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Abstract Direct volume visualization is an important method in many areas, includ-
ing computational fluid dynamics and medicine. Achieving interactive rates for direct
volume rendering of large unstructured volumetric grids is a challenging problem, but
parallelizing direct volume rendering algorithms can help achieve this goal. Using
Compute Unified Device Architecture (CUDA), we propose a GPU-based volume
rendering algorithm that itself is based on a cell projection-based ray-casting algo-
rithm designed for CPU implementations. We also propose a multicore parallelized
version of the cell-projection algorithm using OpenMP. In both algorithms, we favor
image quality over rendering speed. Our algorithm has a low memory footprint, al-
lowing us to render large datasets. Our algorithm supports progressive rendering. We
compared the GPU implementation with the serial and multicore implementations.
We observed significant speed-ups that, together with progressive rendering, enables
reaching interactive rates for large datasets.

Keywords Direct volume visualization - Volume rendering - Unstructured
tetrahedral meshes - Graphics Processing Unit (GPU) - Compute Unified Device
Architecture (CUDA) - OpenMP

1 Introduction
Volume visualization is useful in many areas. Medical fields extensively benefit from

this method, and computational fluid dynamics uses it to inspect several properties
of fluid flow. In general, any discipline that studies the internal structure of a volume
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benefits from volume visualization. Volumetric data can be represented in different
forms, depending on the application and data-capture technologies. We focus on di-
rectly rendering unstructured tetrahedral meshes where volume’s interior needs to be
visualized. There are many approaches to rendering unstructured grids and accuracy
is usually important. Ray-casting-based methods, which our work focuses on, are
widely accepted. These techniques provide accurate results but are computationally
costly; many actual volume datasets contain millions of tetrahedra. Rendering such
complex data in a timely manner is a real challenge.

We propose direct volume rendering (DVR) algorithms for parallel architectures
that achieve interactive rates for large datasets with good image quality and memory
efficiency. We modified the cell-projection algorithm described in [1] to exploit par-
allelization and used OpenMP to parallelize the implementation for multi-core sys-
tems. We extended our cell-projection algorithm for GPUs using CUDA and focused
on enhancing the highly parallelizable characteristic of the algorithm.

1.1 Motivation

There are many works done on volume rendering. A large proportion of recent vol-
ume renderers are based on shader programming in order to achieve high rendering
rates. Although such approaches are fast, they have various drawbacks. First of all,
shader programming is quite restrictive. There are memory and instruction limita-
tions. The total memory available to each shader unit is quite low. Also, the available
instruction set is limited and the total number of instructions in a shader program
has an easily reachable upper bound. Accordingly, many algorithms are too complex
to be implemented with a shader program. Thus, shader programming based volume
renderers usually use approximation in order to satisfy shader restrictions, leading to
inferior graphical quality. Also, those volume renderers have very limited support to
incorporate additional features, such as LOD approaches, lighting effects, and iso-
surface effects.

On the other hand, CPU based volume renderers have great flexibility. Such re-
strictions on shader programming based renderers do not exist for these renderers.
Very accurate images can be rendered and there are no restriction on adding new fea-
tures. However, CPU based volume renderers are much slower than shader program-
ming based renderers. They cannot give enough performance to be used interactively.

Our main motivation was to develop a volume renderer without the restrictions
of shader based renderers and is much faster than CPU based renderers. Our goal
was to focus on image quality first. We performed the computations as accurately as
possible. For example, some shader programming based volume renderers use prein-
tegration tables, represented as 3D textures, to compute the effects of tetrahedra. The
size limitation on the 3D texture limits the accuracy of the computation. On the other
hand, we perform the actual computation leading to accurate results. We also did not
allow any visual artifacts (to achieve high rendering rates, some renderers allow vi-
sual artifacts). Our second goal is to reach interactive rates while rendering decent
image resolutions. We developed a CUDA based volume renderer to satisfy both of
our goals. CUDA provides a rich programming environment that allows the imple-
mentation of complex algorithms. Thus, we can implement accurate rendering algo-
rithms and produce high quality images. Since CUDA provides GPU acceleration,
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the performance would be much higher than CPU implementations. In order to im-
prove the interactive usability, we also supported progressive rendering. Progressive
rendering allows rendering the volume in low-resolution first and then progressively
improves the image to the desired resolution. Since the low-resolution image can be
rendered much faster, it can be displayed much earlier, improving the interactivity
significantly. Progressive rendering is particularly useful for very high resolutions,
where rendering takes much longer.

Our volume renderer can be integrated with additional features, like lighting and
iso-surface effects. The modular architecture and the flexible programming environ-
ment provided by CUDA allow the implementation of complex algorithms and easy
integration. Our volume renderer can also be integrated with level-of-detail (LOD)
approaches. It can be used in a dynamic view-dependent refinement setup [11], where
the volumetric data can be selectively refined based on viewing parameters. View-
dependent refinement can significantly reduce rendering costs without noticeable
degradation of image quality.

Memory efficiency is crucial for volume renderers, especially if they are GPU ac-
celerated. Our implementation focuses on keeping the memory overhead as low as
possible without significantly affecting the performance. We also employed mech-
anisms to allow rendering a volume in several iterations, reducing the memory re-
quirement significantly. Accordingly, our volume renderer can handle large volume
datasets.

2 Related work

Volume rendering is well studied. There are two main types of volume data: regular
and irregular grids. Regular grid representations are widely used in medical imaging,
with texture-based techniques dominating. Earlier approaches sampled volume with
parallel planes along the view direction [9, 12]. The nature of graphics card allows
storing the volume data in the GPU as 3D textures; Ertl et al. used a preintegration
approach to efficiently render volume using 3D texture representation [4, 13].

Although regular grids can be efficiently rendered, they can be large, limiting the
detail level of the volume data. Unstructured grids can be represented in a much more
compact form, thus they can reach much higher detail levels. Iso-surface techniques
allow fast rendering of volume data, which can be useful if surfaces are the critical
regions in the volume. Lorensen and Kline proposed the Marching Cubes algorithm
[10], which became the basis for many later algorithms.

In our work, we focus on direct volume rendering algorithms, of which visibility
ordering is an important part. If the mesh primitives (faces or polyhedra) are ordered
in a way that no primitive is occluded by an earlier primitive in the list, the list is visi-
bility ordered. Such lists can be efficiently rendered by graphics cards. Cook et al. [8]
and Kraus and Ertl [3] proposed methods for efficient visibility sorting. Shirley and
Tuchman proposed a projected tetrahedra algorithm [15], which was later extended
to GPUs using vertex shaders by Wylie et al. [18].

Garrity [5] and Koyomada [7] exploited connectivity to achieve fast cell traver-
sals. This approach was later extended to GPUs by Weiler et al. [17], where the mesh
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and the connectivity information are represented as 3D and 2D textures, respectively.
Callahan et al. introduced a visibility ordering algorithm, HAVS [2], which performs
a rough sorting on the CPU and finalizes the sorting in the GPU. The initial CPU
sorting phase sorts the face primitives according to their center-to-eye distances. The
resulting list contains errors, but they are corrected in the GPU using the k-buffer ap-
proach. See Silva et al. [16] for an extensive survey of volume rendering techniques.

3 Cell-projection algorithm

Direct volume rendering is a computationally-intensive process. Early algorithms
focused on single-processor environments, then the trend shifted to parallel algo-
rithms for PC clusters. With the recent developments in multicore CPUs and GPU-
based computing techniques, volume rendering algorithms for these platforms have
increased in importance because single CPUs are not powerful enough to render even
simple volume data into reasonable resolutions in acceptable time frames. We based
our work on a well-known direct volume rendering algorithm: the cell-projection al-
gorithm.

The cell-projection algorithm is simple yet efficient; it does not rely on tetrahedra’s
neighborhood information to order them. The data representation requirement is low
and the data access patterns are relatively uniform, making this algorithm suitable
for GPU implementation. In this section, we present the single-core version of the
cell-projection algorithm. We describe the data types used by the algorithm and then
outline its steps. Then we describe the implementation of the algorithm on multicore
systems using OpenMP.

3.1 Data structures

Volume data used in real-world application have grown, with datasets of tens of mil-
lions of tetrahedra quite common. This growth has also increased memory require-
ments for DVR implementations; to satisfy such requirements with common com-
puter configurations, the data structures used in this work are kept as minimal as
possible:

— Vertex: Vertex structure contains the coordinate and scalar value associated with
the vertex. Float values are used to store these data, making the vertex structure
16 bytes in size.

— Tetrahedron: Tetrahedron structure contains indices of four vertices, which com-
prise the tetrahedron. Integer values are used to store index values, making the
tetrahedron 16 bytes in size. The size can be reduced with encoding. Each index
value is a decimal value between zero and the number of vertices in the dataset.
Thus [log, (NumberOfVertices)] bits are enough to represent an index value. Usu-
ally, 24 bits are sufficient to represent a vertex index of a sizable volume dataset,
making it possible to reduce the tetrahedron size 25 % or more, depending on the
number of vertices. Processing an unencoded index value is much faster, however,
because index values are extensively used. For that reason, we decided to use the
integer type to store index values to avoid such encoding overheads.
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— Intersection record: Direct volume rendering algorithms throw a ray from each
pixel. As the ray travels through the volume, it intersects with several tetra-
hedra. The effects of such intersections are used to determine the pixels’ final
color. The intersection record consists of the pixel value from where the ray has
been thrown and the tetrahedron’s index that the ray intersected with. Because
all the intersection records have to be created before they are consumed, their
total size can be very large, and encoding the intersection record is necessary.
An intersection record can be represented with [log, (NumberOfletrahedra)] +
[log, (NumberOfPixels)] bits. To store individual records, this size should be
rounded up to a multiple of eight bits. A record size of six bytes is sufficient for all
the datasets and resolutions tested in this implementation.

— Per-pixel intersection lists: The procedure that extracts the intersection records
groups them according to their pixel values, which is done via per-pixel intersec-
tion lists. This structure is simply a collection of intersection record arrays, one per
each pixel value. As these arrays can increase their sizes dynamically, this structure
does not introduce too much memory overhead.

— Intersection effect: An intersection effect structure is produced after an intersection
record is processed. It includes the eye distance to the first point that the thrown
ray hits on the tetrahedron. This value is used to sort the intersection effects. The
color effect left by the tetrahedron on the intersecting ray is also recorded. As the
color is stored as four floats, representing the rgba values, the size of this structure
is 20 bytes. Because the structure is created and destroyed on a per-pixel basis, its
effect on the memory requirement is low.

— Color map: A color map is the tabulated form of the transfer function. It is an array
of color values. A minimum scalar value is assigned to the first entry and a max-
imum scalar value is assigned to the last entry. The scalar values associated with
the remaining entries are calculated by interpolating the minimum and maximum
scalars. Color entries are found by using the transfer function with the associated
scalars.

3.2 Algorithm

The overall flow of the single-core version of the cell-projection algorithm is given
in Algorithm 1. First, screen space coordinates of the vertices are calculated and the
intersection records are extracted. Then calculating, sorting, and compositing inter-
section effects occur in a sequence for every pixel. The steps of the algorithm are
described below.

Screen space projection of vertices In this step, vertices are projected onto the
screen according to the view parameters, and their screen space coordinates are cal-
culated. These coordinates are stored in the SSC array, which is then used during
tetrahedron projections.

Extracting intersection records This step can be considered the screen space pro-
jection of the tetrahedra. The algorithm calculates screen space projections of each

tetrahedron. Rays thrown for any pixel under the projection of a tetrahedron intersect
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CellProjectionAlgorithm()
begin
IntersectionRecord *PerPixellntersectionLists| Width][Height];
SSC = ComputeScreenSpaceProjections(Vertices);
ExtractIntersectionRecords(Tetrahedra, Vertices, SSC, PerPixellntersectionLists);
for i = 0 upto Width do
for j = 0 upto Height do
list = PerPixellntersectionLists[i][j];
IntEffctList = CalculatelntersectionEffects(list);
SortIntersectionEffects(IntEffctList);
Color ¢ = ReducelntersectionEffects(IntEffctList);
Imageli1[j] = c;

end

Algorithm 1: Cell-projection algorithm

with the tetrahedron. Thus, a tetrahedron will contribute to the colors of the pixels un-
der its projection. The cell-projection algorithm extracts any such tetrahedron-pixel
pairs (the intersection records). Intersection records are stored in a pixel index-based
array, called PerPixellntersectionLists.

Intersection records are found by traversing each tetrahedron; the algorithm calcu-
lates its screen space projections by projecting its four vertices. When the projection
points of these vertices are connected, a triangle or a quadrilateral will be formed,
and with a basic scan-line algorithm, the pixels covered by this projection area can
be calculated. The tetrahedron id and the pixel values are then encoded into an Inter-
sectionRecord and inserted into the PerPixellntersectionLists.

Calculating intersection effects 'When a thrown ray travels through a tetrahedron, it
loses intensity and its color is affected. The effects of all the tetrahedra that a ray has
traveled through can be combined to obtain the final effect on the ray. This procedure
(Algorithm 2) uses the intersection record list for the current pixel and calculates the
intersection effects for each record in the list individually.

Algorithm 2 calculates the intensity and color of a tetrahedron intersection on the
ray. The first step calculates two intersection points (ipy and ip;) of the ray and the
input tetrahedron. Let ip,, be the closer point to the eye. The distance between the eye
point and ip, is recorded in the intersection effect record; this value will be used in
the sorting phase. The ray’s path, which is the line segment between ip, and ip,, is
divided into a predefined number (NumOfSamples) of line segments. At the starting
point of these line segments, the scalar value is calculated with interpolations using
the vertices of the tetrahedron. The color of this point is determined by the ColorMap
table. As the ray travels from ip to ip;, the color and intensity contributions can be
approximated. We describe the interpolation process by the following example:

Let ipy be (10, 10) and ip; be (22, 19). Dividing the path into three segments,
the points we are interested in are ipy; = (14, 13) and ipy, = (18, 16). The algorithm
approximates the path that the ray travels with three line segments of length five: [ip,,
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CalculatelntersectionEffects(Tetrahedron t, Pixel p)
begin
IntersectionEffect record,
Ray *R = new Ray(p);
[ipg, ip1] = RayTetrahedronlntersection(R,t);
record.dist = |ipg—EYE|;
d = —Pi—ipgl .
NumOfSamples’
Color ¢ = [0, 0, 0, 0];

record.color = [0, 0, 0, 0];
for i = 0 to NumOfSamples do
Point ip = ipg +d x i ;
s = InterpolateScalar(z,ip);
¢ = getColorFromScalar(s);
for j =0to4do
record.color[j] + = DistConst x d x (1 — record.color[3]) x
L record.color[j];

return record,

end

Algorithm 2: Calculating the effect of the intersection between a ray and a tetrahe-
dron on the ray

ipo11s Lipo1»> ipo2], and [ipgy, ipq]. The ray starts traveling with full intensity and each
segment is assumed to have a uniform color, which is the color at the beginning of the
segment. The color contributions of the line segments to the pixel are proportional to
the color attributes of the traveled region, the travel distance, the opacity coefficient
of the region and the intensity of the ray itself. The ray loses most of its energy while
traveling through nontransparent regions; thus later regions have a lesser effect on the
final color. After the ray travels through all regions, its final color is recorded.

Accurately calculating the scalar value of a point on a tetrahedron is important
because poor interpolations may cause significant artifacts. The interpolation process
is given in Algorithm 3. It starts by selecting a reference vertex, which can be any one
of a tetrahedron’s vertices. Then the M matrix, which contains the positions of the
other three vertices of the tetrahedron relative to the reference vertex, is calculated.
The N vector stores the relative position of the input point to the reference vertex.
The scalar vector (Scalar) contains scalar value differences of the vertices relative
to the scalar values of the reference vertices. Then the equation M x R = Scalar is
solved to obtain the R vector, which represents a coefficient vector that will give the
relative scalar value of a point when multiplied with the relative position vector of
that point. The SolveEquation function calculates this coefficient, dot product of
the relative position vector of point (N) and the coefficient vector (R). By adding the
scalar value of the reference vertex, the interpolated scalar is found.

Sorting intersection effects This step is achieved using the dist parameter. The num-
ber of elements to sort is usually in the low hundreds. Although many sorting algo-
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InterpolateScalar(Tetrahedron ¢, point p);
begin
float M[3][3];
float Scalar[3];
float N[3],R[3];
float s;
for i = 0 upto 3 do
| MJi]=t.V[i + 1].coords — ¢.V[0].coords;
N = p —t.V[0].coords;
for i = 0 upto 3 do
| Scalar(i] = t.V[i + 1].scalar — ¢.V[0].scalar;
SolveEquation(M, Scalar, R);
/* Solves the equation M x R = Scalar for R. */
s = R- N +¢t.V[0].scalar;
return s;

end

Algorithm 3: Interpolation of scalar value within a tetrahedron

ComposelntersectionEffects(IntersectionEffect */ist);
begin
Color ¢ = [0, 0, 0, 07;
for i = 0 upto list.length do
Color r = list[i].color;
for j =0to 3 do
| c.color[j] + = (1 —c.color[3]) x r.color[j];

if c.color[3] >= 0.9999 then
| break;

return c;

end

Algorithm 4: Composition of intersection effects

rithms can be used for this job, the size of the list favors some of them; we found that

quicksort performs well for the size range of the intersection lists.

Compositing intersection effects Sorting the intersection effects by the distance of
the first intersection point to the eye orders the tetrahedra by the ray’s visit order. Al-
gorithm 4 describes the composition of the contributions along the ray. If the opacity
of accumulated color exceeds a predefined threshold, the ray terminates because the

remaining tetrahedra will have no significant effects (early ray termination).
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3.3 Multi-core implementation with OpenMP

The cell-projection algorithm is highly suitable for parallelization, because for the
most part, memory accesses are structured, and race conditions are thus avoided.
OpenMP provides a useful interface for parallelization on multicore processors with a
shared memory architecture. It divides the workload among threads and then executes
them through different cores. Since the cores use the shared memory, there are no data
transfer issues as there are with parallel clusters.

OpenMP also supports parallelization of for-loops by distributing the iterations
among threads. This approach works unless one iteration requires data produced by
another iteration or there are race conditions among iterations. Screen space pro-
jection of vertices can be parallelized trivially, since no race conditions exist. The
for-loops that process intersection records for each pixel can also be parallelized, but
as the iterations in these loops use some temporary data that data should be replicated
for each thread to avoid conflicts.

Extracting intersection records necessitates traveling through the tetrahedra and
inserting intersection records to the per-pixel intersection lists under a tetrahedron’s
projection. Since different tetrahedra can have projections on the same pixel, a race
condition on that pixel’s intersection list is possible. To avoid this scenario, the Per-
Pixel Intersection Lists structure should be replicated. After the extractions are com-
plete, the lists of each thread can be combined. While this approach is amenable
to OpenMP parallelization, we observed that it does not improve computation time
significantly; thus, we used the serial version.

4 Cell-projection algorithm on GPU

Although the CPU-based cell-projection algorithm’s performance is reasonable for
small datasets, it is not sufficient for large datasets. However, this algorithm is well
suited to a GPU implementation, as it focuses on one group of data at a time and its
memory accesses are structured. Further, as the algorithm is well structured in terms
of execution flow, it can be efficiently parallelized.

We analyzed some of the volume rendering tools that use the k-buffer approach.
With this approach, the visibility sorting of the faces starts by presorting them on the
CPU according to the distance between the face center and the eye or some other
similar criteria. Then the visibility sorting can be completed by the shaders. The
approach relies on the presorting being accurate enough so that a k-sized buffer stored
on shaders can correct the visibility order. We analyze various volume datasets and
observe cases where k values higher than 30 are required to obtain correct visibility
ordering. The speed of the k-buffer approach relies on k being small so that it can be
executed on shaders. For example, state-of-the-art volume renderers typically use two
or six as the k value. Because these values are much smaller than actually required
for correct visibility ordering, the visibility sorting may contain errors, which leads
to visual artifacts.

The required k values varies significantly from dataset to dataset. Usually, the
datasets with uniform, Delaunay-like tetrahedralizations, require small k values. Our
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GPUCellProjectionAlgorithm();

begin

CopyToGPU(Vertices);

CopyToGPU(Tetrahedra);

CopyToGPU(ColorMap);

CopyToGPU(ViewParameters);

GPU.Run(ComputeScreenSpaceProjections(Vertices));

SSC = CopyFromGPU(ScreenSpaceCoordinates);

IntersectionRecord *PerHashBlockIntersectionLists| NumOfRenderlterations];

ExtractIntersectionRecords(Tetrahedra, Vertices, SSC,

PerHashBlockIntersectionLists);

for i = 0 upto NumOfRenderlterations do
CopyToGPU(PerHashBlockIntersectionLists[i]);
GPU.Run(processHashBlock);
GPU.Run(sortHashBlock);
GPU.Run(composeHashBlock);

Display(OutputImage);

end

Algorithm 5: GPU-based cell-projection algorithm

focus is more on the quality of rendering rather than speed. We also want to support
datasets with irregular tetrahedralizations without affecting visual accuracy. Accord-
ingly, we do not use the k-buffer approach and implement a high accuracy visibility
sorting mechanism.

4.1 CUDA implementation

Although the cell-projection algorithm is highly suitable for parallel implementa-
tion, to increase efficiency, hardware restrictions and capabilities must be considered.
Graphics cards contain many processing units, but as each computation unit is much
slower than a CPU core, their computation power depends on a high level of paral-
lelism. Memory is another important restriction. Current GPUs usually have fewer
than 2 GBs of memory, with 1 GB of memory more common. Since volume data can
be very large, such memory restrictions can easily result in a bottleneck. The algo-
rithm should consider such restrictions and be able to work with limited memory.

We present our GPU implementation of the cell-projection algorithm using CUDA
in Algorithm 5. The serial version processes each pixel individually, but this approach
is not suitable for GPUs. First of all, each pixel’s workload is too low to be efficiently
parallelized; the number of CUDA threads should be at least in the tens of thousands.
The number of intersection records per pixel would be much less. Assigning one
pixel’s process to different threads, similar to multicore implementation, is also not
suitable, as the execution flow and memory access patterns are unorganized. Further,
each pixel’s workload differs drastically, which would cause significant workload
imbalance among threads.
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For the GPU, we grouped the pixels, calling each group a hash block, and pro-
cessed one group at each iteration. The NumOfRenderlterations variable represents
the number of hash blocks, which depends on the dataset size. If the value of
NumOfRenderlterations is low, the workload per render iteration increases, which
allows more efficient parallelization, but increases the memory requirement. The
amount of available memory thus limits the number of iterations. In our implementa-
tion, we used 16 or 64 rendering iterations. We describe the steps of the GPU-based
algorithm below.

CPU to GPU data transfer The tetrahedra and vertices data are copied just once
after CUDA initialization is completed. The view parameters are copied at the begin-
ning of each rendering, i.e., whenever the volume is redrawn. The color map is copied
at the beginning, but can be updated if the transfer function changes. We assume the
graphics card contains enough memory to hold these data, leaving some space. The
data transfer between the main memory and the GPU memory is very fast and has
little effect on rendering times.

Screen space projection of vertices  This function runs on the GPU using 512 blocks
with 256 threads each. Usually using the same computation, each thread calculates
the screen space coordinates of one vertex; the execution flow differs only if excep-
tions are observed, which is not frequent. Vertices are assigned to threads sequen-
tially; thus memory access patterns are uniform and the shared memory is highly
utilized. As a result, this function is very efficiently parallelized.

Extracting intersection records This step can be considered the screen space projec-
tion of the tetrahedra and is executed on the CPU. After the screen space coordinates
of the vertices are calculated, they are copied back to the CPU. This operation takes
little time, since the data size is small and the data transfer rates are high. This al-
gorithm works similarly to its CPU version; the only difference is that instead of
the intersection records being grouped according to their pixel coordinates, they are
grouped according to their hash blocks. A pixel’s hash block is simply computed as
follows: The last two or three bits of a pixel’s x and y coordinates are concatenated.
With two bits, 16, and with three bits 64, hash blocks are addressed. The most im-
portant property of the hash function, which helps balance the workload of each hash
block, is to ensure that the pixels in each block represent a subsampling of the whole
image rather than being grouped in certain parts of the image.

We implemented this function on CPU because of irregularity and memory con-
cerns. Each tetrahedron has a different projection area, and the execution flow of the
scan-line algorithm differs for each tetrahedron. The number of pixels in each tetrahe-
dron’s projection area differs significantly, unevenly distributing the workload. Most
importantly, race conditions will be observed. Many tetrahedra will have projections
on the same hash blocks, thus they will try to write into identical locations. The only
solution for such race conditions is to extract the intersection records first and or-
ganize them into hash blocks later. Although such an approach works, it introduces
significant overhead.
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Processing hash blocks Apart from GPU-specific optimizations, this step is similar
to the calculation of intersection effects in the CPU version of the algorithm. It starts
by copying the intersection records for the current hash block to the GPU. Each thread
is assigned an intersection record and responsible for producing the corresponding
intersection effect data. Execution flows are mostly uniform. Continuous threads are
assigned to process contiguous intersection records; thus, memory accesses are also
uniform for some parts. However, the tetrahedra contain references to vertices, which
are not contiguous, and accesses to the vertices cannot be made uniform. However,
for repeated access to nonuniform data, the algorithm uses shared memory to store the
data temporarily, which makes the subsequent memory accesses uniform and much
faster. This function is launched with a grid of 1024 blocks; because of the size dif-
ference of the shared memory between devices, those with a computing capability of
2.0 or higher are launched with 192 threads per block and others use 64 threads per
block.

Sorting hash blocks This step for sorting intersection effects differs from the one
in the CPU version of the algorithm significantly. In the CPU version, the intersec-
tion effects for each pixel must be sorted, and thus, many small sorting jobs are done
independently, which enables efficient use of sorting algorithms like quicksort. How-
ever, in the CUDA version, intersection effects for every pixel in a hash block are
mixed; the sorting function must group an individual pixel’s intersection effects and
then sort these groups. Further, in the CUDA version, the sort lists are much larger.
In this work, we used efficient radix sort implementation by Satish et al. [14] from
the Thrust library [6]. This library includes optimized implementations of various
functions for GPUs and, integrated with CUDA, it can use device memory allocated
from there. Radix sort has O(n) time complexity, which allows us to use larger hash
blocks (thus fewer rendering iterations) without negatively affecting sorting times. It
can also be efficiently parallelized.

Radix sorting is not a comparison-based sorting technique. It uses standard data
types, given as input arrays, as the key and takes another array of standard data types
as data. Using the keys, it sorts the keys and the data. Since radix sort cannot use
custom structures, we divided the data inside the intersection effect structure into dif-
ferent arrays: pix, dist and clr. The pix array (pixel) does not exist in the CPU version,
but because sorting is not done on a per-pixel basis in this version, this distinction is
needed. The pix array elements are computed from the pixel coordinates, with the
current rendering iteration revealing the last two or three bits of each pixel’s x and
y coordinates. The rest of the bits are packed and each pix value is computed. For
example, let the resolution be 1024 x 1024 and the number of iterations be 16. Then
each pixel’s x and y coordinates can be represented with eight bits, making each pix
value 16 bits in size.

Our sorting implementation must group the pixels’ intersection effect data, then
sort the groups according to distance. Since radix sort is stable, sorting first according
to distance and then according to the pix value achieves this.

Algorithm 6 shows the sort algorithm. index is an empty buffer, and the algorithm
begins by filling that buffer with the integer sequence 0, 1,2, ..., representing the
data index. The data is sorted using dist as the key and index as the data. Then the
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SortHashBlock(uint *pix, float *dist, uint *index, color *clr);
begin

thrust.sequence(index);

thrust.sort(dist, index);

thrust.gather(index, pix);

thrust.sort(pix, index);

thrust.gather(index, clr);

end

Algorithm 6: GPU-based sort algorithm for hash blocks

ComposeHashBlock(int iferation, uint *pix, color *clr);

begin
Widthx Height .
color currFB[ NumOfRenderlterations 15
Reset(currFB);

while length > CPUSwitchThreshold do
| GPU.Run(Reduce(pix,cir,currFB);

hostPix = CopyToCPU(pix);

hostClr = CopyToCPU(clr);

hostCurrFB = CopyToCPU(currFB);

for i = 1 upto hostPix.length do

composeRecord(hostCurrFB[hostPix[i]], hostClrli],

L hostCurrFB[hostPix[i]]);

currFB = CopyToGPU(hostCurrFB);

GPU.Run(updateFrameBuffer(currFB, iteration));

end

Algorithm 7: Composition algorithm for hash blocks

pix array must be reordered according to the new indices from the index array. The
gather function from the Thrust library performs these reorderings.

The initial sorting step sorts the data according to eye distances. The second step,
using pix as the key and index as the data, groups the data. With the final gather, the
pix and clr arrays are sorted by eye distance and grouped by pixel values.

Composing hash blocks This step for composing the intersection effects uses the
sorted clr and pix arrays as input. It combines the color values in sorted order for
each pixel and computes the final pixel color. The composition process is described
in Algorithms 7 and 8.

Algorithm 7 uses a temporary frame buffer, currFB. The size of this buffer is
equal to the number of pixels processed at each iteration. Algorithm 7 runs on the
CPU. It repeatedly calls the Reduce function (Algorithm 8), which runs on the GPU
and reduces the size of the array by half. This function relies on the input arrays
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Reduce(uint *pix, color *clr, color *currFB);

begin
tid = block.id x block.size + thread.id,
index = tid,

while index < pix.length do
if pix[2 x index] == pix[2 x index + 1] then
composeRecord(clr[pix[2 x index]], clr[pix[2 x index + 1]],
clr[pix[2 x index]]);
else
composeRecord(currFB|pix[2 x index + 1]], clr[pix[2 X index + 1]],
currFB[pix[2 x index + 1]]);
| index 4+ = grid.size x block.size;

end
Algorithm 8: Reduction algorithm for hash blocks
‘O,a 0.b]0.c| 1.l 1e| 1f [ 1] 2n] 2] 34] 3k] 3. ‘ 0 ‘ 1 ‘ 2 ‘ 3 ‘
‘ 0,ab ‘ 0c ‘ Lef ‘ le ‘ 2 ‘ 3.k ‘ ‘O‘l,d 2h| 3,
‘ 0,abe ‘ efe ‘ 2 ‘ ‘ 0 ‘l,d 2h 3,jkl‘

Fig.1 Reduction example

being sorted, as each thread processes a consecutive pair of entries in the input
arrays. First, the pix values of these pairs are compared. If the values are equal,
then because the arrays have been sorted, the two color values can be combined
and represented as a single color value. If the pix values are not equal, the later
record is output and the earlier record is retained. A pair’s pix values can be dif-
ferent only if the later record is the first record of the pixel that has not yet been
output.

Figure 1 illustrates the algorithm with an example. The process starts with 12 pix,
clr entries. The right-hand side shows the temporary frame buffer, which is initially
empty. After the first reduction, the data shrinks to six entries. (1, d), (2, k), and (3, j)
entries are output to frame buffer while (0, ¢), (1, g), and (2, i) entries are retained.
Entry couples with the same pix values are combined to obtain (0, ab), (1, ¢f), and
(3, kl). Further reductions are executed in the same way. To reduce two entries to one,
the algorithm uses the composeRecord function, which takes three colors as input.
It combines its first two inputs and writes the result to its third input. This function
works similarly to the serial version.

The result of the Reduce function is an interleaved array. Further reductions can
be performed on the interleaved arrays, or the array can be compacted. We use an op-
timized compaction mechanism. After the first reduction, we compact the interleaved
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array into its first half using the gather functionality of the Thrust library. This op-
eration frees the other half for temporary storage. Further reduction operations write
their results to that free space. This approach eliminates the need to compact reduc-
tion operations beyond the first one and allows parallelization of memory accesses
for greater efficiency.

In the Reduce function, each thread is responsible for combining two entries into
one. With further reductions, the arrays shrink significantly; thus after a certain point,
the threads cannot be utilized efficiently. We used two mechanisms to overcome this
problem. (i) We run the Reduce function with size-dependent grid and block sizes.
With large sizes, we use 512 blocks per grid and 256 threads per block. With smaller
sizes, we stepwise reduce the size to 64 blocks per grid and 32 threads per block.
(i1) After a certain length, we complete the reductions in the CPU. Because the data
is now so small, transfers between the CPU and GPU take little time and the CPU
executes the reduction operations more efficiently because parallelism is limited.

After the reductions are complete, all intersection effects are combined into the
temporary frame buffer. With the updateFrameBuffer function, which runs on the
GPU, the data in this buffer is transferred into the actual frame buffer. The naive
version completes the image after all render iterations have been completed; however,
this function also supports progressive rendering, which is very useful for increasing
interactivity.

4.2 Progressive rendering

Volume rendering is time consuming, particularly for high resolutions, and this
adversely affects the interactivity. Progressive rendering aims to perform a low-
resolution volume rendering and progressively improve image quality while display-
ing the outputs to the user. As low-resolution rendering is faster, a low-quality image
is displayed fairly quickly. As the process continues, the image progressively im-
proves, while the user is observing the latest output.

The hash-block approach provides a natural framework for progressive rendering.
As mentioned earlier, each hash block will produce the overall subsampling of the
whole image. For example, if we use 16 hash blocks to render a 1024 x 1024 im-
age, then each hash block will produce a 256 x 256 image, which is a low resolution
version of the whole image. Each of those low resolution images are slightly shifted
from each other, so that when combined they will constitute the high resolution im-
age. Progressive rendering simply requires processing the hash blocks in a specific
order, so that the processed hash blocks can be combined to obtain higher and higher
resolutions progressively.

The pixel values are assigned to each hash block according to their last two or three
bits. This approach divides the whole image into 4 x 4 or 8 x 8 sub-windows, respec-
tively. Each pixel in a subwindow is processed by a different hash block. Without
progressive rendering, only the values of pixels assigned to the currently processed
hash block are updated in the frame buffer. On the other hand, progressive rendering
requires some of the neighboring pixels being updated as well. For example, after the
first hash block has been processed, every pixels’ values in a subwindow is updated
with the computed pixel’s value. Accordingly, the lower resolution version can be
displayed without waiting the rendering to finish.
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Fig. 2 Progressive rendering

Figure 2 illustrates the progressive rendering process. In the example, we have 16
render iterations and a 4 x 4 subwindow. Right bottom corner of each cell displays the
index value of the pixel within the subwindow. The larger value represents the index
of the pixel whose value is currently set to the current pixel. The blue background
indicates the currently processed pixel, and the red background indicates the pixels
whose values are updated with current pixels values.

In the first iteration, the Oth pixel is processed and the results are written to ev-
ery pixels. In the second iteration, the 10th pixel is processed and the results are
written to pixels on the top half. At each iteration another pixel is processed and
the results are written to some neighboring pixels, until every pixel value is com-
puted.

The processing order of pixels is important for progressive rendering. With the
given ordering, we can obtain various sub-resolutions after certain rendering itera-
tions. For example, we can output, 1 x 1,2 x 1,2 x 2,4 x 2, and 4 x 4 sub-resolutions
of our 4 x 4 subwindows after 1st, 2nd, 4th, 8th, and 16th iterations respectively. As
a result, the low resolution versions can be quickly obtained and displayed, while
the resolution progressively improves. This technique has very little overhead, but
improves the interactivity greatly.

4.3 Memory management

Memory is usually the limiting factor for the size of volume data that a ren-
derer can visualize. We have employed several methods to keep both the GPU
and system memory requirement low. Our motivation was to keep the memory
footprint as low as possible without adversely affecting the performance or accu-
racy.

Although system memory is large, it can become a limiting factor for high-image
resolutions, especially because the cell-projection algorithm extracts the intersection
records and stores them in the memory before processing. To work with the available
memory, our implementation can render images in multiple passes. For example, an
image with 4096 x 4096 resolution can be rendered in four passes of 2048 x 2048
or 16 passes of 1024 x 1024. This approach introduces some overhead; however, it
guarantees that the application will fit in the physical memory with no swapping, and
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thus improves performance. GPU memory requirement is more crucial because it is
smaller. Vertex and tetrahedron data are the main components of the volume data and
should be placed in the GPU memory.

Tetrahedron structure contains indices of four vertices, which comprise the tetra-
hedron. Each index value is a decimal value between zero and the number of vertices
in the dataset. Thus [log, (NumberOfVertices)] bits are enough to represent an index
value. Accordingly, the minimum number of bits that is sufficient to represent a tetra-
hedron is 4 x [log, (NumberOfVertices)] bits. For example, tetrahedra in a volume
with half a million vertices can be represented with 76 bits.

CUDA requires uniform accesses to memory in order to give high performance.
For example, if all the threads in a CUDA warp accesses consecutive 32 bit data
at a certain memory region, all memory operations can be completed concurrently.
However, if the accessed data types are not 32 bits or the accessed values are
not consecutive, more memory accesses will be required. Thus, using a multiple
of 32 bits to represent a tetrahedron is crucial for a uniform memory access. Al-
though we used 128 bits (16 bytes), 96 bits (12 bytes) is sufficient to represent
a reasonably-sized volume data and it is a multiple of 32 bits. However, index
values must be encoded for 12 bytes whereas using 16 bytes do not require any
encoding. Although decoding encoded index values require simple bitwise arith-
metic, it still introduces some computational overhead for encoding and decod-
ing. We experimented encoding into 12 bytes to reduce the memory size, but we
observed noticeably higher rendering times. The memory requirement for stor-
ing vertices is minimal. The total memory requirement for storing volume data is
16 x (NumberOfVertices + NumberOfTetrahedra). For the largest dataset, we tested
sfl with 14 millions of tetrahedra; tetrahedra and vertices require about 250 Mbs of
GPU memory.

The maximum possible number of intersection records in a hash block is directly
proportional to the memory requirements during the hash block processing. This
value depends on the dataset and view parameters greatly. On the other hand, this
value can be easily reduced by using higher number of hash blocks or using multi-
pass rendering. Accordingly we can change the memory requirement according to the
available memory. In our implementation, 34 bytes per intersection record is needed.
This memory is reused as much as possible during the processing of hash blocks.
When the sf1 dataset is rendered using 64 hash blocks with a 1024 x 1024 resolution
in a single pass, 120 Mbs of memory is needed for hash block processing. Together
with tetrahedra, vertices, and other smaller data structures, the memory requirement
falls well below 500 MBs. Accordingly, a graphics card with 2 GBs of memory would
be sufficient to render a volume of a hundred millions of tetrahedra with similar char-
acteristics to sf1 dataset using 64 hash blocks with a 2048 x 2048 resolution in a four
passes.

5 Results

We used a PC with a four-core AMD CPU running at 3.2 GHz, 4 GB of system mem-
ory, and an Nvidia GTX 560 graphics card with 1 GB of memory and 1075 GFLOPS
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Fig. 3 Rendered images of various datasets: (a) Comb dataset, (b) Bucky dataset, (c) Aorta dataset,
(d) Sf2 dataset, and (e) Sf1 dataset

single precision arithmetic capabilities. We tested our implementations on five differ-
ent datasets (see Fig. 3). We rendered each dataset with three different view param-
eters and for three different resolutions: 512 x 512, 1024 x 1024, and 2048 x 2048.
We report the average results for each resolution.

Table 1 shows that significant speed-ups are obtained with the multicore and GPU
implementations. The multicore implementation achieves a 3.2-fold increase in speed
on average. Considering the rendering has a significant input-output (I0) component,
these speed-ups are very promising. The GPU implementation achieves 23.3-fold in-
crease in speed on average, with some speed-ups reaching above 32-fold. Considering
we used a middle-segment graphics card in the tests, these speed-ups are also very
promising.

Figure 4(a) shows the speed-ups obtained for various resolutions of different
datasets using the multicore implementation. This implementation achieves almost
identical speed-ups for 512 x 512 and 1024 x 1024 resolutions. For the 2048 x 2048
resolution, speed-ups are slightly slower because of memory limitations. Our multi-
pass rendering approach solves high-memory requirement problem, but introduces
some overhead, which reduces the speed. For resolutions above 2048 x 2048, we ex-
pect speed-ups to be higher because serial implementation will also incur multi-pass
rendering overheads.

The GPU implementation produces higher speed-ups for the 1024 x 1024 and
2048 x 2048 resolutions (cf. Fig. 4(b)) because, larger jobs use the GPU’s tens of
thousands threads more efficiently. The 512 x 512 resolution does not utilize the
graphics hardware as much, resulting in lower speedups. The multipass rendering
overhead affected the speed-up of 2048 x 2048 resolution, but particularly for smaller
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Table 1 Rendering times and speed-ups of GPU, multicore, and serial cell-projection algorithms. Data
size is given in thousands of tetrahedra. Rendering times are in seconds

Dataset Data size Resolution Serial Multi-core GPU
Time Time Speed-up Time Speed-up
Comb 215.0 512 x 512 10.45 2.96 3.531 0.53 19.863
1024 x 1024 41.64 11.77 3.537 1.61 25.877
2048 x 2048 168.19 48.72 3.452 5.97 28.179
Bucky 1250.2 512 x 512 71.76 20.07 3.576 3.16 22.735
1024 x 1024 285.94 82.45 3.468 10.33 27.671
2048 x 2048 1334.23 523.23 2.550 47.57 28.049
Aorta 1386.9 512 x 512 31.70 9.45 3.356 1.27 25.055
1024 x 1024 125.06 37.21 3.361 4.09 30.547
2048 x 2048 554.41 196.12 2.827 16.99 32.633
Sf2 2067.7 512 x 512 40.34 11.80 3418 2.44 16.516
1024 x 1024 159.48 47.08 3.387 6.77 23.554
2048 x 2048 637.79 193.30 3.300 28.76 22.180
Sf1 13980.1 512 x 512 82.77 26.41 3.135 6.63 12.484
1024 x 1024 318.24 97.04 3.280 18.19 17.492
2048 x 2048  1615.24 732.10 2.206 100.01 16.152

datasets, the associated overhead was balanced by the higher utilization. For resolu-
tions above 2048 x 2048, we expect that speed-ups would remain high.

6 Conclusions

We propose multicore and GPU implementations of the cell-projection algorithm for
direct volume rendering. The proposed algorithms are designed in such a way that
they use the main memory and the GPU memory efficiently. With the multi-pass ren-
dering approach, our implementation is able to render high resolution images. We
tested our implementations with several large datasets with different characteristics
and under various view parameters. The multicore implementation produced up to
3.5-fold speed-ups, while the GPU implementation reached 32-fold speed-ups. To-
gether with the progressive rendering mechanism, we achieved interactive rates for
many datasets.
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