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Abstract
Personality is crucial for accurate and realistic communication in animated humans. Temporal features like body movement
help express personality traits. Studies control personality by utilizing high-level motion parameters in general actions, but
current research lacks focus on object interaction animations. While object interaction is not a social concept, the subject’s
personality can affect the motion during interaction. This study examines personality expression in various object interaction
sequences to identify the differences due to object types, performed actions, and their iterations.We train a neural motion field-
based network to author an animation’s intended personality during object interaction, utilizing our personality-aware motion
augmentations. We validate our approach with a user study to assess the resulting motions’ personality, accuracy, and realism.
The results suggest that augmentations better differentiate the positive and negative traits, especially for conscientiousness
and extraversion, but at the cost of reduced realism and accuracy. In contrast, data-driven manipulations yield realistic and
accurate results, but their impact on personality is subtle. However, when we alter multiple OCEAN factors simultaneously,
the resulting changes in the motion are more noticeable.

Keywords 3D Object Interaction · SMPL-X Body Model · OCEAN Personality Model · Neural Motion Reconstruction ·
Generative Adversarial Networks

1 Introduction

Expressive animations are critical for improved realism and
communication in digital media. The expressive features
communicate digital actors’ personalities, emotions, and
intent. Facial expressions, body pose, and gaze contribute
to social interactions and emerge as a reaction to the envi-
ronment. Such reactions exhibit styles based on the subject’s
personality and emotional behavior. Nonsocial actions such
as object interaction are often overlooked in expressive per-
sonality literature; however, the stylisticmotion during object
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interaction can also express personality; for instance, a steady
gaze and slow movements can indicate high conscientious-
ness.

This study explores the potential of personality expression
using movement style in three-dimensional (3D) human-
object interaction sequences. We introduce a novel neural
model for personality manipulation of object interaction
motions.We use the Five FactorModel for personality, which
is also known by the acronym of its five orthogonal factors:
OCEAN [1]. Our Neural Motion Field (NeMF)-based gener-
ator architecture (Figure 1, left) inputs the object class, action
purpose, and target OCEAN factors to transform the input
motion to express the desired personality traits. Training of
such a generator module is achieved using an adversarial
scheme (Figure 1, right) where we utilize a critic mod-
ule to assess realism of the synthesized motion compared
to real ones and a regressor module to ensure the result-
ing motion consistently represents the intended personality
and object semantics. Since expressive human-object inter-
action datasets lack personality annotations, we introduce
them to a customized 3D object interaction dataset. We also
use our personality-based motion augmentation framework
to increase the sample size and improve the training. Our
contributions are as follows:
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Fig. 1 The proposed neural model for personality manipulation of
human-object interaction motions. Left: The neural personality manip-
ulation model. The NeMF-based generator model takes scene features
in the following order: object name and purpose, target OCEAN fac-
tors, and motion parameters of the source motion. The latent vectors are

accompanied by a positional encoded time t . The resultingmotion’s per-
sonality matches the target personality, similar to the output OCEAN
factors. Right: During training, critic (C) assesses the motion quality
while regressor (R) assesses its semantic accuracy in multiple stages.
Both critic and regressor are trained together with the generator (AE)

• We examine object interaction datasets to introduce
our object and body-aware motion augmentation, which
utilizes Laban Movement Analysis (LMA) to intro-
duce controlled variance to object interaction motion to
increase the training sample size.

• We use the OCEAN personality model to label a set
of object interaction animations using crowdsourcing,
where we use the collected information in training.

• We introduce a neural motion-based generative adver-
sarial network to author the personalities in provided
motions. The network also contains modules for infer-
ring the existing personality, object type, and action for
provided motions.

• We conduct additional user studies to compare the real-
ism and expressiveness of augmentation and network-
based motions. We alter each personality factor sepa-
rately to isolate its effects on the motion style.

2 RelatedWork

Computers store animation as sequences of keyframes,
which, when interpolated, appear as moving objects. In
the case of human animation, each keyframe represents a
body pose as a configuration of articulated 3D joints. These
joint configurations drive skinned 3D meshes that appear as
representations of the human body. SMPL-X (A Skinned
Multi-Person Linear Model - eXpressive) [2] introduces a
parametric human body utilizing data-driven morphing that

can represent arbitrary body types. SMPL-X representation
also includes finger joints, which can accurately represent
object grasping.

Motion capture helps produce human animation by
recording real-life actors’ movements. The actors wear spe-
cial suitswith per-jointmotion sensors or are captured using a
multi-camera setup with optional depth sensors to synthesize
high-quality data. This process is expensive, and even using
state-of-the-art tools, capturing the movements of the objects
that actors interact with is challenging due to overlaps.

Especially when handling small objects, a significant por-
tion of the object’s surface becomes hidden, complicating
optical recognition. Consequently, the available object inter-
action datasets are limited to specific objects and involve
highly restricted actions [3]. Certain sets utilize egocentric
recording to capture better the interacted object, which does
not allow the reproduction of the actor’s full pose.

Additionally, many object interaction datasets focus on
detection and do not include 3D data, which is essential for
our purpose. 3D reconstruction of such video-only datasets
usually yields low-quality results due to the arbitrary nature
of the actions; the reconstruction results in shaky and noisy
motions, especially when objects are thrown into the mix.
We use GRAB [4] in this work due to its high-quality 3D
data with sufficient repetitions of the same action bymultiple
actors with diverse body types.

Motion authoring can be achieved using precise controls
or style transfer by providing an additional motion that con-
tains the target style expected to be realistically incorporated
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into the original motion. This process requires extracting
style information using an encoder architecture and condi-
tioning the synthesized motion accordingly [5]. However,
this approach requires style motions that precisely reflect the
desired attributes,whichmaynot be compatiblewith the orig-
inal motion’s semantic context. In this case, precise control
via high-level traits provides a feasible interface for motion
authoring.

LMA-based high-level control of apparent personality
traits is a well-studied approach for authoring motion’s psy-
chological content [6, 7]. LMA Effort parameters can be
interpreted as various motion edits that alter the movement’s
style.While many previous works utilize handcrafted adjust-
ments for LMA-based personality changes, data-driven solu-
tions are scarce as a comprehensive LMA motion dataset is
lacking. To overcome this issue, we use LMA-based aug-
mentation to introduce personality variation to GRAB.

3 Dataset

We opted for the GRAB dataset, which includes non-
articulated object interactions, to minimize reconstruction
errors. Personality expression is not the primary goal of
GRAB.

The subjects do not aim to convey personality traits or
emotions; such expressive features, if any, occur naturally.
Since object interaction happens in a nonsocial context,
detecting an expressive style in arbitrary samples is challeng-
ing. Consequently, wemanually filtered the GRAB dataset to
10 basic household items with identifiable contexts. We also
removed two hand interaction samples for simplicity, leaving
us with 10 object categories and 102 sequences, which we
give further detail about in Appendix A.

To reduce gender bias, we used a gender-neutral SMPL-
X model to visualize the animations. We also remove facial
expressions and use the default beta parameters for each ani-
mation. However, this alters body proportions, such as height
and arm length. This change does not cause problems in iso-
lated motions, but extra steps are required to preserve the
object’s motion. To this end, we first fix the subject’s fin-
gers to their initial articulations and stick the object to the
corresponding hand based on its original orientation relative
to the wrist. Sticking is achieved via utilizing Blender’s [8]
internal constraint logic. As the initial hand location would
be altered due to changed body proportions, the distance
between “neutralized” and the original hand is used as an off-
set for the object. This approach ensures the subject handles
the object in a consistent form and constant contact through-
out the entire sequence.

3.1 Motion Augmentation

Due to the low sample size for each action, we devel-
oped a motion augmentation framework using Blender. The
framework alters input motion regarding joint rotations and
temporal resolution, following adjustments based on previ-
ouswork [9]. For authoring,weusedLMAEffort parameters:
Space, Time, Flow, and Weight, with each parameter being
in the [−1, 1] range. Further details on each LMA Effort
augmentation are available in Appendix B.

Space controls the distance between hand and foot joints
and is declared as factor fs . Positive fs increases the distance
between each hand and feet along the frontal axis, while neg-
ative fs brings them closer together. This behavior results in
“indirect,” thus, “spreading”motion for positive and “direct,”
thus, “enclosing” for negative values.

Weight modifies vertical posture while keeping feet
grounded. Increasing fw imposes “heavy”weight on the sub-
ject, causing descent, while decreasing it causes the subject
to stand taller with “light” weight. This parameter is essential
for conveying the weight of the interacted object.

Time changes the playback speed of the animation,
depending on the delta changes between consecutive frames
of hands and feet. The lower the delta changes, the slower the
movement, and the more aggressive the speed adjustment.

Flow reduces the number of keyframes without chang-
ing the animation duration if the provided factor value f f
is negative. We achieve this using Blender’s internal Deci-
mate Keyframes operation. Further reducing f f causes the
animation to become more “bounded” as more keyframes
are reduced to interpolated animation curves.

The original motion sequences from GRAB contain the
object transformations independent of the subject’s joint rota-
tions. Any LMAEffort augmentation also requires the object
to be adjusted accordingly. The aforementioned contact-
fixing process solves this problem; it ensures the object
follows the hand position during the interaction. We crop
the sequences such that the object is always in contact with
the subject’s hand to maintain physical interaction realism.

3.2 Annotation Framework

We developed a 3D tool using Unity Engine to annotate the
motion sequences. For better interpretability, we added a
visualization for the resulting trajectory of the object as a
post-processing step. The participants were shown five slid-
ers representing each trait of the OCEAN personality model.
Each trait can be annotated in scale [−3, 3], which is the nor-
malized form of the Ten-Item Personality Inventory (TIPI)
[10]. The participants could rotate around and zoom into the
object and control the time of the animation (see Figure 2).

We asked additional questions to rate the motion real-
ism, action label accuracy, object attributes (temperature,
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Fig. 2 Our motion annotation tool. The blue lines represent the trajec-
tory of the object’s center

weight, softness), and the animation elements that influence
the participant’s decision the most (body pose, gaze, object
trajectory, or finger articulations).

4 Neural MotionManipulation

We utilized a Variational Auto Encoder (VAE) neural net-
work based on NeMF by He et al. [11] to manipulate a
provided object interaction motion sequence via altering its
apparent personality. The original architecture encodes every
motion into two latent vectors, local and global components.
The local component is responsible for representing the joint
rotations, positions, and velocities, while the global compo-
nent contains the orientation of the body and its translation.
For our purposes, the subject does not alter its translation
during the motion in a noticeable fashion; therefore, we
discarded the global component and maintained the global
features from the original motion. In the original model, the
network accepted a constant number of frames, 128, which
we respected in this work.

Our NeMF-based generator architecture consists of two
parts: encoders for each aspect of the motion and a fully
connected decoder module to emit different features of the
synthesized motions. For encoders, we split features of the
motion as: Local Encoder for local features,Object Encoder
for object information, and Personality Encoder for target
personality. All encoders’ output features are independently
forwarded into separate linear layers for distribution calcula-
tion to abide by the variational properties of the architecture
via the reparameterization trick.

Local encoder takes features for each joint, namely posi-
tion and velocity, including angular and global rotations,
according to the subject’s pelvis. Position and velocities are
represented in 3D vectors, while global rotations are repre-
sented in 6D rotations [12]. NeMF’s local encoder was based
on the SMPL model [13], where finger joints are not consid-
ered. We excluded them when using the SMPL-X [2] model,

as the subject’s fingers are locked, as mentioned in previ-
ous sections. The joint features are concatenated in the time
dimension t and processed using a predefined graph-based
skeleton convolution [14].

Our object encoder takes the object transformation in the
following form: object intent, and name. We do not use the
object mesh and object transformation, as we have fixed
finger articulations. As object intent and name are initially
in text format, we preprocessed them using CLIP [15] into
fixed-size (512) latent vectors, as in [16]. After all features
are concatenated into a single vector in the time domain,
they are processed using multiple residual blocks, similar to
the global encoder in the original NeMF architecture. Each
residual block contains Conv-BatchNorm-Activation layers,
accompanied by residual connections. AsNeMF expects fea-
tures to be provided across all motion frames, we repeat the
obtained latent representations for intent and object name for
the expected number of frames.

Personality encoder takes OCEAN personality factors as
input. Each OCEAN factor with the original scale of [−3, 3]
is normalized to [−1, 1] before proceeding. OCEAN is con-
stant across the frames, like object intent; hence, it is repeated
across frames. The personality encoder has a similar archi-
tecture to the object encoder; it only varies in the number of
residual blocks and input dimensionality.

The base NeMF decoder has multiple residual blocks,
where each encoder is introduced to the network as input
at different steps. The latent vector to be fed to each layer
is initialized with positional encoding to provide a tempo-
ral relation between each frame for the decoder. The first
encoder’s latent, “local” in the original design, is concate-
nated to the current latent vector. For an empirically decided
number of upcoming layers, this latent vector is concatenated
with the immediate output of each layer using skip connec-
tions. After a particular encoder’s layers are processed, the
latest feature vector is fed to a fully connected network as
output. The next encoder’s latent is concatenated to the cur-
rent latent vector, and the process is repeated for the next set
of layers. Here, the order of the encoders implies a depen-
dency, where local latent variables came earlier than global
in the original NeMF. In our work, we determined order as
Object, Personality, and lastly Local.

During the training process, the generator first produces
the original motion by taking its original personality as input.
We apply a reconstruction loss,Lrec, to ensure the generated
motion matches the original. Next, to ensure the model’s
capability of transferring between arbitrary personalities for
the same motion while maintaining its core characteristics,
we introduce cycle loss Lcycle to the generator. The gener-
ator generates a random motion from a random personality,
which is then transferred back to the original motion via its
original personality. The “cycled back” motion contributes
to the generator’s overall loss via reconstruction losses. For
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both Lrec and Lcycle, we use the following reconstruction
terms:

Position loss (Lpos) : L2 norm of the difference
between predicted and ground-
truth joint positions. λpos is set
as 20 during training.

Rotation loss (Lrot) :Geodesic distance betweenpre-
dicted and ground-truth 6D joint
rotations. λrot is set as 7 during
training.

Orientation loss (Lori) :Geodesic distance betweenpre-
dicted and ground-truth root ori-
entation. λori is set as 2 during
training.

Joint velocity loss (Lvel) : L2 norm of the difference
between predicted and ground-
truth joint velocities. λvel is set
as 1 during training.

Angular velocity loss (Lavel) : L2 norm of the difference
between predicted and ground-
truth angular velocities. λavel is
set as 1 during training.

KL divergence loss (LKL) :Measures thedifferencebetween
the learned latent distribution
and the prior distribution. λKL is
set as 10−4 during training.

OCEAN loss (LOCEAN) : L2 norm of the difference
between thepredicted andground
truth OCEAN personality fac-
tors. λOCEAN is set as 2 during
training.

Lrec/cycle = λrotLrot + λposLpos + λoriLori

+ λvelLvel + λavelLavel + λKLLKL

+ λOCEANLOCEAN

(1)

To ensure the local motion is influenced by the pro-
vided target personality, we employ an additional adversarial
methodology on top of our generator architecture. We utilize
WassersteinGAN [17]with a gradient penalty (GP) approach
to ensure the generator can synthesizemotion consistent with
the target personality even when fed with random, unseen
personalities. To this end, we train a separate critic network
within our training loop, which takes a real and generated
motion to distinguish their distributions. In this sense, the
generator tries to synthesize motions with random person-
alities that are indistinguishable from real ones. However,
the critic tries to maximize the difference between distribu-
tions calculated as Earth Mover’s distance, as in adversarial
training. Real motions receive a much higher score than syn-
thesized motions.

Gradually updated updates for the critic are also subject
to their losses to ensure stable training. As part of the gradi-
ent penalty, synthesized motions are randomly interpolated
with real motions and fed to the critic. The calculated gradi-
ents’ norm is penalized via its associated loss function, which
enforces Lipschitz continuity. This way, the critic is deterred
from destabilizing the training process due to large fluctua-
tions in gradient updates. The critic also provides feedback on
generated motions by providing negative loss to the genera-
tor, where the generator is expected to increase the synthetic
motion’s score. The critic implementation is similar to the
generator’s; it consists of identical encoders and fewer fully
connected blocks.

LC =1

n

n∑

i=1

C(x̂i ) − 1

n

n∑

i=1

C(xi ) + λgpLgp (2)

Lgp =1

n

n∑

i=1

(∥∥∇x̃i C(x̃i )
∥∥
2 − 1

)2 (3)

LGC = − 1

n

n∑

i=1

C(x̂i ) (4)

where C is the critic, xi denotes the true sample, x̂i denotes
generated (fake) sample, and x̃i is an interpolated sample
used for gradient penalty. λgp was set to 10 during training.

In addition to the critic, we trained a separate module
solely to provide regression feedback for apparent person-
ality, object, and action types. This regressor module works
based on local features of the motion and is utilized in mul-
tiple stages. Before the generator’s losses are calculated, the
regressor is fed real motions and their ground truth person-
ality, object type, and action labels. The regressed values
are used as the regressor’s losses. Then, each motion syn-
thesized by the aforementioned generator labels is regressed
by the regressor and compared against ground truth values.
Motions synthesized with ground truth, random labels, and
cycled motions are subject to separate loss terms:

OCEAN Regression loss (LOCEANReg): L2 norm of the dif-
ference between the
predicted andground
truth OCEAN per-
sonality factors.
λOCEANReg is set as
10 during training.

Object name loss (Lname): Cross-entropy loss
between thepredicted
and ground truth
object name. λname
is set as 5 during
training.
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Fig. 3 Raw (top) and standardized (bottom) annotations for each object in the first study. The variance for each OCEAN factor decreases after
standardization, thus certain annotations become outliers while maintaining the overall diversity

Object intent loss (Lintent): Cross-entropy loss
between thepredicted
and ground truth
object intent. λintent
is set as 5 during
training.

Lreg = λOCEANRegLOCEANReg

+ λnameLname+λintentLintent
(5)

LGR = λcycleRegLcycleReg

+λreconRegLreconReg

+λrandomRegLrandomReg

(6)

LG = Lrec+λcycleLcycle

+λcri ticLGC+LGR
(7)

where Lreg is applied to the regressor while LGR is added to
the overall loss of the generator (LG ).LcycleReg,LreconReg, and
LrandomReg all share the same formulation with Lreg, where
they only differ in input motion. We set λcycleReg, λreconReg,
and λrandomReg as 5, λcycle as 0.1, and λcri tic as 1 for training.

We applied Xavier initialization for training and used
Adamax optimizer for all modules. For Generator and
Regressor, we used learning rate of 10−4 and 2 × 10−5 for
Critic with one iteration per generator iteration. We trained
all modules for 200 epochs with a batch size of 32 using an
A100 Nvidia GPU.We only applied weight decay with 10−7

to the generator module.

5 Experiments and Discussion

We performed two user studies: one for dataset annotation
and training, and another for assessing the quality of the
generated animations. The details of user studies, including
participant demographics, can be found in Appendix D.

5.1 Dataset Annotation and Training

Fifty online participants rated the personality of the chosen
samples in the first study, resulting in an average of eight
annotations per sample. Each participant annotated 17 ran-
domly selected samples in an average of 96 seconds per
sample. We examine the personality distribution of the dif-
ferent object categories in Figure 3, with additional results on
realism and integrity available in Appendix E. The top row
depicts the raw data, and the bottom row shows the results
after standardization using the learning approach for fitting
a normal distribution with std = 1 for each participant’s
answers and object category per OCEAN factor.

While specific object categories like Hammer and Mug
deviate from the neutral personality, especially for conscien-
tiousness and agreeableness, we observe less variance for
openness and extraversion. This behavior is expected as
object interaction is less social and has less of an intellec-
tual focus, which these traits mainly represent. In contrast,
the perceived effect of conscientiousness highly relates to the
attention towards the object of interest, as expected.

We use standardized annotations to train our generator. To
increase the scale of our limited dataset, we also applied aug-
mentation across all LMA Efforts independently with values
{-0.75, 0, 0.75}. Upon augmentation, the resulting OCEAN
is also subject to change due to changes in motion. For this
purpose, we used the well-knownmapping betweenOCEAN
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input controls and the LMA Effort augmentations in PER-
FORM [6]. To achieve LMA Effort to OCEANmapping, we
transposed the normalization axis and kept the significant
portions of the matrix. As each augmentation alters a single
LMA Effort, we applied delta modifications to the original
OCEAN. This approach dramatically increases our motion
count by 80 while introducing subtle diversity.

As our network accepts motions with a fixed length of
128 frames, we applied a sliding-window approach to each
motion. We repeat the last frame if the motion is shorter than
the fixed length. After training our model, we apply latent
optimization to novel motions during synthesis. The first step
of the optimization extracts the latent vectors for all inputs.
Then, while fixing personality and object latent variables,
the local latent is optimized to maximize reconstruction per-
formance according to the original motion. Then, to ensure
proper personality alteration, the process is repeated to min-
imize the loss from regressor module according to the target
personality. In our experiments, we optimized the reconstruc-
tion target personality for 500 and 100 steps, respectively.
We depict the effect of agreeableness and openness on the
resulting motion in Figure 4, and Appendix C illustrates the
remaining factors.

5.2 Motion Control User Study

During our second user study, we selected a single motion
to represent each object by finding the one with the set of
OCEAN factors closest to 0. Then, participants compared
five versions of each motion with identical semantics, only
varying in their personalities. One motion is kept as original,
while the others are altered versions. Twoof themotions’ ran-
dom, single traits are set to −1 and 1 using the augmentation
module, while the other two are set via the network. Eighty-
three online participants rated the generated samples in our
second user study, corresponding to an average of 16 samples
for each comparison. Details can be found in Appendix F.

We report Tukey’s Honestly Significant Difference (HSD)
adjusted pairwise mean differences for the significant effects
in Table 1. We compare the mean scores of the models in
contrast to the base model and among each other. We expect
the successful combinations to deviate significantly from
the base samples and their opposite counterparts. We only
include the personality measurements that the network aims
to alter. Although we also observe a difference in the factors
other than the one the network focuses on, we leave analyz-
ing such correlations as future work.We exclude cases where
ANOVA does not indicate a significant effect; unabridged
results are available in Appendix G.

We generally observe that augmentations yield more
apparent differences. The factor that is most influenced by
the adjustment is conscientiousness, followed by extraver-
sion and neuroticism.We observe that the effect on perceived

Fig. 4 Personality effect on the network output for agreeableness (top)
and openness (bottom). The factor ranges from -1 (left) to 1 (right) to
alter movements and object trajectory, while other factors are constant

agreeableness is minimal. Object categories such as bowl
and scissors produce more expressive results, likely because
these motions give more freedom to the actor. In contrast,
categories like Hammer have connotations that do not leave
much room for style to emerge. For example, the first user
study revealed that animations in theHammer category were
highly conscientious. Thus, manipulation to alter this effect
had less opportunity than an initially more neutral category.

Weobserve that augmentations create a differencebetween
negative and positive samples by exaggerating the nega-
tive case for conscientiousness and the positive case for
extraversion. However, this creates a decrease in realism.
In particular, the augmentations for positive traits signifi-
cantly decrease both realism and action accuracy. In contrast,
the network’s output, especially for the positive manipula-
tion, has significantly higher realism and accuracy. For the
negative manipulation, both approaches have similar results
regarding realism and accuracy; however, augmentations
yield more inconsistent results between positive and nega-
tive cases.

We observe that the network’s effect is limited in alter-
ing the personality significantly; however, this results in less
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Table 1 TukeyHSDadjusted p-values (ρ) and themean differences (�)
between the different models for each object category and OCEAN fac-
tor, excluding insignificant outcomes. Each column compares different
model pairs: Base for original animation, ANeg and APos repre-
sent negative and positive changes using the augmentation framework,
respectively.NNeg and NPos represent the same changes applied using
the motion authoring network, respectively. We examine the factor that

the system aims to alter for each personality group; for example, when
the system aims to change openness, we evaluate the performance based
onperceived openness.Realism (Re.) andAccuracy (Ac.) scores are cal-

culated across all objects. Significant results are colored with

for ρ < 0.05, and for ρ < 0.1. We excluded Agreeableness
values as we found no significant results associated with them

disruption in motion realism. The data-driven nature of the
network helps the synthesized animation to appearmore real-
istic and accurate. The network can alter the personality most
successfully for conscientiousness. We further explore the
effects of authoring personality using multiple OCEAN fac-
tors in Appendix C.

5.3 Ablation and Comparison Studies

To evaluate the contribution of each component in our net-
work, we performed ablation studies on quantitative metrics
in Table 2. For reconstruction performance, we calculated
Joint Rotation Error (JRE) and Joint Position Error (JPE).
JRE is calculated for all body joints, except the hands, as
geodesic loss and is reported in degrees. JPE is calculated as
the mean square distance between joints and reported in cen-
timeters. For assessing the motion synthesis performance,
we utilized Diversity [18] and Fréchet Inception Distance
(FID) [19]. The diversity metric is calculated as the average
of the latent distances between different motion instances.
A high diversity value indicates highly distinct motions.
FID is calculated as the Fréchet distance between latents of
synthetic and real motions, thus representing the similarity
between their distributions. A low FID score indicates that
the synthetic motions are similar to real motions. To calcu-
late both metrics, we used a pre-trained NeMF network. We

fine-tuned the NeMF using the GRAB [4] dataset follow-
ing NeMF’s original training protocol. As our network only
uses local features, we discarded the global motion compo-
nent of NeMF. As for personality, we calculate the Mean
Square Error (MSE) difference between the intended per-
sonality and the input. The intended personality is calculated
using a regressor that is trained together with all components
enabled. We also calculate the accuracy of the output motion
in terms of inferred object names and action types.

We turned off a distinct module at each network varia-
tion, keeping others intact. In addition to disabling modules,
we also reversed the order of the scene features provided
to the NeMF module to observe the effect of order depen-
dency between latents. The results in Table 2 indicate that
the cycle consistency is adversarial to our network in terms
of both motion reconstruction and personality recognition.
However, a higher FID value than the All configuration
indicates a diverted distribution compared to real motions,
although object interactionmetrics are solid. Every other net-
work configuration, while generating improvement in some
areas, fails at generating semantically consistent interaction
sequences.

To our knowledge, no personality authoring networks
involving object interaction sequences exist in the literature.
Therefore, we chose the closest architecture regarding object
interaction generation: IMoS by Ghosh et al. [16]. The IMoS
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Fig. 5 The IMoS generates motions that lack personality and take con-
siderable time, considering their focus on object handling. Left: our
network, right: IMoS result

framework generates consecutive object interaction frames
over a history buffer for a given object. Even though the
object name and the action type are inputs similar to ours,
their method does not allow personality authoring. Addi-
tionally, their method takes considerable time due to object
optimization. Our method takes 45 seconds to alter the per-
sonality, and IMoS takes 3-4 minutes to generate a motion
on Nvidia 3070Ti, including all optimization protocols. Due
to high time consumption, they also require interpolation
between the limited number of generated frames. Although
our method snaps the object to fingers and generates a
fixed number of frames, it allows personality authoring, thus
increasing the animation’s expressiveness via high-level con-
trol. As seen in Figure 5, the animation generated by IMoS
lacks expressive elements.

6 Conclusion

This study focuses on manipulating personality percep-
tion in human animations with object interaction. Unlike
general style or personality transfer in animation, object
interaction introduces more constraints over the process. The
object’s motion regarding the figure’s contact with the object
requires careful inspection.We introduce a personality-based
augmentation pipeline to control the personality-based ani-
mation style while keeping the object’s motion integrity. We
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then train a neural manipulation system to apply the changes
automatically.

We evaluate both approaches through a perception study
and report their performances per object category and per-
sonality factor. While applying the manipulation through the
augmentation system better distinguishes the positive and
negative traits, it also disturbs the perceived realism and
motion accuracy. In contrast, the network produces much
better realism and accuracy at the cost of more subtle per-
sonality variation. However, in casemultipleOCEAN factors
are altered simultaneously, such differences become easily
noticeable.

Future work could examine our additional annotations for
object attributes about the perceived personality. Increasing
the diversity and scale of annotated interaction sequences,
detailed finger articulations, and body movement could
improve training performance and, consequently, the expres-
sive capabilities of our network. The animation element each
participant focuses on could impact their personality estima-
tions, which could reveal interesting insights.
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