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Abstract—Interactively visualizing large finite element simula-
tion data on High-Performance Computing (HPC) systems poses
several difficulties. Some of these relate to unstructured data,
which, even on a single node, is much more expensive to render
compared to structured volume data. Worse yet, in the data parallel
rendering context, such data with highly non-convex spatial domain
boundaries will cause rays along its silhouette to enter and leave
a given rank’s domains at different distances. This straddling,
in turn, poses challenges for both ray marching, which usually
assumes successive elements to share a face, and compositing,
which usually assumes a single fragment per pixel per rank. We
holistically address these issues using a combination of three inter-
operating techniques: first, we use a highly optimized GPU ray
marching technique that, given an entry point, can march a ray
to its exit point with high-performance by exploiting an exclusive-
or (XOR) based compaction scheme. Second, we use hardware-
accelerated ray tracing to efficiently find the proper entry points
for these marching operations. Third, we use a “deep” composit-
ing scheme to properly handle cases where different ranks’ ray
segments interleave in depth. We use GPU-to-GPU remote direct
memory access (RDMA) to achieve interactive frame rates of 10-15
frames per second and higher for our motivating use case, the
Fun3D NASA Mars Lander.

Index Terms—Deep compositing, ray-marching, scientific
visualization, sort-last compositing, unstructured volumetric mesh,
volume rendering.

I. INTRODUCTION

ARGE-SCALE simulation is essential for the computati-
onal sciences. Efficiently visualizing simulation outcomes
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is crucial for comprehending results and guiding the trajectory of
ongoing simulations. Modern simulation systems often operate
on High-Performance Computing (HPC) systems where the
data is distributed across multiple nodes. In response to the
scale and complexity of simulation data, researchers often rely
on in-situ visualization techniques that integrate visualization
capabilities directly into the simulation workflow, enabling data
to be visualized as generated. Visualizing such distributed data
while the simulation is running poses its own problems.

Simulation systems are rarely designed with rendering frame-
works in mind. For example, GPU-based simulation systems
like NASA’s Fun3D [1], [2] may generate non-trivially split,
non-convex data partitions known as clusters. While such par-
titioning may improve the simulation performance, it poses
significant difficulties for rendering and compositing methods.
This disparity between the simulation and rendering systems
makes it difficult to visualize the large-scale data using the
native distribution efficiently, especially for ray tracing-based
direct volume renderers. The presence of non-convex partitions
introduces complications where rays may exit and then re-enter
a partition while traversing clusters loaded on other nodes in-
between. Sort-last approaches [3] can solve this problem by
deferring it to a compositing stage. However, determining a
consistent depth order for these non-convex partitions proves
challenging, as partitions from multiple processors often in-
terleave each other. Changing the viewpoint can result in the
same viewing rays traversing clusters with significantly different
depth orders.

One approach to address these problems is redistributing the
data. However, this solution is impractical for in-situ visualiza-
tion of large-scale simulations due to the high costs associated
with data transfer. As such, alternative strategies are needed to
effectively visualize distributed simulation data without incur-
ring excessive overhead. We aim to render unstructured, mixed-
element meshes using a data-parallel approach directly on the
system where they were generated without redistributing or
altering their original node assignment. This approach caters to
typical in-situ visualization use cases. It facilitates more efficient
post hoc visualization by eliminating the need for costly data
redistribution, which can take several hours for large datasets [4].

To address these challenges, we propose a large-scale, data-
parallel, and GPU-optimized direct volume rendering system
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Fig. 1.

Highlighting our framework’s capabilities with the non-convex, non-trivially partitioned Small Mars Lander data set: (a) Rendering boundary surfaces

of some partitions color-coded by the processor ID they were assigned; (b) Ray marching process through these distributed partitions; (c) Per-rank local data
associated with these the partitions (bars indicate GPU memory consumption); (d) Final composited image; our data-parallel renderer can generate this image with

14 frames per second.
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Fig. 2.

Overview of our framework over an example scene: (a) Rays X and Y are traced through three clusters A, B, and C that reside in three different ranks;

(b) Each of the three ranks generates ray segments via shell-to-shell traversal by recording entry and exit distances of X and Y; (c) Colors of each ray-segment are
calculated via ray marching and these colors are combined with their entry distance to be stored in fragment lists; (d) Deep compositing, where fragments for each
ray are communicated and composited by their respective ranks, P and Q, to generate the final pixels.

based on volume ray marching. We draw inspiration from several
prior works, including the compressed element marching and
shell-to-shell traversal (where shell refers to the non-convex
polygonal hull of an unstructured mesh) by Sahistan et al. [5].
Fig. 1 highlights our system’s capabilities on a non-convex,
non-trivially partitioned data set, and Fig. 2 gives an overview
of our system design. Our contributions are
e an efficient, GPU-optimized ray-marching renderer sup-
porting mixed-element unstructured meshes and uses ray
tracing cores to perform shell visibility tests,
® a deep compositing algorithm implemented in CUDA
that efficiently composite intermediate results from non-
convex, interleaving meshes rendered using the sort-last
algorithm and
e an efficient state-of-the-art data-parallel GPU rendering
system using GPU-aware Message Passing Interface (MPI)
to implement the communication across compute nodes.
We prove our system’s effectiveness, efficiency, and scalabil-
ity by conducting a thorough evaluation using the state-of-the-art
size Fun3D data. We aim to target the state-of-the-art data given
to us as raw data dumps. Yet, we emphasize that our system is
intended for post hoc and in situ visualization and simulation
steering.

II. RELATED WORK
A. Unstructured Mesh Visualization

Notable approaches have been developed to render unstruc-
tured finite element meshes [6], [7], [8], [9]. Two predominant
strategies to render unstructured volumes are point-query sam-
pling, e.g., [10] and element-marching [9], [11].

In point-query sampling, free-flight distances of rays are
calculated to extract information from an acceleration data struc-
ture, such as a bounding volume hierarchy (BVH), to sample
volumetric data adaptively. These structures are often used to
identify collisions between rays and particles for every pixel
in a frame. Rathke et al. [12] propose a min/max BVH that
speeds up the process of looking up elements for samples and
iso-surfaces. Wald et al. [13] use point location queries on
tetrahedral meshes with NVIDIA’s ray-tracing (RT) cores, and
this work was later extended by Morrical et al. [10] to also
support pyramids, wedges, and hexahedra. These methods can
be fast but may produce noisy results, so it is necessary to take
multiple samples over time to obtain a converged image. To
improve convergence and sampling, techniques such as empty
space skipping [14], [15] or adaptive sampling [16], [17] can be
employed. RT cores can also be used for empty space skipping
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and adaptive sampling [18]. Another work by Morrical et al.
presents quick-clusters [19] as a memory-efficient data structure
with low build times that allows for simple and efficient adaptive
volume sampling. Nevertheless, this approach is still a Monte
Carlo process where convergence is required over multiple
frames.

Standard element-marching involves tracing rays and accu-
mulating samples along the ray without using external accelera-
tion structures [20], [21]. Marching is typically performed using
visibility sorting or element connectivity. Shirley and Tuch-
mann [11] propose a method for rendering tetrahedral meshes
without connectivity data. However, visibility sorting can be
costly in interactive environments. Prior works have focused on
storing connectivity information to avoid the need for sorting.
Element-marching techniques that utilize connectivity data can
be helpful for our purposes because many modern simulation
systems already store this information, allowing us to avoid
increasing memory usage. Aman et al. [22], [23] introduce a
tetrahedra traversal algorithm that optimizes intersection tests
using 2D projection while maintaining a connectivity list, but
this approach is limited to pure tetrahedral meshes. Muigg et
al. [9] propose a marching algorithm to handle non-tetrahedral
elements and non-convex bounding geometry by storing com-
pact face-based connectivity lists. Finding the element where the
ray enters the volume is necessary during ray-marching. Sahistan
et al. [5] demonstrate that this can be done with RTX (NVIDIA’s
RT core hardware) by using ray tracing with a BVH over the
non-convex bounding geometry.

B. Data-Parallel Rendering

Increases in simulation output size have forced visualization
to move to data-parallel methods. Data-parallel rendering is then
usually realized using sort-last approaches [24], [25]. Sort-last
parallel rendering requires an a priori assignment of clusters
to compute nodes. While sort-first approaches also technically
can be used for data-parallel rendering [3], nowadays, this is
primarily used with multi-threading, GPU-parallel rendering,
or replicated data [26], [27]. Hybrid approaches [28], [29],
[30] aim to address load-balancing issues by leveraging both
perspectives.

Sort-last algorithms allow data distribution at the cost of
exchanging and compositing intermediate images. When the
distributed data clusters have convex domains, image-based
compositors, such as IceT [31], [32], are suitable for compositing
as they typically merge single intermediate images per node.
Also, sorting these intermediate images into the correct order
instead of all their constituting fragments is sufficient with con-
vex domains. However, these methods produce incorrect results
when domains are not convex. Ma [33] uses a data-parallel un-
structured volume rendering method that can handle non-convex
data boundaries properly. Similar to our shells, their technique
uses a hierarchical data structure to access the boundary faces
and ray-casting operations from these faces. However, unlike our
deep compositing, they prefer sending many smaller messages
between compute nodes during rendering. Some of these ideas
are later extended to utilize asynchronous load balancing via
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object and image-order techniques [34]. However, this work
uses cell-projection rather than ray-casting, which may yield
scalability issues. By implementing a spatiotemporally-aware
compositor, Grosset et al. [35] reduces delays and communica-
tions. Their approach uses “chains” that determine the blending
order of each image strip.

Using the distributed framebuffer, Usher et al. [36] accom-
plishes asynchronous tiled rendering over multiple nodes, reduc-
ing bottlenecks incurred by rendering and compositing. Childs
et al. [37] show a two-stage framework that first samples a
m X n x k view-aligned grid—where m and n denote the pixel
resolution and k is the sample per pixel—then composites these
samples in the proper viewing order. At the sampling stage, they
first sample small-sized elements. Then, they distribute the large
elements to processors sampled to balance the load. Binyahib
et al. [38] extend this work by proposing a many-core hybrid
scheme employing sampling over a similar view-aligned grid.
This scheme allows k successive samples in the same pixel and
node to be partially composited, reducing the memory footprint.
Our deep compositing algorithm builds upon the distributed
framebuffer concept and is an extension of the algorithms by
Childs and Binyahib et al. in that ours can also handle jagged
cluster boundaries. In theory, the 3D rasterization process re-
quired by Childs et al. will also be sensitive to overdraw when
millions of elements fall within the same grid cell. Finally,
these works’ image-order load balancing methods require large
elements to be replicated or moved to other nodes, thus requiring
additional memory, which may not always be available given an
in situ scenario.

The standard approach for GPU rendering is to render all the
pixels at once as we do or, at the very least, retire fragments
in wavefronts to match the parallel execution models of GPUs.
To this day, many frameworks still use CPU ray tracing also
for sci-vis [39] though, where different rules and optimizations
apply. Galaxy [30] is an example of a sci-vis ray tracer focusing
on different data than ours, which employs an asynchronously
operating framebuffer that is progressively updated in a frame-
less rendering fashion (single pixels are written to framebuffer
locations by individual threads while other pixels still integrate
light transport). In their framework, color fragments from BRDF
evaluation can (through a special BRDF model) even be com-
posited over already rendered primary-visible results. Following
these footsteps, one could imagine retiring RGBA-z fragments
progressively, yet our framework would require the use of a
wavefront approach instead of the frameless rendering approach
employed by Galaxy.

Modern ray-based hybrid approaches increase scalability
by maximizing GPU utilization. Zellmann et al. [40] propose
island-parallelism; they replicate data into [V islands to increase
utilization. Ray queue cycling by Wald et al. [41] uses very
simple node assignments, including the potential for replica-
tion through islands, by cycling all rays on all GPUs without
prior culling. This work is promising for lightweight clusters to
compute node assignment and proves hybrid island parallelism’s
scalability.

Our method is tailored for modern GPUs, which minimizes
the costs of compositing and sorting operations. We do not have
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to buffer every sample along the pixels since we ray-march
through each segment to determine partial samples. Unlike
previous works, our approach does not require re-distributing
or replicating elements across nodes to render the data.

C. Compositing

We propose deep compositing as one approach to retiring
RGBA-z fragments to GPU framebuffers because other data-
parallel unstructured renderers do not support this operation
holistically. Volumetric Depth Images (VDIs) [42] are an exten-
sion of Layered Depth Images (LDIs) [43] for view-dependent
visualization of volume data. VDIs store supersegments that
contain depth range, composited color, and opacity for the
viewing rays of one viewpoint. They are subsequently used to
render other viewpoints as proxies to the original volume data.
Later extensions have focused on frame-to-frame coherence [44]
and on parallel rendering [45], [46]. Noteworthy here is the work
by Gupta et al. [45], who utilized VDIs for parallel compositing
and, by that, presented an alternative to our deep compositing
algorithm. Although VDIs are usually used for rendering struc-
tured volumes, the method can also render unstructured data
as long as the renderer can produce semitransparent fragments
with depth. Using VDIs for unstructured volumes has yet to
be explored in the literature. Fundamentally, their algorithm
replaces the fragment sorting operation we require with a (pixel
space) ray casting operation.

D. In situ Visualization

File and network I/O have been bottlenecks in high-
performance computing. In situ visualization aims to overcome
this limitation by combining computation and visualization to
allow users to access a running simulation. This approach has
several benefits, including the potential for simulation steering
by changing the parameters of the running simulation [47].

There are several in situ applications used in production [48],
[49], such as Strawman [50] or Ascent [51]. In addition to
these standard systems, various algorithms have been developed
to handle time-varying data generated by simulations. For ex-
ample, Yamoka et al. [52] propose a method that adapts the
timestep sampling rate based on variations in the probability
distribution function estimation of the connected simulation.
Aupy et al. [53] present a model that allows for the analysis of
simulations and the formulation of high-throughput scheduling.
DeMarle and Bauer [54] propose a temporal cache scheme
that stores time-varying information produced by a running
simulation, which can later be saved according to a pre-defined
trigger. Marsaglia et al. [55] introduce an error-bound in situ
compression scheme that saves complete spatiotemporal sim-
ulation data. Our proposed method only requires a couple of
lightweight structures in addition to what is already being
kept in simulations. Moreover, based on the trends in these
approaches, we foresee no significant issues that would prevent
our method from being used in conjunction with current in situ
systems.
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III. PROPOSED FRAMEWORK

We employ a data-parallel strategy to render clusters already
distributed to different nodes by the simulation software. Bor-
rowing terminology from triangle rasterization, we call each
such tuple of color C, opacity «, and depth z, a fragment
F = (F¢, F,, F.).Ourapproach generates fragments per ray
segment. Ray segments are defined between an entry and exit
position of a shell (faces defined by cluster boundaries), so
for non-convex cluster boundaries, there is often more than
one fragment since there might be more than one ray segment.
Furthermore, these non-convex shells can be on different nodes
and interleave each other, making correct order compositing
extremely difficult. The shells serve as a means to traverse from
cluster to cluster. To accomplish this, we rely on a hardware-
accelerated BVH (shell-BVH) specifically constructed for the
shells. We also need a data structure to traverse the unstructured
elements, and to this end, we use element connectivity in local
neighborhoods. To render this kind of data, our framework has
to take the following steps (see Fig. 2):

® Only once, in a pre-process, nodes generate element-
connectivity, shell-BVH, and XOR-compaction (see Sec-
tion III-A).

e For every rank of every node, rendering starts by creating
ray segments — i.e., intersecting entry and exit faces of
every cluster along each ray direction. (see Section III-B).

e The colors of each ray segment are calculated using volume
integration (see Section III-C).

¢ The fragments —that are the integrated colors of each ray-
segment coupled with the entry depth— are used to deep
composite a correct final image (see Section III-D).

A. Cluster Preparations

We describe the data preparations needed for the following
rendering steps. These steps occur for every cluster in parallel.

1) Initial Per-Rank Preprocessing: We frequently use topo-
logical information about each rank’s unstructured elements in
the following sections. For example, the segment generation
needs to know all the faces that form the outer “shell” of
the cluster, and the marching needs connectivity information.
While it seems likely that the simulation code already has that
information, we wanted to avoid assuming that it has; thus,
compute it upon startup.

2) Connectivity Information: Our method utilizes ray con-
nectivity between unstructured mesh elements to jump from
one element to another. Ideally, we can leverage pre-existing
connectivity information output by the CFD simulation, but
not all simulations supply that [56]. A compression technique
tailored for element traversal, such as Aman et al.’s [23], can be
implemented to minimize the additional memory usage.

We store the connectivity for each cluster locally—each rank
computes connectivity for its set of loaded clusters. We store
connectivity as a list of indices to neighboring elements. For
instance, given the tetrahedron with ID 7, indices of the neighbors
of this tetrahedron can be found from the connectivity list at
positions [4, . .., 47 + 3. First, we extract individual faces from
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each element and store this face’s vertex indices alongside its
element ID in a list to compute the connectivity list. Then, we
sort the vertex indices of faces for each face internally, followed
by sorting these faces over the entire list. So, the first internal
sort ensures shared faces are represented the same way, and the
second list-wide sort ensures that the faces with the same vertex
indices are stored next to each other. Now that the list is sorted,
matching faces can be found easily by linearly iterating through
the list and comparing pairs. If the face does not have a match,
that face is a shell face, and we write -1 into the connectivity list.
Otherwise, we write the neighboring elements indices to their
respective position in the connectivity list.

3) Shell and Shell BVH: The element-marching process re-
quires the starting element to be known. We build a BVH over the
shells for storing the data necessary to reconstruct the boundary
element behind the shell face. Additionally, we use shell-BVH
to traverse the clusters.

Using the connectivity array, we can easily find all faces that
make up the outer shell of each cluster by simply iterating over all
unique faces and finding those for which there is no element on
one side. We can create a guaranteed outward-facing face based
on which sides were not covered. After finding the elements
without neighbors, we construct an OptiX [57], [58] acceleration
structure over those triangles, i.e., a shell-BVH. We store an
int4 for each shell face, three integers for the vertices of the
shell face, and the fourth integer stores the type and index of the
element behind the face. The encoding of the fourth integer is in
the style of PBRT’s BVH-nodes [59] where the lower two bits
of the fourth index signifies the element type (i.e., tetrahedron,
pyramid, wedge, or hexahedron), and the remaining 30 bits are
an index into the list of elements.

4) XOR-Compaction: We significantly reduce the storage
cost for vertex indices by utilizing pre-computed exclusive-or
(XOR) bitmasks. Our scheme exploits two facts; the inverse
operation of XOR is itself, (a @ b) & b = a, for two integers a
and b represented in binary, and every internal element shares
three or four vertices with another element. The individual
memory layouts and their geometric illustrations are shown in
Fig. 3.

In essence, the scheme relies on the fact that the element
marcher will be coming from an element that shares a face
with the element it is entering. However, one caveat with this
idea is that the marching process needs to start from an ini-
tial shell face and its corresponding element. Conveniently,
the shell-BVH stores this information for the boundary el-
ements. During element-marching, we do not have to fetch
the vertices we already have in our memory. Moreover, we
do not have to keep some vertex indices in the memory. The
missing vertex indices can be inferred by using pre-computed
XOR fields. To maintain brevity, this section will focus on
calculating the XOR masks. The reconstruction of the ele-
ments from their compacted forms will be covered in Sec-
tion III-C. We maintain VTK [60] vertex ordering for our
elements as they must be consistently ordered during sam-
pling. Although we found more compact schemes for some
elements, we did not use them as they cannot be reconstructed
consistently.
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struct Tet{ struct Pyr{ struct Wed{ struct Hex{
uint vx; uint dx; uint dx[2]; uint v[8];
}; uint diag[2] uint diag[2]} };
uint top; };
1
7
P
V3
Vo
V1
Vo—
Fig. 3.  XOR-compacted memory layouts (top) and geometric illustrations

of XOR calculations for Tetrahedron (Tet), Pyramid (Pyr), and Wedge (Wed)
structures (bottom). Hexahedron (Hex) has no compaction scheme. uint stands
for an unsigned integer. The “@®” symbol indicates the XOR operation. The total
sizes of each struct are 4, 16, 16, and 32 bytes for Tet, Pyr, Wed, and Hex,
respectively. The vertices are in VTK [60] ordering.

For tetrahedra, we use the idea from Aman et al. [22], [23],
where they exploit the fact that a tetrahedron shares three of
its four vertices. Therefore, instead of keeping four integers per
tetrahedron, we can store a single integer XOR mask, v,, (vx field
in the Tet structure in Fig. 3), derived as v, = vg ® vy B vo B
vs. This way, we reduce the 16-byte naive tetrahedron storage
to four bytes.

For the 16-byte pyramid, we store a single dx field that is
the XOR of the Oth and 2th vertex indices, two vertex indices
that correspond to the other diagonal of the quadrilateral (1th
and 3th vertices), and a top vertex index, which is always the
4th vertex. Using this scheme reduces four bytes from naive
pyramid storage.

Our 16-byte wedge structure includes two dx and two diag
fields. The dx fields contain two XORs: the first one is the XOR
of the 2th and 3th vertex indices, and the second one is the XOR
of the 1th and 5th vertex indices. The diag fields explicitly store
the Oth and 4th vertex indices. The compaction allows us to cut
8 bytes per wedge compared to naive storage.

Hexahedron has the lowest shared vertex ratio among all
element types, requiring four vertices to be obtained upon entry.
Finding an XOR-based hexahedra compaction scheme aligning
closely with a 16-byte size is difficult. Hence, we store all
hexahedra indices without compaction, following the VTK mesh
ordering.

B. Ray-Segment Generation Via Shell Traversal

Rendering begins with a shell-to-shell traversal step akin
to [5], where ray segments are generated for each cluster loaded
in each rank. Ray segments span between entry and exit faces
along the ray’s path as it enters and exits clusters. As the clusters
can be non-convex, rays may enter the same cluster multiple
times, which is an aspect not encountered in convex clusters,
posing challenges for IceT-style compositing. We allow multiple
ray segments to be generated per ray and shift the problem to
the compositing stage (see Section III-D). Moreover, we can use
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hardware-accelerated ray tracing on GPU nodes with RT cores.
The stages of this scheme are as follows:

1) Trace the ray through the shell-BVH with front-face
culling from the ray origin.

2) If a ray hits a shell face, we mark that face as the exit
face and create a backward ray with the origin at the hit
position.

3) This backward ray is again traced using front-face culling
to find an entry face.

4) The found entry face contains four index values (Section
III-A), and the last one encodes the ID and the type of
the element from where we start our ray-marcher (Section
1I1-C).

In real-life data sets, volume boundaries may not perfectly
align, potentially intersecting or being slightly separated. The
robust handling of such cases involves casting two front-face
culled rays to determine exit and entry points, thereby mitigating
sampling and compositing errors.

C. Per-Segment Volume Integration

The volume integration process determines the color and
transparency of a fragment by ray-marching. We march rays
between neighboring elements to sample equidistant points from
the volume. Samples are calculated by linear interpolation of the
vertex scalars of elements that the ray passes through. Suppose
that at least one barycentric coordinate of a sample point is
outside the range [0, 1], i.e., the sample point is outside the
checked primitive. In that case, we march to the next element
by fetching the element ID from the connectivity buffer and
reconstructing it from the XOR-compacted form. The marching
terminates when the particle becomes completely opaque, or the
sample point leaves the cluster mesh.

We preserve the current element’s information in the march-
state structure to reduce memory access. The structure also helps
us reconstruct the next element from a neighbor. The state keeps
and updates the last intersected face type (triangle or quad), the
current element’s type, index, and vertex indices. We place the
entry face indices into the same positions in the march state to
ignore the entry face during the following exit face selection
(since we now know which vertices belong to the entry face).
We test the remaining faces of an element using a “projected
tetrahedra” like approach [11], where upon entry, the vertices of
an element are projected to a 2-D ray-centric coordinate system
space whose origin coincides with the ray origin, and the z-axis
is theray’s direction vector [23]. This way, we reduce the floating
point instruction count for orientation (point-line classification)
tests as they are performed in 2D space. We illustrate this process
for a tetrahedron in Fig. 4. Each volume element is unique in its
geometry and face arrangement, and it is hard to make a simple
algorithm that handles all combinations. Hence, our element
marching handles various elements in a case-by-case fashion.

Tetrahedra are handled similarly to Sahistan et al. [5], but
we allow arbitrary points inside the elements to be sampled. To
reconstruct a tetrahedron from the compacted format, we XOR
the indices from the entry face with the vx field as shown on
Fig. 5. We generate vx by XOR’ing all vertices with known
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Fig. 4. Tllustration of the steps for projection to the ray-centric coordinate
system and face intersection. The ray’s origin is placed to (0, 0, 0), and its
direction is oriented with the Z-axis. The same transformations are applied to
the tetrahedron’s vertices using dot products. Finally, 2D orientation tests are
used to determine the exit face.

?=vxeVyeV eVs

Vo

Fig.5. Examplereconstruction case for a tetrahedron XOR’ing known vertices
from entry face (Vp, V1 and V3) and the vx field in the Tet structure in Fig. 3.

if (entry_face==tri)

\7

if (entry_face==quad)
V2

4

Fig. 6. Two example pyramid reconstruction cases are illustrated. On the left,
with the quad face as the entry face, only the missing vertex is explicitly stored
at the top field. On the right, where the entry face is a triangle, vertices Vp, V3,
and V/ are matched to indices stored at top and diag fields. The index diagonal to
V3 (matched to diag[1]) is represented by diag[0], and the last unknown vertex
is obtained by XOR’ing Vj and dx.

?=top V3 ?=dxeVp

Vs 7 = diag[0]

Vo

Vo

three vertices, which will reveal the missing vertex index. When
leaving a tetrahedron, we use the exact process depicted on the
right-most image of Fig. 4.

Pyramids can be reconstructed by looking at the entry face
type. If the face type is a quad, then only the missing vertex —top
vertex— is already explicitly stored. If the entry is through one of
the triangle faces, we need to look at diag and top fields to match
them with two of the entry face indices. The first missing index
is the unmatched index from diag. The remaining unmatched
index from the entry face can be XOR’ed with dx to find the
last missing index (see Fig. 6). When leaving the pyramid, exit
faces can be determined similarly to tetrahedra. Four triangles
in 2D space are tested against point (0, 0) if the entry face is a
quad. However, if the entry face is a triangle, we check against
the quad face and then three triangles.

Wedges reconstruction from the compacted form starts by
identifying the entry face type. If the entry is from a triangular
face, we need to obtain three indices, and the entry face must
be composed of one of the diag[2] field indices. With this infor-
mation, we can obtain one of the missing indices (from diag[2])
and identify if we entered from vy, v, v9 Or v3, v4, v5 face. The
remaining two indices are encoded in the different dx[2] fields.
By matching one of the diagonal vertex indices to one of the
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if (entry_face==tri)

? = diag[1]

if (entry_face==quad)
Vs

2 =dx[1]eV,
2= dx[0]eVs

dx[1]evy
V3

? = dx[0] eV Vo

Fig. 7. Two wedge reconstruction cases are depicted. On the left, the entry
is from a triangle face, and V) matches diag[0], so we retrieve three missing
indices as follows: diag[1], dx[1] XOR V7, and dx[0] XOR V5. On the right, the
entry is from a quad face (Vp, V1, V4, and V3). Entry indices V and V4 match
with the ones at diag; so, missing indices are found by XOR’ing dx[1] with
and dx[0] with V.

diagonal fields, we can construct the two missing indices from
the dx[2] fields. If the ray enters from a quadrilateral face, it
must contain one or both indices stored in diag[2]. By matching
diagonal indices, we can determine the entry quadrilateral. Then,
we have two subcases. In the first subcase, two of the entry
quadrilateral’s indices match both indices in diag[2]. We can
obtain the two missing indices by XOR’ing the dx[2] fields with
the unmatched indices of the entry quadrilateral. In the second
subcase (where either one of the diagonals matches with one of
the quadrilateral face indices), we can immediately get one of
the missing vertices from the unmatched diag[2] field. Finally,
we can use one of the dx[2] fields to get the other missing index.
See Fig. 7 for example cases. Finding the exit face is similar to
pyramids, where we first test the quad faces and then triangle
faces, ignoring the entry face.

Hexahedra are not compacted, so we fetch all indices upon
entry. Hexahedra are uniform like tetrahedra; however, they have
more faces. Therefore, finding the exit intersection requires the
highest number of orientation tests. In the worst case, hexahedra
require 13 2D orientation tests, whereas wedges, pyramids, and
tetrahedra require 7, 5, and 2 orientation tests, respectively.

D. Deep Compositing

After the steps in Sections III-B and III-C, each rank owns
several fragments that can belong to any pixel. This section
discusses how these fragments are composited to form a correct
image and why the standard approaches like IceT do not work.

Given all of a given pixel P’s fragments FO(P)7 Fl(P),
Fz(vljf)’) , the correct final pixel color is the result of first sorting
these fragments by their depth and compositing them using the
over (O(A, B)) and under (U(A, B)) operators, as described
in [61], [62]. The challenge is that any given pixel’s fragments
may get produced on many different ranks, requiring some merg-
ing of different ranks’ results. Even worse, the irregular shape of
the shells means that any ray can enter and leave the same shell
multiple times at multiple distances, producing multiple—and
in some cases, many—fragments for the same pixel (see Fig. 8).
Our data sets’ fragment generation and distribution details are
presented in Section I'V.

The simplest approach to compositing this would be to first
composite all ranks’ fragments to a single fragment per pixel
per rank and then use some optimized compositing library like

ey
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Fig.8. Compositing on concave clusters (A and B) where a ray generates four
fragments distributed across two nodes in interleaved order. Fragments A.0 and
A.1 are generated in node 0, and fragments B.0 and B.1 are generated in node 1.

IceT [32] to produce the final image. However, as neither O nor
U are commutative, this will give wrong results every time a
ray enters the same shell more than once. Fragments must be
composited in visibility order, considering that the fragments
along a ray are distributed unevenly across the ranks.

1) Compositing With More Than One Fragment/Pixel: We
developed a new framework to solve the compositing problem,
explicitly allowing each rank to have multiple fragments per
pixel. At an abstract level, our method expects each pixel to store
one counter that specifies the number of fragments, IV, plus an
address (or offset) to a list of fragments, Fp, ... , Fiy_1.Similar
to parallel-direct-send [63], [64], we then split the frame buffer
into R distinct regions of pixels (where R is the number of ranks);
each rank will be responsible for receiving, compositing, and
delivering the final composited results of one region of pixels.

The bandwidth required for compositing is often a bottleneck
in data-parallel parallel rendering, even with only a single frag-
ment per pixel. To minimize bandwidth, users can use lower-
precision encoding with 8-bit fixed-point for RGBA and float
solely for the depth value instead of full float precision (five floats
for r, g, b, opacity, and depth). We also automatically discard
fragments with zero opacity value, as these will not contribute
to the image.

Aside from sending the fragments, sending the per-pixel coun-
ters (see step 2) has high bandwidth requirements. To reduce that,
we use specialized encodings with 2, 4, 8, or 32 bits for those
counters, depending on the longest fragment list length. We use
dedicated CUDA kernels for encoding and decoding the 32-bit
counter arrays into this lower-precision representation before
and after the counter exchange using MPI_Alltoallv, a collec-
tive communication provided by MPI in which all processes
send/receive data to/from all other processes. All MPI calls
involved in compositing use GPU-to-GPU RDMA, an extension
available when using GPU-aware MPI distributions where MPI
functions recognize when GPU pointers are passed. In that case,
MPI communication across nodes goes directly from the PCle
network card to the GPU, not through the main memory first.
Compositing works in the following steps (see Fig. 9):

1) Generating a contiguous send buffer: Given each pixel’s
fragment lists, each rank computes a GPU-parallel prefix sum
over all its fragment counts, yielding the total number of frag-
ments on this rank. We then allocate a single contiguous memory
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Fig. 9. Illustration of deep compositing for R = 4: Rank 0 handles pixels
highlighted in blue in the top-left. We create a fragment list and calculate the
per-pixel offset list using prefix sum. A contiguous memory region, sized R x 4
(number of pixels assigned to rank 0), is allocated for receiving fragment counts
from other ranks. Each rank communicates the number of fragments it will send
to other ranks using different intervals of the previously calculated offsets; these
received fragment counts per pixel are once again prefix summed to form a
universal offset buffer. Then, a memory of size n x 4 is allocated for receiving
the actual fragments, where r is the number of fragments per pixel. Subsequently,
fragments from other ranks are transferred, depth-sorted, composited, and sent
to the master rank for the final image.

region for these fragments and compact the individual fragments
into this buffer (using the prefix sum result as offsets). By design,
this buffer will contain all fragments going to all other ranks in
order.

2) Exchanging per-pixel fragment count ranges: Given the
assigned range of pixels, each rank computes which range of
per-pixel counters it needs to send to any other rank. To this end,
each rank allocates a per-rank counter buffer with a size R times
the number of pixels in its region. Next, each rank computes the
offsets to store the counters from other ranks. We then perform a
collective MPI_ Alltoallv on these buffers, after which each rank
has the fragment counts from every other rank for its assigned
region of pixels.

3) Exchanging Fragment Lists: Having received all other
ranks’ per-pixel fragment counts for its range of pixels, each rank
then performs a GPU prefix sum over those counters, the result
of which can once again be seen as offsets into a compact buffer
of all fragments for its range of pixels. Looking up the prefix
sums at the correct offsets specifies how many fragments each
rank will receive from any other rank and how many fragments
it will receive altogether. We then allocate a receiving buffer of
the required size, look up where each other rank’s fragments will
go in this buffer, and issue a second MPI_Alltoallv that, in this
case, collectively moves all fragments into the receive buffer of
the rank assigned to that fragment’s corresponding pixels.

4) Local Compositing: The result of the previous steps is that
each rank has two buffers containing all fragment lists for its
assigned pixels. The first buffer —fragment buffer— stores all
fragments for that rank’s pixels received from all other ranks,
ordered by ranks and pixels within each rank. Given a specific
MPI rank, this buffer stores all fragments for that rank’s first
pixel from rank 0, then all those for its second pixel from rank
0, and so on, followed by all fragments from rank 1, then all
fragments from rank 2, and so on. The second buffer —offset
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buffer— stores the results of prefix sum operations. It, by design,
provides the offsets where the fragment lists start. For example, if
P is the number of pixels for which this rank is responsible, then
the fragments from rank r for pixel j start at offset offsets[r*P+j].
Using this, we can launch a CUDA kernel that, for each pixel p,
looks up the R different lists of fragments and composites them
in the visibility order. For this k-way merge task, we used a naive
direct k-way merge algorithm with © (RF') runtime, merging the
F fragments by iteratively scanning R already sorted lists to find
the nearest fragments. Although k-way merge algorithms with
better asymptotic computational costs exist, the naive algorithm
serves the purpose because F' and R are small in our case.

5) Sending final results to master: The output of the previous
CUDA kernel is, on each rank, a fully composited RGBA value
for each pixel in that rank’s range of pixels. We send these to
the master using an MPI_Send; the master sets up R matching
MPI_Irecv calls, each using the appropriate part of the final
frame buffer as the receive buffer. Once these are completed, the
master has the final assembled frame buffer, and compositing is
complete.

This method is a natural extension of the parallel direct-send
technique described by Grosset et al. [63] and Favre et al. [64],
with the main difference is that we not only send one fragment
per pixel but variable-sized lists of fragments. We term this
method deep compositing because it merged the concepts of
image-based compositing with the orthogonal concept of deep

Jframe buffers [65].

2) Fragment List Management: Though the compositing it-
self is easy to use from the host side, properly setting up the
device-side inputs (fragment lists and counters) would require
the renderer to handle what are akin to device-side dynamic
memory allocations to manage those per-pixel variable-size
fragment lists during rendering.

To relieve the renderer of this low-level fragment list manage-
ment, we also developed what we call a device interface for this
library, through which a renderer can write new fragments into
a pixel, with that interface, then handling the proper storage of
those fragments—which significantly simplifies the rendering
code.

Two-Pass, Flexible-length Fragment Lists: The main chal-
lenge for developing this interface was that we could not simply
allocate more device memory during rendering, so we needed
some limit on how many fragments a renderer could generate
in any frame. We first developed a two-stage interface in which
the renderer would be run twice: in the first stage, the interface
would only count the fragments produced per pixel but not store
any. After this stage, it would compute a prefix sum over those
counters to allocate a big enough buffer, with the prefix sum
values serving as offsets into this buffer. A second pass would
render the same but store the fragments at the provided offsets.

Single-Pass, Fixed-Length Fragment Lists: The two-pass
method allows for arbitrary-sized fragment lists (up to device
memory, obviously) but requires running the shell traversal at
least twice, which may or may not be acceptable. We, there-
fore, also developed a second, single-pass device interface in
which the renderer—upon initialization—specifies a maximum
allowed number of fragments per pixel, per rank (F,,,. ), which
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TABLE I
THE FUN3D DATA SETS STATISTICS

Element counts

Model Vertices Tetrahedra Pyramids Wedges Clusters Size
Airplane 253 M 50M 32M 415M 400 14
Small Lander 145M 766 M 475K 32M 72 14
Huge Lander 1.2G 6.12G 285K 256 M 552 112

The size is in GBs.

can then be used to pre-allocate lists to add fragments. A single
pass is straightforward but requires some form of overflow-
handling if a render wants to submit fragments to a pixel whose
list is already complete. We currently implement two methods
for this overflow handling: In the drop method, we perform
insertion sort into the existing list and drop the latest fragment. In
merge, we find the fragment with the lowest opacity and perform
a over compositing of this element onto the one in front of it
(i.e., using the depth from the previous one), then insert the new
fragment into the list.

IV. EVALUATION OF THE FRAMEWORK

We conducted our experiments on Frontera RTX nodes of
Texas Advanced Computing Center (TACC) [66], where each
of the 22 nodes had four NVIDIA Quadro RTX 5000 GPUs
with 16 GB of VRAM. We utilize all four GPUs available per
node for every data point of our experiments. In the Frontera
system, we use the gcc compiler, version 12.2, and Intel MPI
Library 2021.9, with CUDA 12.2 and OptiX 7.1 over the CentOS
7.9.2009 operating system.

We use three large-scale datasets simulated by NASA using
the Fun3D [1] solver (see Table I). Those comprise two versions
of the NASA Mars Lander CFD simulation [67] and another
CFD mixed-element simulation of an airplane. Statistics for the
data sets can be found in Table I. We utilized a maximum of 72
GPUs (ranks) for the Small Mars Lander dataset, corresponding
to the number of clusters in that dataset. Airplane and Huge Mars
Lander data sets have more clusters than the maximum number
of GPUs at Frontera; therefore, we halt our experiments before
reaching the one-cluster-per-GPU point.

Nevertheless, we observe that we reached the saturation points
for benchmarks to conclude the experiments meaningfully. In
most of our experiments, the number of clusters exceeds the
number of available ranks. We distribute the clusters among
ranks using a round-robin fashion. While this approach may not
be optimal because it leads to uneven workloads across ranks,
we chose it because it aligns with our in-situ argument, where
we do not have any control over how the parts are distributed.
Our experiments use the single-pass compositing strategy with a
maximum of eight fragments per pixel, providing a good balance
between compositing performance, memory, and accuracy.

While visualization solutions like VisIt [68] and Paraview [69]
offer a broad range of rendering methods and pipelines, our
investigation reveals that none allow meaningful comparisons.
This limitation arises from issues such as producing incorrect
images, requiring tetrahedralization of the geometry, or failing
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to achieve interactive rates even with partial data. We compare
the correctness of our deep compositor to the widely used IceT
compositor [31], [32]. However, irrespective of correctness,
many of these visualization solutions struggle to handle the
intricacies of these data sets.

In exploring various solutions, Ascent [51] emerges as the
closest contender for rendering the Small Mars Lander data.
However, it encounters limitations when dealing with the na-
tive data format, lacking support for mixed unstructured mesh
geometry and requiring tetrahedralization for the entire dataset.
The tetrahedralization process significantly increases memory
consumption. Even with tetrahedralized data, configuring As-
cent for accurate rendering proves challenging. Despite our
earnest attempts, Ascent generates an incorrect visual output.
Furthermore, the rendering time for an incorrect frame using
Ascent is approximately three times slower than our approach,
with both executing on 72 ranks.

We evaluate our framework concerning its memory overhead
(Section I'V-A), correctness (Section IV-B), scalability (Section
IV-C), and discuss the limitations (Section IV-D).

A. Memory Overhead

We examine data distribution and memory footprints. Fig. 10
depicts the average per-rank memory footprints of our larger data
structures that may not be present in a simulation environment.
These include compacted unstructured elements, shell BVH, and
connectivity data.

Fortunately, most memory usage is attributed to connectivity
data, typically available in modern CFD solvers [1], [2]. Our
XOR-compaction scheme achieves higher compression rates
with data sets containing more tetrahedra, such as Small and
Huge Mars Landers. This aligns with expectations, given that
tetrahedra are the most compressed elements in our scheme,
with a4 : 1 ratio. Some memory savings are also observed with
the airplane data set, albeit to a lesser extent, as the dominant
element type is wedges, with a 6 : 4 compression ratio.

B. Correctness

We compare multiple configurations of our deep compositor
and IceT compositor against a ground truth to verify the
correctness of our compositing scheme. We use the same volume
integrator for both compositors to minimize the difference in
generated fragments. As IceT is not designed to handle more
than one fragment per pixel, we first use front-to-back composit-
ing to reduce each rank’s per-pixel fragment count to one. Then,
we use IceT to composite the fragments between the ranks.
Fig. 11 demonstrates these experiments’ visual and numeric
results.

Our deep compositor provides correct visualization with
minimal compromise in performance and memory efficiency,
while the industry-standard IceT cannot be used to determine
the correct compositing order. We substantiate our method’s
correctness through PSNR measurements, difference images,
and showcasing a cross-section where compositing errors are
evident. With a small loss in performance, we achieve correct
composited visuals using 32 fragments per pixel. Notably, even
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Per rank average memory consumption calculations of various buffers for increasing MPI sizes: Airplane, Small Mars Lander, Huge Mars Lander.

The average memory usage of XOR-compacted elements is stacked over the average shell-BVH size, which again is stacked over the average connectivity buffer
size, providing the total memory usage introduced by these data. We also include a line that indicates the per-rank average memory usage without XOR-based

compaction (size of Shell-BVH + connectivity buffer + non-compact elements).

Reference DC: 8 fragments DC: 4 fragments

FPS: 14.572 14.846
PSNR: 76.676 dB 61.606 dB
Memory: 2513 MB 2385 MB

Fig. 11.  Visual evaluation of correctness for our deep compositor (DC) with 8
depicts reference rendering for Small Mars Lander using deep compositor with

DC: 2 fragments DC: 1 fragment IceT [32]

|
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,4, 2, and 1 fragment configurations and IceT compositor: Top row leftmost image

32 maximum fragments. This reference image represents the correct composited

images, as this rendering requires a maximum of 21 fragments per pixel per rank. We present error visualizations (brighter means higher error) computed with
ALIP [70], comparing reference to deep compositor configurations and IceT. The bottom row emphasizes a specific region (in green) of the ALIP images. Finally,
we display each column’s total rendering time (fps), peak signal-to-noise ratio (PSNR), and memory usage.

with two fragments per pixel, our compositor significantly re-
duces errors and attains a more accurate compositing order than
IceT.

C. Scalability

We conducted several experiments to see how our framework
scales with increasing MPI ranks and workloads. Fig. 12 depicts
scaling experiments conducted over the three data sets where we
measured the average total rendering time for the given frames.
The plot reports the total time as stacked timings of two main
sub-processes: volume integration and compositing.

With ray-marching, finding suitable stepping sizes (or sam-
pling rates) is essential where performance-to-quality compro-
mise is reasonable. We document our scalability sensitivity to
ray stepping size in Fig. 13 where sensible stepping sizes are
selected and run through the same data points in Fig. 12. These
step sizes are defined in the world space. We select step sizes that
preserve dataset features while offering optimal performance.

Given that the elements in the Airplane dataset are larger than
in the other datasets, we opt for a higher step size.

Looking at Figs. 12 and 13, a significant part of the total
rendering time is spent on volume integration. We observe a
decent scalability trend on Small and Huge Mars Lander data sets
as total rendering time improves ~ 3-2.6x from their worst case
to optimal GPU counts. These improvements are mostly related
to the data-parallel volume integration process’s scalability. We
observe a lesser scalability benefit for the Airplane data set
(around 1.27 x). We also discovered that rendering performance
in the same data set is more sensitive to changes in the stepping
size. We believe this is due to the following reasons:

¢ Jtis more efficient to traverse tetrahedral elements as their
significantly smaller sizes affect the caching performance
less. Despite being around the same size, the Airplane has
~ 15 times fewer tetrahedra and ~ 12 times more wedges
than the Small Mars Lander (see Table I).

Our volume integrator is tailored to amortize the initializa-
tion costs over longer traversals. Although being around
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the same size, the Airplane data set has significantly more
clusters (=~ 5.56 times) than the Small Mars Lander (see
Table I). With the shallower clusters, we are hitting the
scaling benefit of our method much earlier in MPI ranks.

Fig. 12 also includes scalability plots for deep compositing,
where we observe that performance is largely unaffected by
adding more MPI processes. Looking at the Airplane data set
results, which exhibit ample empty regions, we conclude that the
cost corresponds to the number of fragments exchanged, which
only indirectly depends on the processor count.

To understand the compositing costs better, we also conducted
experiments evaluating the deep compositor in isolation and
compared it to IceT. The results of those experiments can be
found in Fig. 14. We note that in GPU-aware MPI calls and
RDMA presence, it is difficult to profile whether the compositor
is dominated by GPU compute or communication cost. However,
we assume that on-device memory accesses are typically orders
of magnitude faster than device-fo-device accesses. Although
IceT usually performs slightly better than our deep compositor
regarding computational cost, our execution times are compa-
rable to IceT’s for all of our experiments. It should be noted

Scalability (in seconds) benchmarks for various step size dt (in world space units).

that the amount of IceT compositor’s work is generally lower
because IceT uses a single fragment per pixel, whereas our deep
compositor composes multiple fragments per pixel generated by
non-convex shell topologies. Hence, our deep compositor of-
fers reasonable performance over challenging topologies while
maintaining correctness.

We also observe again that the scalability of our compositor is
proportional to the number of fragments retired. That number, of
course, depends not only on the number of MPI ranks but also,
more importantly, on the spatial arrangement of the clusters;
this becomes obvious when considering the maximum number
of fragments per ray F,,,,. Regardless of how it is partitioned
into local per-rank work loads Fj;;¢;, this number does not
change and presents an upper bound on the overall compositing
workload per ray. Furthermore, in our experience, F},,,, will be
much smaller than the number of clusters, and hence, scalability
is not affected by that but by their spatial arrangement.

Our method generally achieves interactive rates across all the
configurations we tested. We have identified optimal load points
at 40, 72, and 72 GPUs for Airplane, Small, and Huge Mars
Lander, respectively. Since we emulate an in situ process, we
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Fig. 14. Compositing times versus increasing ranks over our three datasets: Each plot gives measurements for our deep compositor (DC) with 1, 4, 8, 16, and 64

fragments per pixel. Note that it is possible to end up with more fragment allocations than needed, which produces equivalent curves(e.g., the DC 64 curve closely
follows DC 16). We also include measurements for the ICE-T compositor for reference.
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Fig. 15. Heatmaps for fragment counts. Left: per pixel, per rank (Fjocql)-

Right: per pixel, across all ranks (Fpizer)-
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Fig.16. Box plots for the 16,32, 48, 64, and 80 rank counts of average (left) and
total (right) number of fragments generated by individual ranks while rendering
the Huge Mars Lander. We take averages over non-empty pixels where their
opacity> 0. Scattered points signify individual ranks’ average (left) and total
(right) fragment counts at a given MPI size.

load clusters as is and distribute them in a round-robin order
when needed. This approach introduces the possibility of some
compute nodes doing less work or rendering empty images. As
depicted in Fig. 15 over a view of Huge Mars Lander data, it
is evident that certain ranks yield fewer fragments, leading to
load-balancing issues. Examining Fig. 16, the standard deviation
(STD) of the number of fragments generated per rank is notably
high, especially for smaller MPI sizes. There is a considerable
reduction in STD for the total number of fragments per rank

when moving from 16 to 32 and 32 to 48. However, the im-
provement is less pronounced when transitioning from MPI size
64 to 80. The number of fragments generated correlates with
rendering performance, evident in similar trends around MPI
sizes 32 and 64 (see Fig. 12).

D. Limitations

One problem of this framework is load balancing, as naively
using the native distribution may cause some ranks to overwork
while others wait for that rank to finish. While our focus is
primarily on in situ and in-transit use cases, there is room for
better distribution schemes. For instance, one straightforward
scheme can consider the transfer function and a cluster’s scalar
value range before loading it into rendering. Another approach
could leverage a load balancing concept, as in [37], [38]. While
these ideas may enhance rendering times, dynamically moving
data around or communicating clusters based on metrics like
visibility could limit interactivity, depending on the simulation
configuration. We observe that our scalability improves with
longer traversals over deeper volumes. However, the initializa-
tion cost could be amortized more in shallower volumes, such
as the airplane data set.

Another limitation of our element-marching scheme is that it
lacks empty space skipping, as it needs to march to the element
torealize itis empty. A hybrid structure such as [22] or clustering
techniques like [19] could identify and skip those regions.

Our marcher relies on the winding order of the vertices
to be consistent and exact. In rare cases, despite meticulous
preprocessing, data acquisition and conversion discrepancies
can occasionally lead to inconsistent winding orders. Simulation
codes are often more robust to such issues than ray marchers.
While we did not encounter this issue in our evaluations, it
is possible for the marcher to “get lost,” meaning that due to
incorrect evaluation of orientation tests, the marcher repeatedly
visits the same elements, resulting in infinite loops. In such cases,
we propose to use mailboxing and similar strategies to break up
these loops.

Our connectivity generation (see Section III-A2) is currently
done in an offline pre-process. This must be done on the fly for
a true in-situ operation. While this should not be hard, it has not
yet been done.
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V. CONCLUSION

Our framework addresses challenges posed by large-scale 3D
simulations generating unstructured meshes with non-convex
domains. Our proposed solution comprises a memory-efficient
and low-overhead mixed element ray-marching algorithm, a
shell-to-shell traversal scheme, and a deep compositing scheme
that allows compositing of the RGBA-Z values obtained across
multiple compute nodes in the correct order. These collectively
enable interactive rendering of massive data sets with non-trivial
and non-convex geometries.

Our evaluation highlights that element connectivity data dom-
inates the memory footprint of the method, which we address
using XOR-compaction. This method proved successful, par-
ticularly for the larger data sets we tested. Our deep compositor
presents a generalization of existing frameworks using a GPGPU
APIL. It enables GPU-to-GPU RDMA in contrast to frameworks
using rasterization. Our compositor also gracefully generalizes
to a single fragment per pixel per node execution as IceT does.

Our contributions encompass a holistic approach to large-
scale 3D simulation visualization, addressing critical issues
related to correctness, memory efficiency, and scalability in
data-parallel applications. We consider our framework suitable
for both in situ and post hoc applications. The proposed frame-
work showcases promising results, paving the way for robust,
time-efficient, and in-place analysis of complex simulation data.
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