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We propose an approach to recognize trajectory-based dynamic hand gestures in real time for
human–computer interaction (HCI). We also introduce a fast learning mechanism that does not require
extensive training data to teach gestures to the system. We use a six-degrees-of-freedom position tracker
to collect trajectory data and represent gestures as an ordered sequence of directional movements in 2D.
In the learning phase, sample gesture data is filtered and processed to create gesture recognizers, which
are basically finite-state machine sequence recognizers. We achieve online gesture recognition by these
recognizers without needing to specify gesture start and end positions. The results of the conducted user
study show that the proposed method is very promising in terms of gesture detection and recognition
performance (73% accuracy) in a stream of motion. Additionally, the assessment of the user attitude
survey denotes that the gestural interface is very useful and satisfactory. One of the novel parts of the
proposed approach is that it gives users the freedom to create gesture commands according to their
preferences for selected tasks. Thus, the presented gesture recognition approach makes the HCI process
more intuitive and user specific.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Various approaches to human–computer interaction (HCI) have
been proposed in the last few decades as an alternative to the clas-
sic input devices of keyboard and mouse. However, these new
techniques have not been able to supersede the old ones due to
their lack of intuitiveness. Recently, HCI has regained popularity
due to the intuitive and successful interaction techniques of
devices such as tablet PCs, smart phones and even smart houses.
All these applications use voice commands, mimics, and gestures
to interact with humans.

Human–computer interaction with hand gestures plays a signif-
icant role in these modalities because humans often rely on their
hands in communication or to interact with their environment.
Therefore, hand-gesture-based methods stand out from other
approaches by providing a natural way of interaction and commu-
nication [1]. Many studies evaluate gesture-based interaction tech-
niques, their drawbacks, and propose ways to increase their
effectiveness [2–4].

There exist various definitions of hand gestures in the literature.
Some studies define gestures as only static postures [5], while
others consider hand motions and trajectory information as a part
of the gestures [6]. In the scope of this study, we consider only the
motion trajectory of the hand (excluding finger bending and orien-
tation information) to define gestures.

Recognizing gestures is a comprehensive task combining vari-
ous aspects of computer science, such as motion modeling, motion
analysis, pattern recognition and machine learning [7]. Since the
beginning of the 1990s, many hand gesture recognition techniques
have been proposed. These studies can be divided into two catego-
ries, based on their motion capture mechanism: vision-based or
glove-based. Vision-based techniques rely on image processing
algorithms to extract motion trajectory and posture information
[8–10]. Their success highly depends on the used image analysis
approaches, which are sensitive to the environmental factors, such
as illumination changes, and may lose fine details due to hand and
finger occlusion [11].

Glove-based techniques generally provide more reliable motion
data and eliminate the need for middle-tier software to capture
hand positions and postures [12]. On the other hand, they require
the user to wear cumbersome data gloves and position trackers,
and usually carry a few connection cables. These factors reduce
intuitiveness and usefulness of these methods and make them
costly [12].

Recent developments in technology pave the way for more
accurate and affordable motion capture technologies, namely
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Fig. 1. A gesture (circle) is represented as an ordered sequence of directional
movements.
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depth camera sensors such as Kinect™ and Wii™. Hence, it is pos-
sible to retrieve more precise motion data without the limitations
of traditional (vision-based and glove-based) approaches. Even
small objects like human fingers can be effectively captured by
these devices [13]. Researchers also propose dynamic hand gesture
recognition algorithms that utilize these devices [14]. Similar to
ours, these studies use hand trajectory based gesture recognition
algorithms. Although these studies claim that their recognition
rate is over 90% with relatively simple and small gesture sets, they
use fairly large training sets. Unlike our approach, none of these
approaches are capable of recognizing gestures on the fly. Addi-
tionally, our gesture recognizer does not require large training sets.

Studies in this field can also be classified by examining whether
they recognize static or dynamic gestures. Although static gesture
recognition is relatively simpler, it still requires much effort due to
the complexity of gesture recognition. Most of the static gesture
recognition research focuses on neural-network-centered
approaches [15,16], but for dynamic gesture recognition, hidden
Markov model (HMM)-based approaches are generally preferred
because they yield better results [17–19]. Similar to our study,
finite-state machine (FSM)-based techniques [20–22] are also used
to recognize dynamic gestures. Other studies suggest using fuzzy
logic [23] and Kalman filtering [24] for gesture recognition.

Many gesture recognition techniques such as neural-network
[25] and HMM-based [26] approaches require a preliminary train-
ing phase in which an extensive training data is fed the system to
form the recognizers. Our approach can achieve similar recognition
rates without requiring a large training set or on-line training. The
other advantage that we obtain from the FSM-based recognizer is
that we can detect gestures in a stream of hand motion unlike
the other methods [27] where the start and end positions of ges-
tures should be specified explicitly.

We introduce an intuitive approach to teach a machine to rec-
ognize a hand gesture command so users can apply them to
devices such as TVs or eReaders. This approach allows users to cre-
ate their own gesture commands for a particular task according to
how they think it suits the action.

Similar to the other techniques, the proposed approach consists
of two stages: learning and recognition. In the learning stage, the
user is asked to repeatedly perform a particular gesture. The sys-
tem records the motion trajectory of each gesture sample with a
magnetic 3D position tracker attached to the user’s hand. Unlike
the other approaches [28], motion data is collected in gradient-like
form. Instead of noting the absolute position of the hand, its posi-
tion relative to the previous recording is noted. Additionally,
threshold-based filtering is applied to the collected data to reduce
noise caused by unintended vibrations and hardware errors. Next,
collected motion data is filtered using a component-based sliding
window technique for smoothing and further noise removal. Then,
the filtered trajectory information is transformed into our gesture
representation format, which is basically an ordered sequence of
events (directional movements).

In the last step of the learning phase, our approach chooses a few
event sequences (using the Needleman–Wunsch sequence-match-
ing algorithm [29]) from the provided samples to form a base for
gesture recognizers. The algorithm compares every pair of event
sequences (gesture pairs) and computes a similarity score for them.
The event sequences with the highest similarity scores are selected
to form the bases for the gesture recognizers. Then, a recognizer
finite state machine (FSM) is generated based on these chosen ges-
tures. Because FSMs are sequence recognizers, each forward transi-
tion in a generated FSM corresponds to an event in the selected
sequence in the respective order. This learning phase is repeated
for every distinct gesture, with several FSMs produced for each.

In the recognition stage, continuous inputs from the tracker are
processed in a similar manner as in the learning stage and fed to all
the recognizer machines. If one of the previously captured event
sequences occurs during the session, the respective recognizer
machine traverses all the states and reach the final (accepting)
state. The resulting gesture recognition event triggers the action
assigned for the gesture. With this approach, gestures can be rec-
ognized in real time.

One important feature of the proposed dynamic gesture recog-
nition technique is that it can effectively detect gestures in a
motion flow regardless of the motion capture technique. Vision-
based approaches can be used in the proposed gesture recognition
framework instead of the glove-based hand motion capture. The
proposed gesture representation and recognition mechanism is
especially suitable for vision-based hardware and algorithms. In
fact, vision-based approaches may overcome the major problems
of the hardware used because they will address the limitations of
the device such as restricted motion capture range and carrying
an uncomfortable attachment. For example, the results of hand fol-
lower algorithms proposed in [30,31] can be easily converted to
our gesture representation and can be fed to the recognizer
machines. It is even possible to extend the usage area of our
approach to the public spaces using the hand segmentation and
recognition approaches described in [32] that generate hand coor-
dinates, which is sufficient for us to recognize hand gestures.

The rest of the paper is organized as follows: The proposed
approach is described in detail in Section 2. The details of the con-
ducted user study and experimental results presented in Section 3.
Analysis and discussion on the experimental results are given in
Section 4. Section 5 provides conclusions and future work.
2. Proposed approach

2.1. Gesture representation

In gesture recognition, representing gestures is a critical issue.
We define gestures as a series of events performed consecutively.
For trajectory-based dynamic gestures, this is a valid definition
because trajectories are a series of directional vectors combined
in a particular time interval. In our case, events are directional
movements and a gesture is an ordered sequence of these direc-
tional movements (see Fig. 1).

In this study, we limit the trajectories to the xy-plane for sim-
plicity. Our representation not only allows creating many interest-
ing gestures, it also improves the robustness of the algorithm. It is
possible to extend the event (gesture) alphabet with the third
dimension, or with other features such as finger movements. Using



Fig. 2. The gesture recognition setup using a magnetic 3D position tracker.

Fig. 3. Two raw gesture motion data (a and b), and the result of filtering (c).
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only 2D, there are eight different directional movements:
ðþxÞ; ð�xÞ; ðþyÞ; ð�yÞ; ðþx; þyÞ; ðþx; �yÞ; ð�x; þyÞ and ð�x; �yÞ,
and they constitute a gesture space large enough to represent a
variety of gestures.

2.2. Motion capture

To capture hand motions, we use a six-degrees-of-freedom
(DoF) magnetic motion tracking device (Polhemus Patriot™)
attached to the user’s hand (see Fig. 2). The device has a 60 Hz
update rate for each sensor, but in our experiments, we observe
that a 20 Hz rate is sufficient to teach and recognize gestures.
Although we use hardware-based tracking, it is possible to employ
computer-vision-based tracking for a more intuitive solution.
Because the required motion capture technique does not need a
fast update rate or high accuracy, it is also well suited for camera
tracking. The cheaper motion tracking devices could be utilized
for the motion capture stage for the proposed approach. Gestures
are represented as small directional movements so there is no need
to maintain the absolute position. This advantage therefore makes
the offered solution naturally applicable to accelerometer based
motion tracking algorithms. Collected motion data in absolute
position format is converted to relative position data (gradient
form) while recording. In other words, when the tracker sends a
new position reading, its position relative to the previous reading
is noted and the direction of the movement is calculated. However,
to prevent noise that may be caused by small vibrations in the
hand and/or by tracker inaccuracies, relatively small changes from
the previous recording are not recorded (cf. Parameters 1 and 2 in
Table 2).

2.3. Smoothing

Although filtering is applied during the motion capture phase,
the collected trajectory data may still contain events that are not
part of the gesture due to user reaction error during the initial
and final moments of the recording. There also exist a few events
that do not fit the natural flow of the trajectory especially at points
where a major direction change occurs (see Fig. 3(a) and (b)). To
eliminate these minor reaction errors, the beginnings and endings
of the trajectory records are discarded (cf. Parameter 3 in Table 2
and a smoothing process is applied to the collected motion data.
We use a simple sliding window filter for smoothing. The windows
run on the collected data for majority-based filtering. In majority-
based filtering, we change the raw input data according to the
number of neighboring inputs. If the majority of the inputs in this
neighboring window belongs to a single input type (i.e., ðþxÞ), the
point at the center of the window is converted to this type (cf.
Parameter 4 in Table 2 for the neighboring window size). An input
gesture motion data and the results of the applied filtering are
shown in Fig. 3.

2.4. Selection of best gestures

In the ideal case, when the same gesture is performed, it would
yield the same event sequence so the recognizer could be formed



Fig. 4. Captured gesture samples may be different due to the nature of trajectory-
based gestures and filtering errors.

Fig. 5. A sample recognition machine to recognize the gesture in Fig. 3(c).
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from just one gesture sample. However, due to the nature of trajec-
tory-based gestures and filtering errors, the captured gesture sam-
ples may not be identical in terms of the resulting event sequences
(Fig. 4). To determine the correct series of events that a gesture
contains, the system needs several samples of trajectory informa-
tion, from which ‘‘the best’’ event sequences are chosen. These
choices are made by the Needleman–Wunsch [29] sequence
matching algorithm that produces a similarity score, which is a
global sequence alignment algorithm commonly used in bioinfor-
matics to align two protein or nucleotide sequences. The alignment
procedure also computes a similarity score between two
sequences. Similarity scores are calculated according to a similarity
matrix/function for the characters in alphabets (events). Since
events are vectors in our case, the similarity of two ‘‘characters’’
is calculated using the distances between vectors. The gap penalty
value for the sequence matching algorithm is set to be over maxi-
mum distance value to achieve the same length gesture sequences
(cf. Parameter 5 in Table 2).

A total similarity value for each sequence is acquired by
summing its pairwise similarity scores. Then, the highest n (cf.
Parameter 6 in Table 2) event sequences are selected to later create
recognizers. In other words, gestures that are located closer to the
center of the gesture cluster are selected because they are more
likely to generate a more generic sequence of events, which can
then be used to form the bases for gesture recognizers.

2.5. Generating recognizers

Since strings and gestures are represented in the form of event
sequences, an analogy between string and gesture recognition
problems can be made. When we convert the gesture sequence
in Fig. 3(c) into a string, we obtain the following expression:

ðþxÞ ðþxÞ ðþxÞ . . .

ð�x; �yÞ ð�x; �yÞ ð�x; �yÞ . . .

ðþxÞ ðþxÞ ðþxÞ . . . ;

which can be expressed with the following regular expression:

ðþxÞ þ ð�x; �yÞ þ ðþxÞ þ :

Because our gestures can be represented as regular expressions,
an FSM-based recognizer becomes a natural and suitable solution
among alternatives. To establish the recognizer machine, we use
the gestures (sequences) that were selected in the previous step
(see Fig. 5 for a sample gesture recognition machine for the gesture
in Fig. 3(c)).

Using FSMs as recognizers ensures that the resulting machines
are scale invariant, which means that if trajectories are repeated on
a higher or lower scale it can still be recognized. As long as the
order of events is preserved, the number of repetitive events does
not affect the recognition result.

During the learning phase, a total of n�m recognizer machines
are generated separately, where m is the number of gestures and n
(cf. Parameter 6 in Table 2) is the number of selections in the pre-
vious stage.

2.6. Online gesture recognition

Online recognition of dynamic gestures is achieved using the
previously generated sequence recognizers. When the position
tracker attached to the user’s hand is activated, it starts to contin-
uously transmit position information to the system. The received
absolute position data is converted to the relative (gradient) form
and filtered as in the learning phase to reduce the effects of small
trajectory errors and to improve the robustness of the algorithm.
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Before the filtered event data is fed to all recognizer machines in
a continuous manner, online filtering is applied to the newly
received data to determine whether it is consistent with the previ-
ous events. Inconsistent events are not sent to recognizers because
they are not part of the intended gestures. The received events
cause state transitions in the recognizers. When a machine reaches
its accepting state, a gesture recognition event is triggered
immediately.

If no state transitions are detected for a particular time interval,
a timeout (cf. Parameter 7 in Table 2) mechanism is triggered and
the gesture recognizer is reset to the initial state to prevent unnat-
urally long waits for a gesture recognition event. In the proposed
approach, there is no need to specify the start and end positions
of gestures because the machine returns to its initial state auto-
matically in the event of an incorrect gesture input or a timeout.
3. Experiment

We conducted a user study on a simple virtual reality applica-
tion in order to assess the usability of the proposed gesture recog-
nition technique. The application is a computer-aided design
application in which users can design basic clay models. The design
process takes places in the virtual environment that contains volu-
metric deformable model, design tools and a virtual hand that is
driven by the data glove and the tracker. The users manipulate
Fig. 6. Gesture v
the design tools and the deformable model via the virtual hand.
The deformation on the model is done by stuffing or carving mate-
rial (voxels) with the help of the tools or directly by the virtual
hand.

We selected a pre-trained gesture vocabulary that consists of
eleven gestures (see Fig. 6) for evaluation. The recognizable gesture
space can be easily extended by the fast learning method described
in Section 2. The parameters used in the learning stage to establish
the recognizers for the gesture recognition library are shown in
Table 2. Each gesture in the vocabulary is mapped to a specific
task/action that can be performed in the application (see Table 1).

We assess the technique in terms of performance and attitude
criteria [33]. The performance criterion for the method is the ges-
ture recognition rate. To measure the recognition rate, we carefully
observe the each participant individually and count the number of
trials for a gesture to be recognized. In case of attitude evaluation,
we used the following criteria: usefulness, learning, memory, nat-
uralness, comfort, satisfaction and enjoyment. Questionnaires
were filled by the participants using a Likert scale from 1 (strongly
disagree) to 5 (strongly agree) to assess attitude points of the pro-
posed HCI approach.

A total of 30 volunteers with the average age of 28 (5 female, 25
male) were recruited to participate in the study. The participant’s
occupation varied; the group included computer scientists, engi-
neers, accountants and economists. None of the participants
reported previous experience with a gestural interface or similar
ocabulary.



Table 1
Gesture-Action mapping.

Gesture no Action

0 Rotate the model counter-clockwise
1 Rotate the model clockwise
2 Activate/deactivate tool
3 Change tool mode (Stuffer/Carver)
4 Increase tool size
5 Decrease tool size
6 Activate/deactivate hand deformation
7 Save the model
8 Load the model
9 Activate/deactivate hand mouse
10 Exit the program

Table 3
Gesture recognition rates.

Gesture No # Gesture trials # Successful recognitions Recognition rate

0 321 223 0.69
1 306 198 0.67
2 220 135 0.61
3 112 101 0.90
4 238 193 0.81
5 249 204 0.82
6 106 75 0.71
7 89 69 0.78
8 101 84 0.83
9 218 137 0.63
10 38 34 0.89
Total 1998 1453 0.73

Table 4
The statistics of the user survey.

Criteria Average Standard deviation

Usefulness 4.24 0.62
Learning 4.38 0.61
Memory 3.90 0.76
Naturalness 3.79 1.06
Comfort 3.17 0.87
Satisfaction 4.21 0.66
Enjoyment 4.59 0.49
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but, all of them were familiar with the classical input devices
because they use desktop computers on a daily basis. The experi-
mental setup we use consists of a standard laptop computer (Intel
Core 2 Duo CPU (T6600 2.2 GHz), 3 GB RAM, Windows 7 (32 bit),
5DT Data Glove 14 Ultra with USB interface and Patriot™ tracker
(Polhemus™) with two tracking sensors.

Each participant was trained on the aim of the VR application
and how to perform the gestures to command the application
before the experiment. Then, the participants of the user study
are asked to design simple models that require the usage of these
actions that are mapped to dynamic hand gestures so that the par-
ticipants experience and evaluate the new technique while design-
ing basic models. The experiments approximately took 20–25 min
(including the training phase) for each participant. The gesture rec-
ognition rates of the proposed approach are depicted in Table 3.
The statistics of the user survey are listed in Table 4.
4. Analysis and discussion

4.1. Performance

The experimental results show that the average recognition rate
of the algorithm is approximately 73% from a stream of motion (cf.
Table 3). This indicates that a standard user should perform a ges-
ture 1/0.73 = 1.37 times to trigger an application functionality.
Although it can still be improved, most of our test subjects find this
ratio satisfactory for interaction. Thus, we can claim that recogni-
tion rate of the proposed technique is high enough to be used as
a reliable human–computer interface.

The experiments also show us that sensor incapability of the
magnetic tracker is one of the main reasons behind the unrecogn-
ised gestures. When the distance between the sensor and the mag-
netic source exceed certain point, the accuracy of the tracker drops
dramatically so after this point, the tracker cannot detect the posi-
tion of the hand accurately enough to correctly form the gesture
Table 2
The parameters used for the gesture recognition experiments.

No Parameter Value Description

1 Motion capture
threshold

3 cm If the displacement in hand position is lower
stages

2 Component angle
threshold

25� If the angle between the motion vector and i
component of the movement is ignored for t

3 Skipped inputs 5 The number of skipped inputs at the start an
4 Smoothing window

size
11 The previous and subsequent five records are

assigned to the processed input
5 Gap penalty 3 The gap penalty value for the Needleman–W
6 Selection count 3 The number of best sequences selected from
7 Recognition time-

out
1500 ms If no state change is detected in a gesture reco

state
8 Gesture sample

count
8 The number of trajectory motions recorded f
sequence. This problem can be eliminated by using a more power-
ful position tracker or alternative position detection approaches.

We also observe from our experiments that the most of the
unrecognised gestures occur in the initial learning phase due to
the ill-formed gestures. After the users are adopted the new inter-
face, the performed gestures become healthier (more detectable)
and recognition rates increases dramatically. This indicates that
higher recognition rates that can reach up to 90–95% can be an
estimated from an experienced user.
4.2. Attitude

The outcome of the attitude criteria denotes that the partici-
pants of the user study find the proposed human computer inter-
face useful (4.24) and satisfactory (4.21) with very high attitude
scores. This is promising for the proposed technique because it
indicates that the presented gestural interface can be an alterna-
tive interaction approach for classic HCI interfaces.

A surprising result of the attitude evaluation is the relatively
low naturalness score (3.79) with respect to the other criteria
because our claim is to achieve more natural and intuitive HCI
interface. However, the critical information for this attitude crite-
rion is the high standard deviation factor. While some participants
than the motion capture threshold, it is ignored for the learning and recognition

ts x, y components is less than the component angle threshold, the respective
he learning and recognition stages
d end of the motion capture
considered with the processed input, and the majority of these records are

unsch algorithm
the recorded trajectory motion data
gnizer by the end of the time-out period, the state machine is reset to the initial

or the learning stage
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think that the pre-selected gestures are very natural for the
assigned actions, the others find them quite unnatural. This shows
that naturalness is fairly relative to the user. Because the proposed
approach is highly adaptable with the fast learning algorithm, the
user can replace the assigned actions and gestures with more suit-
able and natural ones for themselves. This makes the presented
technique more superior than the other gesture recognition algo-
rithms that are hard to train.

The lowest attitude criterion is comfort (3.17) because of the fol-
lowing two reasons: the users have to perform gestures repeatedly,
which can be exhausting after some time, and they have to wear
cumbersome motion capture hardware, which is not comfortable.
The cumbersome equipment problem can be solved by using an
alternative motion capture approach that does not require users
to wear gloves or attach motion tracking devices. The fatigue prob-
lem is relatively insignificant for applications that do not necessi-
tate continuous interaction. However, it might be a good idea to
establish a hand supporting/resting instrument for applications
that need constant interaction for a long time.

As a consequence, sufficiently high recognition rates prove the
effectiveness of the presented approach to recognize simple and
natural gestures that are suitable to command applications. The
assessment of the attitude criteria points out that proposed HCI
technique can be utilized as an intuitive and natural interface.
4.3. Analysis of learning parameters

We emphasize that the selected parameters have a critical
effect on recognition rate. We observe that small values for motion
capture and component angle threshold (cf. Parameters 1 and 2 in
Table 2) decrease the recognition rate dramatically because the
system records small changes in trajectory that are not part of
the intended gesture. On the other hand, choosing a large value
for these parameters causes to miss some events that are a part
of the intended gesture.

Smoothing window size (cf. Parameter 4 in Table 2) also has an
important effect on the accuracy. A larger window size causes fine
details of the motion to disappear, while a smaller window size
may not be able to achieve sufficient smoothing to form gesture
recognizers.

Other critical elements in the learning process are the number
of recognizer machines and number of gesture samples for each
gesture. One of the advantages of the proposed approach is that
it does not require a large set of training data. However, preparing
a good training set has a crucial importance. A training set that
include different versions of the same gesture yields better results
because it generates unlike machines that can recognize possible
alternatives of the same gestures. In the learning phase of the
experiments, we use eight trajectory data for each gesture (cf.
Parameter 8 in Table 2). Out of these eight motion data, three of
the most alike trajectory sequences are selected to generate recog-
nizers (cf. Parameter 6 in Table 2.) Increasing the number of ges-
ture samples and the number of selected trajectories may
improve the recognition rate because it covers different versions
of gestures. On the other hand, this may cause some confusion dur-
ing the recognition phase because it increases the chance of gener-
ating similar recognizer machines for various versions of different
gestures. Hence, an evaluation should be made to balance the rec-
ognition and confusion rate for these parameters.
5. Conclusions and future work

We present a simple yet powerful technique to detect and rec-
ognize trajectory-based dynamic hand gestures in real time. Ges-
tures are represented with an ordered sequence of directional
movements in 2D space. Gesture data is collected by a magnetic
position tracker attached to a user’s hand, but the proposed
method is also applicable to motion data gathered using vision-
based approaches, inertial motion capture algorithms or depth
sensors. Motion data in absolute position format is converted to
our representation during the motion capture phase.

We introduce a fast learning methodology to facilitate adding
new gestures to the recognizable gesture set. A few sample ges-
tures are sufficient to form the gesture recognizers. The learning
samples are smoothed to eliminate errors generated by the imper-
fect nature of human capture data. From these filtered samples, the
best sequence of directional movements is selected. The selected
learning samples are later processed to generate the gesture recog-
nizers, which are basically FSM sequence recognizers.

The experimental results show that the proposed approach can
recognize dynamic hand gestures with an average of 73% accuracy
in real time for a vocabulary of eleven gestures from continuous
hand motion. The proposed technique’s high accuracy and online
recognition mechanism make it easily adaptable to any application
for gesture-based HCI so that such applications will become more
intuitive in how they interact with their users. Assessment of the
attitude points shows that the presented gestural interface is an
enjoyable and satisfactory alternative to the classical HCI interfaces.

Another contribution is that a user can create a gesture com-
mand set specific to him or her without the need for extensive
training, unlike neural-network and HMM approaches. In this
way, the HCI process becomes more natural and intuitive. The
other favorable functionality that other dynamic gesture recogni-
tion approaches do not provide is the that the proposed approach
can detect and recognize trajectory based dynamic hand gestures
without specifying the start and end positions of gestures, thanks
to FSM recognizers. This advantage improves the intuitiveness of
the interface.

Although the number of studies on gesture recognition is very
high, there are very few public datasets that can be used to directly
compare different techniques. Most of the publicly available data-
sets consist of image sequences or videos. However, we need to
post process the data with computer vision algorithms to extract
trajectory data and experiment with these data sets. Such process-
ing operations can affect the recognition performance drastically.
Additionally, the proposed approach can be used together with dif-
ferent motion capture techniques, such as using depth cameras or
vision-based techniques, which can collect hand motion trajectory
data. Hence, a direct quantitative comparison with the existing
studies would not be appropriate. On the other hand, an indirect
comparative analysis with the existing approaches can be made.
Even though our approach has a relatively low recognition rate
compared to the recent studies [19,26], the recognition perfor-
mance is satisfactory for practical usage according to the con-
ducted user study. Furthermore, the recognition performance
improve dramatically after a short adaptation period. In the com-
parison of the recognition performance, number of training sam-
ples should be taken into account because our approach achieves
the presented recognition rates with only a small amount of train-
ing data.

One important advantage of our approach over the others is
that it provides a gesture recognition mechanism that can detect
meaningful gestures on the fly. This functionality is essential for
practical usage of gesture recognition systems because it signifi-
cantly simplifies the interaction and make it user friendly.

As a future work, gesture space dimensions can be extended to
increase the number of recognizable gestures. For this purpose,
depth (z-coordinate) can be added as the third dimension. To add
some constraints to recognized gestures or to recognize orienta-
tion-based gestures, palm orientation can be utilized. We plan to
combine the proposed dynamic gesture recognition approach with
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dynamic posture recognition by using a data glove that can capture
finger-bending values. The recognition rate can be improved by
using more advanced filtering techniques and by deploying an
online filtering mechanism for captured data. Utilizing cheaper
and more comfortable motion capture techniques, such as depth
cameras, inertial sensors, or other vision-based approaches, could
be a useful extension.
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