, o2).
and disjoint(Y, o1)

The directional conditions west(X, Y), west(Y,
o1), and west(o1, o2) can be grouped together with the
topological condition disjoint(Y, o1) using the and op-
erator without changing the semantics of the original query, as
shown in the example decomposition. It should be noted here
that if the topological condition disjoint(Y, o1) were
connected in the query with the operator or or a temporal op-
erator, then such a grouping would not be possible. In this
example, subqueries 2 through 4 are the maximal subqueries.
Subqueries 2 and 3 are linked to each other by the temporal
operator before. The rest of the internal nodes in the query
tree contain the operator and. Figure 5 depicts the query tree
constructed for this example query.

Query 2: select segment, Y
from all
where west(X, Y) and west(Y, o1) and
tr(o2, [[west, east], [24, 40]])
sthreshold 0.4 dirweight 0.4 and
disjoint(Y, o1);

Query 2 is decomposed into the following subqueries:

Subquery 1: tr(o2, [[west, east], [24, 40]])
sthreshold 0.4 dirweight 0.4

Subquery 2: west(X, Y) and west(Y, o1)
and disjoint(Y, o1).

To answer query 1, the query processor computes each
subquery traversing the query tree in postorder, performing
interval processing at each internal node and taking into ac-
count the scope of each variable encountered. Here, the scope
of object variables X and Y is subqueries 2, 3, and 4. Hence
for each value pair of variables X and Y , a set of intervals is
computed in subquery 2.Another reason for computing a set of
intervals for each value pair is that the values obtained for vari-
ablesX and Y are also returned in pairs, along with the video
segments satisfying the query conditions, as part of the query
results. Hence even if the scope of these variables were to be
only subquery 2, the same type of interval processing and care



M.E. Dönderler et al.: Rule-based spatiotemporal query processing for video databases 99

must be provided. Nonetheless, if an object variable is bound
by only one subquery, and its values are not to be returned as
part of the query result as in the case of object variable X in
query 2, then it is possible to combine consecutive intervals
where the variable takes different values, while the remaining
conditions are satisfied for the same set of value sequences for
the remaining variables. Query 3 better explains this concept
of interval processing and variable value computation:

Query 3: “Return video segments in the database where ob-
ject o1 is first disjoint from object o2 and then touches it,
repeating this event three times while it is inside another
object.”

select segment
from all
where inside(o1, X)
and (disjoint(o1, o2) meets
touch(o1, o2)) repeat 3.
In this query, we do not care which object object o1 is

inside; we are only interested in the video segments where
object o1 is first disjoint from object o2 and then touches it,
repeating this event three times, while it is inside another ob-
ject. Thus the consecutive intervals for different objects that
contain object o1 may be combined, provided that the given
conditions are satisfied.

6 Discussion on performance

The running time of our algorithms for processing spatiotem-
poral queries depend on many parameters that are very hard
to formulate nicely. This is mostly due to the possible exis-
tence of variables in user queries. As explained in Sect. 5.3,
allowing variables in a user query makes the query processing
much harder; nonetheless, it also empowers the query capa-
bilities of the system and results in much richer semantics for
user queries. In BilVideo, when a variable is unified (bound
to some values previously computed within its scope), these
values are transferred and used for a condition (containing
that variable) that comes next within the variable’s scope. The
query processor uses these values, instead of finding all the val-
ues of the variable that satisfy the condition regardless of the
previous condition(s) and eliminating those that cannot be in-
cluded in the result set because they do not satisfy the previous
condition(s) in the variable’s scope. This speeds up the query
processing with unified variables, even though there is also
an overhead for transferring the previously computed values
for the variables. The reason is that the query domains of the
variables for the next condition are narrowed down (restricted
to the previously computed values for the unified variables).
Since a condition may contain any number of variables and
some of these variables might have been unified previously
in executing the query, the query processor has to take into
account for that condition a set of variable-value lists. For this
reason it is very hard to formalize the running time behaviors
of our spatiotemporal query processing algorithms as they de-
pend on many parameters, such as the number of variables
used, their scope within the entire query, the query domains
of the variables for each condition, the overhead involved in
transferring the variable-value lists, etc., in addition to the
database size. Therefore, we instead provide a brief summary

Table 4. Specifications of real video data

Video # of Frames # of Objects Max. # of objects
in a Frame

Jornal.mpg 5254 21 4
Smurfs.avi 4185 13 6

of our preliminary performance results, which are presented
in detail in [9].

These performance results show that the system is scalable
for spatiotemporal queries in terms of the number of salient
objects per frame and the total number of frames in a video
clip. The results also demonstrate the space savings achieved
due to our rule-based approach. For the time efficiency tests,
queries were given to the knowledge base as Prolog predicates.
For the scalability and space savings, program-generated syn-
thetic video data were used. These tests constitute the first
part of our overall tests. In the second part, the performance of
the knowledge base was tested on some real video fragments
with the consideration of space and time efficiency criteria to
show its applicability in real-life applications. Real video data
were extracted from jornal.mpg3 and a Smurfs cartoon episode
named Bigmouth’s Friend. Table 4 presents some information
about these video fragments.

For the space efficiency tests with the program-generated
synthetic data, the number of objects per frame was selected
as 8, 15, and 25, while the total number of frames was fixed at
100. To show the system’s scalability in terms of the number
of objects per frame, the total number of frames was chosen
to be 100, and the number of objects per frame was changed
from 4 to 25. For the scalability test with respect to the total
number of frames, the number of objects was fixed at 8, while
the total number of frames was varied from 100 to 1000.

In the tests conducted with the program-generated video
data, there was a 19.59% savings from the space for the sample
data of 8 objects and 1000 frames. The space savings was
31.47% for the sample video of 15 objects and 1000 frames,
while it was 40.42% for 25 objects and 1000 frames. With
the real data, for the first video fragment jornal.mpg, our rule-
based approach achieved a savings of 37.5% of the space. The
space savings for the other fragment, smurfs.avi, was 40%.

The space savings obtained from the program-generated
video data is relatively low compared to that obtained from
the real video fragments. We believe that such behavior is
due to the random simulation of the motion of objects in our
synthetic test data: while creating the synthetic video data, the
motion pattern of objects was simulated randomly changing
the objects’ MBR coordinates by choosing only one object
to move at each frame. Nevertheless, objects generally move
slower in real video, causing the set of spatial relations to
change over a longer period of frames. It is also observed that,
during the tests with the synthetic video data, the space savings
does not change when the number of frames is increased as
the number of objects of interest per frame is fixed. The test
results obtained for the synthetic data are in agreement with
those obtained for the real video. Some differences seen in the
results stem from the fact that synthetic data were produced

3 from MPEG-7 Test Data set CD-14, Port. news
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by a program and thereby were not able to perfectly simulate
a real-life scenario.

The time efficiency tests performed on the program-
generated synthetic data show that the system is scalable in
terms of the number of objects and the number of frames when
either of these numbers is increased while the other is fixed.
Moreover, the knowledge base of the system has a reasonable
response time as the results of the time efficiency tests on the
real video data show. Therefore, we can claim that the knowl-
edge base of BilVideo is reasonably fast enough for answering
spatiotemporal queries.

7 Conclusions and future work

We proposed an SQL-like textual query language for spa-
tiotemporal queries on video data and demonstrated the capa-
bilities of the language through some example queries given
on different application areas. Our novel rule-based spatiotem-
poral query processing strategy has also been explained with
some query examples.

The BilVideo query language is designed to be used for
any application that needs spatiotemporal query processing
capabilities. It is extensible in that any application-dependent
predicate with a different name from those of predefined pred-
icates and constructs of the language and with at least one
argument can be used in user queries. For that it suffices to
add some necessary facts and/or rules to the knowledge base
a priori. Hence the language provides query support through
external predicates for application-dependent data.

The BilVideo query language currently supports a broad
range of spatiotemporal queries. However, the BilVideo sys-
tem architecture is designed to handle semantic (keyword,
event/activity, and category-based) and low-level (color,
shape, and texture) video queries as well. We completed our
work on semantic video modeling and reported our results
in [3]. As for the low-level queries, our fact-extractor tool
also extracts color and shape histograms of the salient objects
in video keyframes [37], and it is currently being extended to
extract texture information from the video keyframes as well.
We are currently working on integrating the support for se-
mantic and low-level video queries into BilVideo by extending
its query processor and query language without affecting the
way the spatiotemporal query conditions are specified in the
query language and processed by the query processor. Further-
more, we also completed our initial work on the optimization
of the spatiotemporal video queries [40]. In an ideal environ-
ment, the BilVideo query language will establish the basis for
a Web-based visual query interface and serve as an embedded
language for users. Hence we developed a Web-based visual
query interface for visually specifying spatiotemporal video
queries over the Internet [36]. We are currently working on en-
hancing the interface for semantic and low-level video query
specification support. We will integrate the Web-based visual
query interface to BilVideo and make it available on the Inter-
net in the future when we complete our work on semantic and
low-level video queries.
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40. Ünel G, Dönderler ME, Ulusoy Ö, Güdükbay U (2004) An
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A Grammar specification of the query language

<query> := select <target> from all
[where <condition>] ‘;’

| select <target> from <videolist>
where <condition> ‘;’

| select segment [‘,’ <variablelist>]
from <range>
where <condition> ‘;’

| select <variablelist> from <range>
where <condition> ‘;’

| select <aggregate> ‘(’ segment ‘)’
[‘,’ segment] [‘,’ <variablelist> ]
from <range> where <condition> ‘;’

<target> := <video> [‘:’ (<number>
| random ‘(’ <number> ‘)’)]

<aggregate> := average | sum | count

<range> := all | <videolist>

<video> := video [[last] <time> [seconds]]

<videolist> := [<videolist> ‘,’] <vid>

<condition> := ‘(’ <condition> ‘)’
| not ‘(’ condition ‘)’
| <condition> and <condition>
| <condition> or <condition>

| <condtype1> | <condtype2>
| <condtype3> | <condtype4>

<condtype1> := <appearance> | <directional>
| <topological> | <tdimension>
| <external-predicate>

<condtype2> := <variable> <cop>
(<atom> | <variable>)

| <variable> ‘=’ <tprojection>

<condtype3> := <condition> <tmpred>
<condition>

| ‘(’ <condition> <tmpred> <condition>
[<timegap>] ‘)’ <trepeat>

<condtype4> := <trajectory-query>
| ‘(’ <trajectory-query> ‘)’ <trepeat>

<appearance> := appear ‘(’ <objectlist> ‘)’

<directional> := <direction>
‘(’ <object> ‘,’ <object> ‘)’

<topological> := <tpred>
‘(’ <object> ‘,’ <object> ‘)’
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<tdimension> := <tdpred>
‘(’ <object> ‘,’ <object> ‘)’

<external-predicate> := <predicate-name>
‘(’ <objectlist> ‘)’

<tprojection> := project ‘(’ <object>
[‘,’ <spatial-condition>] ‘)’

<trajectory-query> := tr
‘(’ <object> ‘,’ (<trajectory1> ‘)’
[<similarity>] | <trajectory2> ‘)’
[<simthreshold>]) [<timegap>]

<trajectory1> := <variable>
| ‘[’ <dircomponent> ‘,’
<dispcomponent> ‘]’

<trajectory2> := ‘[’ <dircomponent> ‘]’

<dircomponent> := ‘[’ <dirlist> ‘]’

<dispcomponent> := ‘[’ <displist> ‘]’

<similarity> := <simthreshold>
[dirweight <dirweight>

| dspweight <dspweight>]

<simthreshold> := sthreshold <threshold>

<timegap> := tgap <time>

<displist> := [<displist> ‘,’] <dspvalue>

<dirlist> := [<dirlist> ‘,’] <fdirection>

<trepeat> := repeat [<number>]

<spatial-condition> :=
‘(’ <spatial-condition> ‘)’

| not ‘(’ <spatial-condition> ‘)’
| <spatial-condition> and

<spatial-condition>
| <spatial-condition> or

<spatial-condition>
| <appearance> | <directional>
| <topological> | <tdimension>
| <variable> <cop> <object>
| <external-predicate>

<direction> := left | right | above | below
| <fdirection>

<fdirection> := west | east | north | south
| northeast | southeast | northwest
| southwest

<tpred> := equal | contains | inside | cover
| coveredby | disjoint | overlap | touch

<tdpred> := infrontof | behind | sinfrontof
| sbehind | tfbehind | tdfbehind
| samelevel

<tmpred> := before | meets | overlaps
| starts | during | finishes | ibefore
| imeets | ioverlaps | istarts | iduring
| ifinishes

<object> := <variable> | <atom>

<objectlist> := [<objectlist> ‘,’] <object>

<variablelist> := [<variablelist> ‘,’]
<variable>

<vid> := (1-9)(0-9)*

<number> := (1-9)(0-9)*

<time> := (1-9)(0-9)*

<variable> := (A-Z)(A-Za-z0-9)*

<atom> := (a-z)(A-Za-z0-9)*

<predicate-name>4:= (a-z)(A-Za-z0-9 )*

<cop> := ‘=’ | ‘‘!=’’

<threshold> := 0 ‘.’ (0* (1-9) 0*)+

<dspweight> := 0 [‘.’ (0-9)*] | 1

<dirweight> := 0 [‘.’ [0-9]*] | 1

<dspvalue> := (1-9)(0-9)*

4 Lexer recognizes such a character sequence as an external pred-
icate name iff it is different from any predefined predicate and con-
struct in the language.


