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a b s t r a c t 

Crowd simulations imitate the group dynamics of individuals in different environments. Applications in 

entertainment, security, and education require augmenting simulated crowds into videos of real people. 

In such cases, virtual agents should realistically interact with the environment and the people in the 

video. One component of this augmentation task is determining the navigable regions in the video. In this 

work, we utilize semantic segmentation and pedestrian detection to automatically locate and reconstruct 

the navigable regions of surveillance-like videos. We place the resulting flat mesh into our 3D crowd 

simulation environment to integrate virtual agents that navigate inside the video avoiding collision with 

real pedestrians and other virtual agents. We report the performance of our open-source system using 

real-life surveillance videos, based on the accuracy of the automatically determined navigable regions 

and camera configuration. We show that our system generates accurate navigable regions for realistic 

augmented crowd simulations. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Crowd simulations investigate the interaction of individuals in- 

ide and among groups of people, in terms of behavior, appearance, 

ersonality, and emotions. Models used in such simulations aim 

or a realistic interaction with the environment; hence, the appear- 

nce and behavior of the virtual agents that represent individuals 

hould fit the context of the scene for better immersion. Quanti- 

ative methods assess the realism of such simulations, comparing 

he simulated crowd with real-world data. 

Augmenting virtual crowds into real-life videos has applications 

n entertainment, security, and education. Virtual crowds can cost- 

ffectively fill environments in movies, appearing together with 

eal actors; virtual tutors can move inside live environments to cre- 

te immersion in training applications. In such augmented crowd 

imulations, virtual agents should be indistinguishable from the 

eal people and should interact with the real crowd and the en- 

ironment realistically. This requires careful inspection of the envi- 
onment and the individuals in the video. 

✩ This paper was recommended for publication by Stefanie Zollmann. 
∗ Corresponding author. 

E-mail addresses: yalim.dogan@bilkent.edu.tr (Y. Do ̆gan), sinan.sonlu@bilkent. 

du.tr (S. Sonlu), gudukbay@cs.bilkent.edu.tr (U. Güdükbay). 
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Augmented crowd simulations benefit from data-driven ap- 

roaches for pedestrian and scene inference. Using a model for 

he environment and pedestrian trajectories, a virtual crowd can 

e augmented into the input video, so that virtual agents plausi- 

ly move in the scene without colliding with each other and the 

eal pedestrians. However, in such a workflow, many steps require 

abor-intensive manual processing, including the construction of an 

nvironment model for the virtual crowd. 

We introduce our open-source augmented crowd simulation 

ystem that utilizes an automated approach for the determination 

nd reconstruction of navigable regions in real-life surveillance-like 

ideos. We make use of existing methods of semantic segmenta- 

ion and pedestrian tracking to determine image-level navigable 

egions. Then we reconstruct the aerial view of these regions as 

 flat mesh and position it in our 3D crowd simulation environ- 

ent. From the perspective of the automatically calibrated scene 

amera, the virtual agents move inside the navigable regions of 

he video, avoiding scene obstacles, real pedestrians, and other vir- 

ual agents. We evaluate the accuracy of the generated navigable 

egions in comparison to the ground truth, using real-life surveil- 

ance videos. 

We list our contributions as: 

• Automatic determination and reconstruction of image-level 

navigable areas in surveillance-like videos for seamless integra- 

tion of virtual agents. 

https://doi.org/10.1016/j.cag.2021.01.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2021.01.012&domain=pdf
mailto:yalim.dogan@bilkent.edu.tr
mailto:sinan.sonlu@bilkent.edu.tr
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• Evaluation of the resulting image-level navigable areas using 

different combinations of segmentation networks and training 

sets. 

. Related work 

.1. Data-driven crowd simulations 

Many applications of crowd simulations utilize real-life data for 

ealistic agent behavior. Musse et al. [1] , Lerner et al. [2] , and

im et al. [3] extract pedestrian trajectories from real-life video se- 

uences to simulate movements of virtual agents in various crowd 

cenarios. Jablonski et al. [4] evaluate the accuracy and the real- 

sm of crowd simulations in comparison to real-life footage, us- 

ng pedestrian flow. Amirian et al. [5,6] generate crowd trajec- 

ories that mimic the behavior of real-life pedestrians, regard- 

ng their interaction with the environment and other pedestrians. 

era et al. [7] learn pedestrian motion models from video to sim- 

late agents that act like real pedestrians. Instead of learning the 

ehavior of the real crowd, we utilize the pedestrian data to auto- 

atically determine the navigable regions of the scene to realisti- 

ally integrate virtual agents. 

.2. Augmenting virtual agents into real-life videos 

Numerous works augment virtual agents into videos of real 

eople and environments. Zheng and Li [8] manipulate virtual 

rowds using an augmented reality interface. Baiget et al. [9] gen- 

rate augmented video sequences with virtual crowds that react to 

he environment and people, utilizing multi-object tracking to de- 

ect dynamic entities in the video feed. They generate the environ- 

ent using a calibrated static camera and model the context-aware 

ehaviors of the agents using Situation Graph Trees. In contrast to 

ur approach, they do not generate the navigable area based on 

he input video, and they do not use collision avoidance for the 

nteraction of virtual agents with real pedestrians and other ob- 

tacles in the video. Instead, they generate paths on the ground 

or specific behaviors such as walking in a circle or a spiral path. 

livier et al. [10] use virtual reality (VR) in a collision-avoidance 

cenario between a participant and a single virtual agent to inves- 

igate the effect of VR on visibility to avoid collisions. 

Rivas et al. [11] propose a framework for coupling simulated 

rowds with real pedestrians on completely navigable environ- 

ents. Zhang et al. [12] propose a framework for the seamless 

ntegration of virtual agents into videos where agents avoid col- 

ision with real pedestrians. They use an alpha map-based so- 

ution to handle occlusion between agents and real pedestrians. 

o ̆gan et al. [13] track pedestrians using a HOG-based detector 

nd Kalman filtering, to augment virtual agents on manually con- 

tructed navigable areas. In contrast, we analyze the video to ex- 

ract the navigable regions automatically. 

.3. Reconstructing navigable regions 

The reconstruction of navigable regions requires a geomet- 

ic understanding of the scene. To this end, an image-based 

orizon approximation can give an idea about the camera con- 

guration. To find the horizon and a suitable third vanishing 

oint, Li et al. [14] use intersections of Hough lines, whereas 

hai et al. [15] use deep convolutional neural networks. Tro- 

oli and Oliveira [16] generate a histogram of angles using the line 

egments of the image and use the peaks to search for vanish- 

ng points. These methods rely on the existence of horizontal lines, 

hich usually exist in man-made structures, but not guaranteed in 

very input scene. 
142 
In contrast, various studies utilize pedestrian features to cal- 

ulate vanishing points, treating pedestrians as vertical poles in- 

ersecting at the third vanishing point. Pedestrian trajectories are 

hen used to calculate the remaining vanishing points on the hori- 

on. Liu et al. [17] use pedestrian postures to find the third van- 

shing point and use this information for automatic camera cali- 

ration. Similarly, Brouwers et al. [18] consider the height distri- 

ution of the pedestrians to calculate the tilt angle of the camera. 

ung et al. [19] estimate normalized pedestrian height using track- 

ng based camera calibration. We utilize both line and pedestrian 

eatures for camera calibration, which performs better in arbitrary 

cenes. 

After calibration, we generate the blueprint (the top-down view 

rom an imaginary camera that is orthogonal to the ground plane) 

f the navigable regions for reconstruction, which requires met- 

ic rectification. Liebowitz et al. [20,21] apply metric rectifica- 

ion to correct distorted perspective in images, and reconstruct 

rchitectural scenes in 3D. Bose and Grimson [22] rectify the 

round plane by tracking the moving objects in the scene. Chaud- 

ury et al. [23] use line properties to find two vanishing points 

n general images, to perform affine rectification that corrects the 

erspective distortion partially, without recovering the real an- 

les. In our blueprint generation, we utilize the approaches of 

ose and Grimson [22] , and Chaudhury et al. [23] . 

Various works that reconstruct the scene in 3D using a sin- 

le image or a static camera are also worth mentioning. Bul- 

ul and Dahyot [24] use social media location data to populate 

anually built 3D cities. Iizuka et al. [25] use manual annotation of 

pecific boundaries in a single image to reconstruct the 3D scene. 

hang et al. [26] automatically reconstruct the 3D scene based on 

he epipolar geometry of multiple views. Hoiem et al. [27] and Sax- 

na et al. [28] use single view approaches that reconstruct the 3D 

cene automatically. Although we place virtual agents in a 3D en- 

ironment, the reconstructed navigation mesh is flat, which is suf- 

cient for projecting virtual agents onto the video. 

. Framework 

Our open-source framework, outlined in Fig. 1 , provides an 

ugmented interactive crowd simulation in Unity [29] . We simu- 

ate virtual agents walking in navigable regions of the input video 

hile avoiding collision with real pedestrians. To reconstruct the 

avigable scene, we preprocess the input video using computer vi- 

ion techniques included in the OpenCV library [30] . The crowd 

imulation runs in real-time, and the preprocessing is performed 

ff-line. 

The input of our system is the video of an environment con- 

aining pedestrians. We assume this video is recorded with a sta- 

ionary camera, using an angle similar to surveillance footage. The 

umber of active pedestrians in the scene increases the accuracy 

f the reconstruction. The main stages of our workflow are as 

ollows: 

1. Pedestrian Detection and Tracking: We detect the pedestrians 

in the video and track their positions in consecutive frames. 

We record the tracking data, including pedestrian locations and 

postures, into a MOT [31] compatible file. 

2. Navigable Region Calculation: We first apply semantic segmen- 

tation on multiple frames of the input video to form naviga- 

ble region candidates. We filter out the obvious non-navigable 

regions such as walls. We then use pedestrian information to 

evaluate each region. We accept regions with sufficient pedes- 

trian occupancy as navigable. 

3. Scene Reconstruction: We extract the vanishing points from the 

video and apply perspective correction on the navigable areas 

to obtain an aerial view of the navigable scene. We use the 
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Fig. 1. The augmented crowd simulation framework. 
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term “blueprint” for this top-down view. We utilize an itera- 

tive Perspective-n-Point (PnP) solution to correct the imperfect 

blueprint to match its real-life counterpart. We then convert 

the blueprint to a 2D mesh. 

4. Crowd Simulation: We place the 2D navigation mesh into Unity 

and position the 3D scene camera so that the navigable regions 

of the video overlaps with the projection of the 2D mesh. We 

project real pedestrians in the video that are detected in Pedes- 

trian Detection and Tracking stage onto the navigable mesh as 

dynamic obstacles. The user can insert virtual agents into the 

scene and set their destination on the navigable region with 

mouse input. Each agent walks towards its destination while 

avoiding collision with the projected pedestrians and other 

agents. 

We discuss our approach for reconstructing the navigable re- 

ions in Section 4 . The following subsections describe the other 

tages in more detail. 

.1. Pedestrian detection and tracking 

We first preprocess the input video to extract the pedestrian 

nformation. Although we assume the video is recorded with a 

tationary camera, there may be minor position or orientation 

hanges caused by environmental factors. To eliminate such dis- 

uptions, we stabilize the video using optical flow [32] . 

We process the video using one of the available pedes- 

rian detection techniques including Histogram of Oriented Gra- 

ients (HOG) [33] and one-shot SSD networks [34] : either Incep- 

ion v2 [35,36] and MobileNet [37] . We use pretrained versions of 

hese networks available in OpenCV Tensorflow API [38,39] . 

To reduce processing time, we assume anything immobile is not 

 pedestrian. This also eliminates idle pedestrians; we find this ac- 
143 
eptable because their role in collision avoidance is minimal. We 

etect movement using background subtraction [40] and look for 

edestrians only in these areas. 

We detect the pedestrians in the current frame and update the 

racking information using the pedestrians detected in preceding 

rames. We use Kalman Filtering [41] to minimize position jumps 

aused by noisy detection. At the end of this stage, we only re- 

ort consistently tracked pedestrians. Tracking information con- 

ains pedestrian positions per frame, including the head and foot 

ositions of each pedestrian. We define head and foot positions as 

he endpoints of the foreground pixel blob which encapsulates the 

etected pedestrian. We use this pedestrian data in the navigable 

egion calculation, camera calibration, and dynamic obstacle posi- 

ioning. We use foot positions to project dynamic obstacles in place 

f real pedestrians. We use the combination of head and foot po- 

itions as vertical poles for camera calibration and to determine 

verage pedestrian height in simulation. 

.2. Augmented crowd simulation 

We simulate virtual agents in the reconstructed scene that 

void real pedestrians. We generate a variety of realistic human 

odels using MakeHuman [64] to act as virtual agents. We uti- 

ize pathfinding techniques included in Unity to generate a navi- 

ation mesh from the reconstructed scene. For collision avoidance, 

e use Reciprocal Velocity Obstacles (RVO) [42,43] . RVO is not in- 

luded in Unity’s pathfinding tools; therefore, we use the RVO im- 

lementation available at [65] . We use Unity’s pathfinding tools for 

lobal path planning over the calculated navigation mesh where 

ach virtual agent follows a trajectory with sub-goals to the de- 

ired position. We utilize RVO for local path planning, i.e., collision 

etection and avoidance, where we dynamically adjust the veloci- 

ies of virtual agents towards the next goal position to avoid col- 

iding with other agents. In traditional RVO, each agent is respon- 

ible for adjusting its velocity and direction to prevent oscillations. 

n augmented crowd simulations, the real pedestrians follow pre- 

etermined paths; only virtual agents actively participate in colli- 

ion avoidance. We integrate real pedestrians into the simulation 

y setting the maximum number of considered neighboring agents 

n RVO to zero. As a result, the real pedestrians simply act as dy- 

amic obstacles without any change to their velocity during colli- 

ion avoidance. 

We project the pedestrians onto the navigable mesh by sending 

amera rays through their feet positions on the image plane. We 

efresh the projection in every frame and update the position of 

hese dynamic obstacles formed by the real pedestrians. If a pro- 

ection becomes out of sync with the associated pedestrian’s track- 

ng information, it means the tracker lost the pedestrian, therefore 

e remove the corresponding dynamic obstacle after a few frames. 

he projected dynamic obstacle uses its latest displacement as its 

urrent movement vector. 

We determine the height of a virtual agent based on the aver- 

ge height of the pedestrian detection boxes, projected to the 3D 

cene. We send a camera ray r to the head position of the pedes- 

rian in the image plane. Given the 3D location of the camera C

nd the feet position F , we determine the head location H using 

q. (1) , where D is the vector between the camera and the feet lo-

ation on the XZ-plane. We calculate the distance from the camera 

o the head in terms of the ray unit vector ˆ r using D and add it to 

he camera location. The height is relative to the unit distance in 

nity. We calculate the height at the beginning of the simulation 

or an initial approximation, but it can be specified by the user at 

un time, considering the existing bounding boxes. 

D = (F x , 0 , F z ) − (C x , 0 , C z ) , 

H = 

ˆ r ‖ D ‖ + C. 
(1) 
ˆ r ·D 
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Fig. 2. The screenshot shows a reconstructed scene including real pedestrians and 

virtual agents (in yellow) walking around without colliding with pedestrians or 

each other. The original scene is courtesy of PETS09-S2L1 video [44] . (For inter- 

pretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 
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Fig. 3. Navigable region calculation of PETS09-S2L1 [44] using Xception network 

for segmentation. (a) the original frame, (b) the navigable region candidates with 

pedestrian trajectories (in white), (c) union of the navigable regions (in white), (d) 

navigable regions visualized on the original frame. 
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Our augmented crowd simulation framework starts by inputting 

he stabilized video, the pedestrian tracking and camera calibra- 

ion data, and the reconstructed navigable mesh. After placing the 

amera and the navigable mesh, the simulation starts by project- 

ng the video as a background in the camera frustum, and the 

irtual agents are visible on top of the navigable regions. Fig. 2 

hows a screenshot of a reconstructed scene including real pedes- 

rians and virtual agents. In the following section, we focus on the 

utomatic determination of navigable areas for augmented crowd 

imulations. 

. Navigable area reconstruction 

We infer the navigable regions of the scene and generate a 2D 

avigation mesh based on the union of these regions in an aerial 

iew. We position the 2D mesh into our simulation environment 

ith the camera configuration of the video, so that the virtual 

gents that walk on the navigation mesh appear as if they are 

alking on the navigable regions of the video. This reconstruction 

rocess involves the following steps: 

1. We analyze the video frames to determine the navigable re- 

gions using deep-learning-based semantic segmentation and 

pedestrian tracking. 

2. We determine the scene geometry by detecting the horizon 

and the third vanishing point, using line features from the first 

frame and pedestrian data. We then use homography to gener- 

ate the “blueprint” of the navigable regions. 

3. We orient the camera in the reconstructed scene according to 

the perspectively-corrected navigable regions. Because the data 

used in the previous step contains noise, the perspective cor- 

rection is not perfect, which also affects camera placement. For 

this reason, perspective correction is readjusted to match the 

real-life counterpart for optimum camera placement. 

4. We then convert the “blueprint” of the final corrected navigable 

regions from an image to a 2D mesh that can be placed in the 

3D scene in Unity. 

In the following subsections, we discuss each step in detail. 

.1. Semantic segmentation for navigable region detection 

The first step of the reconstruction process is to determine 

he navigable regions using multiple video frames. Even though 

he video is stationary, using only the first frame is not enough, 

ince walking pedestrians would obscure navigable areas behind. 
144 
herefore we update the navigable region map every N frames 

user-defined) by accumulating the segmented regions. To improve 

egmentation performance for videos with hard shadows where 

ontext is hardly distinguishable, we apply the shadow removal 

ethod by Murali and Govindan [45,46] . 

We segment the frames and update navigable region candidates 

sing one of the state-of-the-art semantic segmentation methods: 

obileNetV2 [47] or Xception [4 8,4 9] . We associate each segment 

ith a label, which helps us filter out the obvious non-navigable 

reas such as walls, buses, and cars. The labels are different for 

ach dataset that we use in training. We used networks pre- 

rained [50,51] on ADE20K [52,53] and Cityspaces [54] datasets. 

n the evaluation section, we experiment on different input videos 

sing various combinations of segmentation networks and training 

ets. 

We determine the “navigability” of a region not only by its se- 

antic label but also by considering the pedestrian data. A partic- 

lar region is navigable if the ratio of frames in which the region is 

ccupied by at least one pedestrian exceeds a user-defined thresh- 

ld. This threshold will be referred to as the “navigation density 

hreshold” for the rest of the work. We assess this per-region in- 

tance, therefore identifying a region of a particular label as nav- 

gable does not change the navigability of other disconnected re- 

ions with the same label. In the absence of any pedestrians, we 

etermine the navigability based on the semantic label only. Fig. 3 

hows the navigable regions extracted from PETS09-S2L1 [44] . 

.2. Perspective correction for blueprint generation 

To reconstruct a 2D navigation mesh using the image of the 

avigable regions, we first obtain their “blueprint”, i.e., the rectified 

erial view. To this end, we utilize various computer vision tech- 

iques, including RANSAC-based horizon detection, homography- 

ased perspective correction, and the solutions for the PnP 

roblem. 

.2.1. Horizon detection 

We first find the vanishing points in the scene to extract the 

cene structure observed from the camera viewpoint. In a given 
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Fig. 4. The head and foot positions of the pedestrian at different frames create par- 

allel lines in the real world (shown in black), which defines a single vanishing point 

at their intersection. We extract the red lines from the image (which are parallel in 

the 3D scene) and define another vanishing point where they together define the 

horizon, shown in blue. Additionally, we use the postures (head to foot vertical line 

of each pedestrian, shown in green) to find the nadir vanishing point, which cannot 

be seen in the example because it is too far away. (For interpretation of the refer- 

ences to color in this figure legend, the reader is referred to the web version of this 

article.) 
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mage, it is possible to find infinitely many vanishing points; in 

ur case, we are interested in finding only the three: two on the 

orizon and a third one that is not on the horizon. The position of 

he third vanishing point concerning the horizon depends on the 

lacement of the camera, specifically its tilt angle. 

We assume the camera is looking down on the scene in a 

urveillance-like configuration, in which it is easier to generate the 

avigable areas in comparison to pedestrian level camera place- 

ents. Besides, the areas below the horizon have more coverage 

n this configuration, enabling a better view of the ground plane. 

n this configuration, the horizon is above the image center and 

he third point is below it. We refer to the third point as “nadir”

rom this point forward. 

To find the vanishing points, we utilize the lines found in the 

mage, similar to Li et al. [14] . The lines that are parallel in the real

orld, which can be found abundantly in man-made scenes, inter- 

ect at a vanishing point in the image. The intersections of hor- 

zontal lines are positioned on the horizon and the intersections 

f vertical lines give us the third vanishing point. We can easily 

nd such lines by filtering and Hough transform. Given four points 

, j, u, v in the 2D image, where ij is parallel to uv in 3D space,

e find each vanishing point using homogeneous coordinates fol- 

owing Eq. (2) . To find the horizon, we calculate multiple vanish- 

ng points using different line pairs, that are all parallel in the 3D 

pace. We then find a line that connects these vanishing points to 

etermine the horizon. 

p i = [ i x , i y , 1] , 

p j = [ j x , j y , 1] , 

 i j = p i × p j , 

 p = l i j × l u v . 

(2) 

In cases where the visual cues of the image background 

re not sufficient, we use pedestrian data to calculate vanish- 

ng points [17–19,55] . We treat pedestrians as vertical poles that 

hange position between frames, assuming they do not change 

heir stance too much. We use their postures as parallel vertical 

ines that converge at the nadir vanishing point. We use their lo- 

ation changes to generate trajectories to be used as additional line 

eatures. Having the head and foot positions of the pedestrians 

n each frame, we sample the head and foot trajectories of each 

edestrian at user-defined intervals. We assume that the height of 

ach pedestrian is constant throughout the video; hence, we take 

he aforementioned lines to be parallel in the real world and meet 

t the horizon in the image (cf. Fig. 4 ). 

Because the pedestrian data and lines from the image may 

ontain noise, we use RANSAC [56] and thresholding to reduce 

he noise. We only consider a subset of the given lines based on 

ength [23] . For every random line combination, we calculate a 

core according to the other lines in the subset. If the angle θ be- 

ween the voting line and the potential vanishing point is below 

n empirically-determined threshold, the vanishing point obtains a 

core equivalent to its length. We use the model with the highest 

ount as the vanishing point. Additionally, we enforce the horizon 

anishing points to be above any line segment from pedestrian tra- 

ectories, which ensures that the navigable area stays below the 

orizon. Similarly, the nadir point is expected to be below the 

rajectories. 

For the camera calibration, we need to determine its intrinsic 

arameter matrix ( K). In K, we assume zero skew ( s = 0 ) and take

as the aspect ratio of the image. We calculate the focal length 

f using the orthocenter of the triangle defined by the vanishing 

oints as f 2 = | vp 1 − p|| vp 2 − p| − | o − p| 2 , where o is the ortho-

enter, p is the projection of the orthocenter on the horizon, and 

p and vp are the vanishing points on the horizon. 
1 2 

145 
.2.2. Image rectification 

We use the vanishing points for perspectively correcting the 

egmented image. To this end, we rectify the image by projectively 

arping it as if the generated image is taken from a frontal, bird’s 

ye view angle. When we take an image from such an angle, the 

iew plane is parallel to the navigation area in the frame. To rec- 

ify an image, we use homography [57] . Given points in one plane 

s x, we calculate the corresponding points in the second plane as 

 

′ = Hx where H is the Homography matrix. 

To construct H, we need to have at least four-point correspon- 

ences between two planes. In our scenarios, we do not have such 

oint correspondences as they require knowledge of the scene, 

uch as a window with a known shape in the real world. An- 

ther way of constructing H, called stratified rectification [20,21] , is 

o look at its decomposition (see Eq. (3) ). The leftmost matrix H s 

s the similarity matrix (metric part), which contains rotation ( r ), 

ranslation ( t ), and scaling ( s ) components. H a is the affine trans-

ormation matrix, and H p is the projective transformation matrix. 

H = H s H a H p 

= 

[ 

sr 11 sr 12 t x 
sr 21 sr 22 t y 

0 0 1 

] [ 

1 /β −α/β 0 

0 1 0 

0 0 1 

] [ 

1 0 0 

0 1 0 

l 1 l 2 1 

] 

. 

(3) 

We construct H starting from the projective transformation ma- 

rix. In Eq. (3) , the bottom line of H p corresponds to the horizon of

he image in homogeneous coordinates, l ∞ 

= (l 1 , l 2 , 1) . The homo-

eneous horizon is obtained with vp 1 × vp 2 = l ∞ 

where each vp is 

 vanishing point on the horizon. Applying the projection matrix 

ecovers the parallelism of the lines in the image (affine rectifica- 

ion). The next step is to recover the metric properties of the im- 

ge such as the length ratios and angles of non-parallel lines using 

he affine transformation matrix H a . We calculate the parameters 

and β in H a using the concept of circular points [58] . 

Each method defines circles with center (c α, 0) and radius r, 

here the first axis is α and the second is β . The intersections of 

he circles determine the affine parameters α and β . To find those 

ircular points, Bose and Grimson [22] utilize the trajectories of 

oving objects to be used for ratios of lengths in the image. They 

se lines in 4 and 5 to calculate the centers and radius of each 

ircle. They define each line using two points p and p , where 
1 2 
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Fig. 5. The overview of the metric rectification process for PETS09-S2L1. The original image (a). After determining the horizon for the image to calculate the projective 

transformation (c), we use the pedestrian trajectories to find the circular points to be used in affine transformation (d). We apply the resulting homography matrix to warp 

the image as if the generated image is taken from a bird’s eye view (b). 
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 is the length ratio, �x = p 1 x − p 2 x and similarly for �y . We uti-

ize the feet trajectories of pedestrians as non-parallel paths in the 

mage. We assume pedestrians have the same velocity in the real 

orld and took all paths with a constant velocity. Therefore, s is 

aken as 1. Because there are many intersection points for circles, 

e take their average. We then use the resulting point (α, β) in 

he affine transformation matrix H a . 

c α, c β ) = 

(
�x 1 �y 1 − s 2 �x 2 �y 2 

�y 2 
1 

− s 2 �y 2 
2 

, 0 

)
, (4) 

 = 

∣∣∣∣ s (�x 2 �y 1 − �x 1 �y 2 ) 

�y 2 
1 

− s 2 �y 2 
2 

∣∣∣∣. (5) 

We apply similarity transformations to our resulting metric- 

ectified image, as described by Chaudhury et al. [23] to keep its 

eatures within the image boundaries. We use the implementation 

rovided by Chilamkurthy [59] . Fig. 5 illustrates the stages of the 

etric rectification process. The initial rectification has errors from 

rojection, but the camera placement process will refine it so that 

t is closer to a frontal image. 

.3. Camera placement 

After applying metric rectification on our segmented image to 

btain the aerial view, we determine the orientation of our cam- 

ra so that the navigable model’s projection on the view plane 

atches its real-world counterpart. We use the pinhole camera 

odel for projection, which projects the 3D points (X, Y, Z) in the 

orld scene to 2D image points (u, v ) based on the projection ma- 

rix P in Eq. (7) . K is the intrinsic matrix of the camera, and the
146 
xtrinsic part of the camera model is [ R | t] . We describe how we

pproximate the extrinsic part of the camera model, as we have 

lready constructed the intrinsic matrix using the vanishing points. 

 

u 

v 
1 

) 

= P 

⎛ 

⎜ ⎝ 

X 

Y 
Z 
1 

⎞ 

⎟ ⎠ 

, (6) 

 = K[ R | t] , (7) 

To find the transformation expressed in the extrinsic matrix, 

e utilize PnP solutions that use point correspondences between 

he 2D image points and the 3D world points to approximate cam- 

ra orientation. A stable implementation of an iterative PnP solver 

s provided by the OpenCV library [30] , which uses Levenberg- 

arquardt optimization [60] . 

We use the warped segmented image as the blueprint of our 

D navigable area model, placed in the 3D environment. We use 

ts four corners as points in our 3D world, which correspond to 

he corners of the image. The flat navigation mesh is placed on the 

Z-plane, therefore, the Z axis of the model coordinates are taken 

s image height − v from the image and Y is 0. When running the 

nP solver, we provide the intrinsic matrix K and assume zero dis- 

ortions, which would affect the projection. The initial run of the 

olver is generally inaccurate because of metric rectification and 

ocal length errors. Fig. 6 (a) shows a sample output. The axes that 

epresent the projections of the four corners of the model are away 

rom the corners of the image (see Fig. 6 (b)). 



Y. Do ̆gan, S. Sonlu and U. Güdükbay Computers & Graphics 95 (2021) 141–155 

Fig. 6. The model adjustment process starts with an initial solution to plane-to-plane homography using the PnP solution (b) for (a). As the resulting placement (c) is noisy, 

we multiply H −1 
projection 

with image corners (e) to obtain the perfect fitting model (d). In (c) and (f), the RGB lines correspond to X, Y, and Z coordinates in Unity. The model 

images in (a) and (d) are not in scale with illustrations in (b) and (e). 

Fig. 7. Example triangulation of the navigable area. We preprocess the model image 

with erosion and dilation for refinement. 

Table 1 

The quantitative comparison of various pedestrian trackers. Overall, deep learning 

approaches can achieve more detections at the expense of more false positives; 

as seen in lower precision, MOTA, and with higher recall, MOTP than HOG. FPS 

is frames processed per second. The deep learning approaches have lower FPS be- 

cause they were run using a CPU. The experiments were performed on a personal 

computer with Intel®Core TM i7-4500U CPU @1.8 GHz, 8 GB RAM, and NVIDIA 740M. 

PETS09-S2L1 (768 ×576 @15 fps) 

Method Recall Precision MOTA MOTP FPS 

HOG 81.8 76.8 55.5 0.314 0.5 

Inception v2 92.8 47.6 -10.5 0.241 0.114 

MobileNet 91.4 63.2 36.8 0.244 0.188 

Custom (1280 ×720 @30 fps) 

Method Recall Precision MOTA MOTP FPS 

HOG 18.1 41.4 −7.8 0.400 0.243 

Inception v2 42.9 31.8 −50.2 0.343 0.075 

MobileNet 30 28 −48 0.334 0.115 

c

(

m

m

t

i

Table 2 

Dice scores of the segmentation results (higher is better) for PETS09-S2L1 [44] , 

Town Centre [62] , MOT16-04 [31] and our custom video. “No. frames” is the number 

of frames used for segmentation update, “Threshold” is density ratio to filter rarely 

navigated areas. High dice scores with lower than 50 segmentation updates indicate 

that our approach produce accurate navigable regions with threshold as 0.3. 

Threshold 

Scene No. frames 0.0 0.3 0.7 0.95 

PETS09-S2L1 40 0.887 0.895 0.711 0.711 

Town Centre 46 0.945 0.945 0.945 0.912 

MOT16-04 35 0.912 0.912 0.912 0.912 

Custom video 38 0.833 0.833 0.833 0.833 
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Assume that there is a projection matrix P that maps the 3D 

orners of the model to their projections on the image plane 

 Eq. (8) ). This projection matrix is the inverse of one that would 

ap the original image corners in the 2D image plane to the ideal 

odel corners; as the camera is identical for both cases. However, 

he inverse projection of an image point is ambiguous as there are 

nfinite points that are projected on it. To solve this problem, we 
147 
emove the Y component of the 3D position vector. This turns our 

roblem into plane-to-plane homography. 

We use the PnP solver to obtain the projection of the corners 

f the initial model on the image plane. We calculate H projection be- 

ween the corners of the model in the model plane and the projec- 

ion in the image plane using four-point correspondence ( Eq. (9) ). 

hen by applying H 

−1 
projection 

to the original image corners, we obtain 

he corners for the ideal model on the XZ-plane ( Eq. (10) ). Because

e now know the ideal model, we use homography to warp our 

xisting model corners to its corners ( Eq. (11) ). The homography 

atrix H adjustment is found using 4 points correspondence between 

ach models’ corners on the XZ-plane. After adjusting the model, 

e estimate the camera pose again using an iterative PnP solution. 

o keep the corners of the adjusted model inside the image, we 

inimize the initial model and apply similarity transformations to 

he final model. Fig. 6 (c) and (d) summarize this correction pro- 

ess. We use the result of the PnP solution together with the im- 

ge frame properties (e.g., resolution, center) in Unity. We use the 

eld of view calculated from the focal length as the vertical FoV. 

 

u 

v 
1 

] 

projection 

= P 

⎡ 

⎢ ⎣ 

X 

Y 
Z 
1 

⎤ 

⎥ ⎦ 

(8) 
initial 
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Fig. 8. The example reconstruction of the navigable area model for each video. From top to bottom: the original frame, navigable areas, calculated horizons, the final model 

blueprint, detected pedestrians on top of the flat navigation mesh (rendered in black) projected on top of the input video, and the output with real pedestrians and virtual 

agents. From left to right: PETS09-S2L1 [44] , Town Centre [62] , MOT16-04 [31] and our custom video. In some videos, the postures of the projected pedestrians do not 

perfectly match the pedestrians in the video because of the small errors in the horizon and focal length calculations. We reconstruct the navigable area and place it on the 

3D scene successfully even in the presence of such errors. 

[
H

 

u 

v 
1 

] 

projection 

= H projection 

[ 

X 

Z 
1 

] 

initial 

(9) 
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−1 
projection 

[ 

u 

v 
1 

] 

= 

[ 

X 

Z 
1 

] 

(10) 
corners ideal 
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Fig. 9. Segmentation performance in terms of dice scores (higher is better) for 

each video. Overall, the performance is more stable with Xception [4 8,4 9] / Citys- 

paces [54] combination while decreasing segmentation frequency. PETS video has 

problems with MobilenetV2 [47] , especially when using Cityspaces [54] . We obtain 

the best results for our custom video when using Xception/Cityspaces. 
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0 

Z 
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ideal 

= H adjustment 

⎡ 

⎢ ⎣ 

X 

0 

Z 
1 

⎤ 

⎥ ⎦ 

initial 

(11) 

.4. Mesh construction 

After determining the navigable regions in the video frame and 

btaining their frontal view blueprint, we need to convert the 

lueprint to a mesh on which agents can navigate. To this end, we 

mplemented a mesh generator that converts the given binary im- 

ge into a 2D mesh. White areas in this binary image represent 

avigable regions. We assume that the area is flat; there are no 

tairs or any elevation change in the environment. 

We apply dilation and erosion operations on the binary image 

o eliminate possible noise, tiny clusters, and holes. Then we find 

ontours using OpenCV. We use the tree hierarchy of OpenCV that 

numerates each contour from outer to inner. To convert this con- 

our hierarchy of border vertices and edges into a mesh, we use 

he Triangle [61] framework. This framework uses the notion of a 

triangle-eating virus” to process the holes, which removes the tri- 

ngulation from its initial point to the closest segment it reaches. 

he planting location of the virus needs to be within the whole 

rea. To find such a point, we construct the hole as a polygon using 

ts encapsulating contours and the contours it encapsulates. Then, 

e find a representing point inside the hole region, which will be 

he initial point of the virus. Fig. 7 shows a generated mesh ex- 

mple. After the triangulation, the resulting mesh is exported to 

nity. 

. Evaluation 

We test our framework on various stationary surveillance-like 

ideos including PETS09-S2L1 [44] , Town Centre [62] , MOT16- 

4 [31] , and a custom video. Fig. 8 includes the horizon, extracted 

avigable areas, their placement into the 3D scene with dummy 

gents, and the final output with virtual agents for each test video. 

Table 1 shows a quantitative comparison of different pedes- 

rian trackers for PETS09-S2L1 and our custom video. Recall is the 

ercentage of identified pedestrians overall in the video, whereas 

recision is the percentage of correct detections overall. MOTP 

nd MOTA represent multi-object precision and accuracy, respec- 

ively [63] . MOTP measures the mean dissimilarity between the 

orrect detections and the ground truth, where the smaller is bet- 

er. MOTA focuses on mismatch errors that occur when a single 

bject is identified multiple times as different objects. It can result 

n negative values when the detection errors are higher than the 

umber of pedestrians. 

The results indicate that deep learning-based methods achieve 

etections that capture a high number of pedestrians but some of 

hem are false positives. This would populate the navigable region 

ith more pedestrians than there are in the video; limiting the 

avigation of augmented agents. However, for augmented reality 

pplications, missing pedestrians in the video is a more impor- 

ant problem than false positives; therefore, deep learning-based 

pproaches are preferable. 

To evaluate the performance of our reconstruction method, we 

easure the similarity of the automatically determined navigable 

reas in comparison to the ground truth. We report this similar- 

ty in terms of the dice score using different parameter configu- 

ations. The dice score represents the overlapping pixel area per- 

entage between the ground truth and the predicted regions, in 

he range [0 . 0 , 1 . 0] . We manually craft segmentation maps of each

ideo to use as the ground truth. We test two available network 

rchitectures for semantic segmentation: Xception [4 8,4 9] and 
149 
obileNetV2 [47] , and compare two datasets for the training: 

DE20K [52,53] and Cityspaces [54] . In each combination, we also 

ry different frame steps (skipped frame count between each seg- 

ented frame). 

Fig. 9 shows the dice score of different network-training set 

ombinations for each video. Throughout the experiments, we kept 

he shadows and fixed the pedestrian navigation density threshold 

o 0.33. The results show that the Xception/Cityspaces combina- 

ion yields the most stable results in terms of performance. Over- 

ll, the dice score decreases as the frame step increases, especially 

hen we use Mobilenet/ADE20K. We did not observe significant 

hanges in the dice score when we increase the pedestrian naviga- 

ion density threshold from 0.3 to 0.7. We think this is related to 

he crowd density of the scenes. However, this experiment shows 

hat the segmentation frequency is an important parameter that 

nfluences performance. 

Although we can use all frames of the input video, this in- 

reases the running time significantly. We show that we can skip 

ome frames of the input without losing accuracy. For example, 

hen using Xception/ADE20K, we can segment one frame per 100 

rames of PETS and maintain accuracy. This decreases the running 

ime of the network by 100 fold. If the frame step is too high, 

hen the network does not have enough information on the re- 

ions occluded by pedestrians. For example, the segmented frames 

ould include different pedestrians at the same position at differ- 

nt times, thus the network cannot capture a clear view of the 

ccluded region. This effect is more obvious in crowded scenes. 

dditionally, in certain cases like Town in Xception/ADE20K, us- 

ng a lower frame step results in lower accuracy. We believe this is 

aused by the network capturing the noise rather than focusing on 

he overall scene. This also justifies skipping some frames. 

Table 2 shows the quantitative segmentation results for the test 

ideos. For these results, we process all videos using the Xception 

etwork based on ADE20K dataset labels, except for the custom 

ideo, which is based on Cityscapes labels. A dice score close to 

.0 indicates high similarity. We tested different threshold values 

or each video, where 0.0 means only pre-defined navigable la- 

els are used, not the pedestrian trajectory data. Our custom video 
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Fig. 10. Qualitative comparison between example predicted and ground truth navi- 

gable regions. Non-white pixels, red and green, are only navigable in prediction and 

ground truth respectively. From top to bottom: PETS09-S2L1 [44] , Town Centre [62] , 

MOT16-04 [31] and our custom video. The segmentation process obtains satisfac- 

tory results as long as the navigation density of the pedestrians is high enough, in 

terms of the user-defined threshold. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 
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Fig. 11. Differences between the positions and orientations of impostors and pedes- 

trians in the video. A camera with a focal length smaller than expected will be 

placed closer to the area, resulting in misplaced impostors (left). The impostors are 

better positioned and oriented when the focal length approximation is more accu- 

rate (right). 

Table 3 

RMSE values (lower is better) and failed projection rates (lower is better) along 

with basic camera configuration for each video. P height denotes the pedestrian height, 

C height denotes the camera height, and NC height is the normalized camera height ob- 

tained by normalizing the pedestrian height to 1.65 meters and then adjusting the 

camera height accordingly. Except for low FoV cases (MOT16-04), we obtain rela- 

tively good results in terms of RMSE . The custom video suffers from a high failed 

projection rate due to its poor area segmentation result. 

Metric / Data PETS Town MOT Custom 

RMSE 0.051 0.036 1.45 0.110 

Failed (%) 0.006 5.99 10.09 52.60 

FoV 34.95 24.8 9.83 34.05 

P height 24 79 46 26 

C height 131.45 437.57 569.09 457.83 

NC height 9.04 9.14 20,41 29.06 
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oses a difficult challenge because of its complex structure and 

hadows. To improve the performance in this video, we remove 

hadows and increase the segmentation update frequency. When 

e increase the threshold, we can see an immediate improvement 

n PETS video, which is most likely due to getting rid of noisy ar- 

as. However, increasing the threshold further starts decreasing the 

ice score because navigable areas can be lost in the process. This 

oes not apply to MOT16-04 and our custom video, however, as 

hey contain a large singular navigable region rather than many 

mall chunks (cf. Fig. 10 ). 

Fig. 10 provides a qualitative comparison between predicted 

avigable areas and ground truth (manually annotated). Except for 

ur custom video where the navigable region is distant from the 

amera, we successfully segment most of the navigable regions and 

urpass small occlusions (such as poles and traffic cones). 

Table 3 shows the performance of our reconstruction method 

n terms of Root-Mean-Square-Error ( RMSE ) [17] following Eq. (12) , 

nd failed projection rates. 

MSE = 

∑ 

gt 

(
dist (p h , p 

gt 

h 
) 

dist (p f , p 
gt 

h 
) 

)2 

, (12) 

here p h and p f are the 2D head and foot positions, respectively, 

or pedestrians on the image plane as we project to the naviga- 
150 
le region in the 3D environment. p 
gt 

h 
are the ground truth head 

ositions of pedestrians on the image plane. RMSE represents the 

ccuracy of our camera configuration estimation in terms of the 

atch between the postures of real pedestrians and corresponding 

ummy agents in the 3D scene. A low error shows that the height 

nd posture of dummy agents are very close to that of real pedes- 

rians. We sum RMSE for each pedestrian in the ground truth de- 

ection (denoted as gt ) that we can successfully project onto the 2D 

avigable map. Failed projections do not contribute to the calcula- 

ion of RMSE . For the pedestrian height, we take the first height (in 

nity units) determined while the simulation is running. 

Except for MOT16-04, the RMSE rates are as low as 0.036. The 

igher RMSE rate for MOT16-04 is due to its low Field of View 

FoV) angle, which causes the camera to be positioned relatively 

igh. In such failure cases, the focal length is very different from 

he expected value. Even though the focal length does not affect 

erspective correction, it becomes important during camera place- 

ent. Camera placement takes into account the calibration process 

hen determining its orientation and we adjust our model accord- 

ngly. A shorter focal length results in a camera much closer to the 

avigable area than its actual counterpart in the real world, and 

he inverse applies to a longer focal length. This causes impostors 

dummy models used for collision detection and avoidance) to be 

isplaced in the 3D scene (cf. Fig. 11 for an example from PETS09- 

2L1 [44] ). A good focal length estimation is as important as a de- 

ent horizon orientation to reduce projection errors. 

Table 3 also shows the calculated camera height relative to 

he ground (y = 0). For comparison, we normalize the calculated 

eight to the average human height of 1.65 m. Table 4 compares 

ur results and the ground truth configuration from Town Cen- 

re [62] . We do not have the ground truth configurations of the 

ther videos. The results show that we can successfully project our 
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Table 4 

The comparison of the calculated and ground truth camera internal and external 

parameters for Town Center [62] video. 

Ground Truth Calculated 

Focal length Camera height Focal length Camera height 

2696.30 12.39 2455.83 9.14 

Fig. 12. The union of three of the manually created navigable region maps for each 

input video by three different users. Each color channel in these RGB images repre- 

sents the navigable areas determined by one user. White corresponds to the com- 

mon navigable regions and black corresponds to the common impassable regions. 
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Table 5 

Average (Avg.) and Standard Deviation (SD) for the dice scores and time measure- 

ments (in seconds) of the manual approach in the first preliminary user experiment 

with 17 participants for each scene. We compare the average user dice scores to the 

performance of our implementation. 

Manual Automatic 

Scene Dice Avg. Dice SD. Time Avg. Time SD Dice 

PETS09-S2L1 0.835 0.140 202.6 162.4 0.895 

Town Centre 0.963 0.017 230.7 181.7 0.945 

MOT16-04 0.950 0.017 309.6 344.8 0.912 

Custom video 0.828 0.045 358.5 367.7 0.833 

Table 6 

Average time (in seconds) for the users to finish modelling the navigable mesh and 

position it into the scene with appropriate camera settings. We compare this to the 

total running time of our system using the settings that yield the best navigable 

region map accuracy. 

Scene Avg. User Time (s) System Time 

PETS09-S2L1 438 175.67 

Town Centre 230 183 

MOT16-04 764 93.7 

Custom video 805 126.99 
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odels with a very small error because our camera view is as if 

he original camera is put closer to the scene with a lower zoom 

higher FoV). 

Overall, we can detect a horizon even under complex scenar- 

os where there are many pedestrians and noisy image features, 

or example, MOT16-04. We can fit the corrected navigable area 

odel onto the 3D scene for the input video with minimal error 

n terms of RMSE. Even in cases where the detected horizons have 

rrors, the proposed navigable area correction method successfully 

ectifies the navigable region and matches the camera orientation. 
ig. 13. Zoomed in still frames showing the collision avoidance of the virtual agent (indic

2L1 [44] video. (For interpretation of the references to color in this figure legend, the re

151 
With two follow up preliminary user experiments, we compare 

he results of our system to the manual approach in terms of speed 

nd accuracy. In the first preliminary user feedback, we ask 17 dif- 

erent users ( 70 . 6% male and 29 . 4% female) to paint the impass-

ble regions on top of each input video. Participants are gradu- 

te and undergraduate university students with an average age of 

3 . 4 ± 2 . 7 . Participants use an online tool for painting the impass-

ble regions using their personal computers. Three participants use 

 graphics tablet, and the remaining fourteen participants use a 

omputer mouse. The online tool first displays the instructions and 

hen plays the video on a loop. The participants can pause and re- 

ume the video as they desire. The tool starts to keep the time 

ith the first stroke of the participant. Different brush sizes and 

rasers are available to participants. In the resulting navigable re- 

ion maps, the black color shows the impassable regions and the 

hite color shows the navigable regions. In Fig. 12 , we combine 
ated with yellow), when a faster real pedestrian comes from behind, using PETS09- 

ader is referred to the web version of this article.) 
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Fig. 14. Still frames showing the virtual agents (indicated with yellow in the first frame) walking on the navigable regions of the environment, while avoiding collision with 

other virtual agents and real pedestrians, using Town Centre [62] video.) (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 15. Zoomed in still frames showing the virtual agent (indicated with yellow) walking on the navigable areas of the environment, with the user-defined destination 

on the top right, avoiding collision with the real pedestrians, using MOT16-04 [31] video. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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he maps created by a subset of three users into RGB images such 

hat each color channel comes from one user. 

In Fig. 12 (b), we see that users mostly agree on the navigable 

egions. We believe this is because in this scene impassable re- 

ions are more obvious. For example, in Fig. 12 (a) and (d), there 

s high variance. While some users regard grass areas and con- 

truction sites as impassable some users do not. This is a result of 

he assumptions of the users; in the user study, we do not specify 

hether any of these regions should be regarded as navigable or 

ot. Some users determine the grass regions as navigable based on 

edestrians that walk on such areas. Dice scores calculated using 

hese user-defined navigable regions are given in Table 5 . We see 

hat lack of consistency results in poor accuracy while in simpler 
152 
cenes such as Town Centre, the accuracy of the manual approach 

s similar to our results. However, we believe that consistency is 

mportant if multiple scenes are analyzed by different users, thus 

sing an automatic approach is necessary. 

We include frames from our crowd simulation examples in 

igs. 13–16 . In Fig. 13 , we focus on a virtual agent that avoids col-

ision with a fast-moving pedestrian that comes from behind in 

ETS09-S2L1 [44] . The virtual agent moves slightly out of its path 

iving way to the real pedestrian. In Fig. 15 , the virtual agent up- 

ates its track to avoid multiple real pedestrians in MOT16-04 [31] . 

igs. 14 and 16 show virtual crowds of different densities blend- 

ng in the environment of the input video, which is made possi- 

le by the correct positioning of the 3D camera and the navigation 
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Fig. 16. Still frames showing the virtual agents (indicated with yellow in the first frame) navigating in the environment of our custom video. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 
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esh. Virtual agents in these videos also avoid collision with real 

edestrians. 

In the second preliminary user experiment, we ask three users 

ho participated in the first experiment to model the flat mesh 

hat corresponds to the navigable regions of the scene in the 

iven videos. These three users (2 male and 1 female, average age: 

4 . 6 ± 3 . 7 ) are the ones that indicate a high skill level in 3D mod-

ling. We also ask the user to position this flat mesh into the 

D scene with appropriate camera settings. Participants are free 

o use any 3D modeling software with which they are comfort- 

ble. They can view the video and the navigable region map they 

abeled in the first experiment while modeling and positioning. 

able 6 shows that our system generates the resulting flat mesh 

nd places it into the scene with appropriate camera configura- 

ions much faster than the average user time. The system time in- 

ludes segmentation, rectification, mesh generation, and simulation 

oading. The system time includes the user’s line feature parame- 

er adjustments in rectification to obtain the best result in cases 

here pedestrian trajectories are noisy. 

. Conclusion 

We introduce an open-source augmented crowd simulation sys- 

em that utilizes automatic determination of navigable regions in 

urveillance-like videos. The GitHub project including the repos- 

tories that contain the source codes of the proposed system is 

ocated at https://github.com/users/YalimD/projects/2 . We combine 

xisting techniques of semantic segmentation and pedestrian de- 

ection for accurate determination of the navigable regions. We 

ompare our results with the ground truth and manually labeled 

avigable regions. As opposed to the manual approach, we show 

hat our solution generates more consistent navigable region maps. 

lthough the users can identify the objects of the scene better, 

heir decision about which segments are navigable is subjective 

nd therefore is not consistent among different users. 

As an example use case scenario, we integrate the resulting 

avigable regions in augmented crowd simulations. To this end, 

e generate a flat navigation mesh using the navigable region map 

nd simulate virtual agents on its surface. Thanks to the automati- 

ally calibrated scene camera, virtual agents appear to walk inside 
153 
he navigable regions of the scene while avoiding collision with 

eal pedestrians. 

In terms of generating the corresponding navigable mesh from 

aw footage, our solution works much faster than the average user. 

he difficulty of the manual approach is modeling a flat mesh 

urely based on single view footage with perspective. The user 

eeds to imagine the view of the scene from above and model the 

orresponding flat mesh. Additionally, for the augmentation task, 

he 3D scene camera should imitate the original camera of the in- 

ut footage. Users need to try many configurations to determine 

he appropriate camera settings while our system works faster. As 

here is no ground truth available for the 3D scenes, our evaluation 

ocuses on the generated navigable maps and for the final output, 

e present visual results. Since we make use of known techniques 

or 3D reconstruction, we expect the navigable meshes to be accu- 

ate since the input navigable regions are shown to be accurate. 

The use case of the resulting system applies to filling real en- 

ironments with virtual characters as in movies. For example, in 

 wide shot where the main characters are acting, we can fill the 

therwise unoccupied regions with virtual characters to increase 

mmersion. In this case, it is important for the virtual characters 

o only exist in the navigable regions of the scene so as not to 

urt the realism. Since such virtual characters may walk inside 

he scene, they need to avoid collision with the main characters 

hat preexist in the input video. With our proposed solution ani- 

ated characters can be augmented into real-life videos without 

ny manual labeling. 

The same scenario also applies to integrating virtual tutors into 

eal-life scenes. For example, let’s consider a city guide that uses 

eal-life footage of different environments. To keep the content up 

o date, we may utilize daily footage and thus there could be mi- 

or or major differences in the navigable regions of a particular 

cene (i.e., cars or construction may block certain regions). In this 

ase, our automatic approach can generate the current navigable 

esh daily. We can use the same origin and destination for the 

irtual tutor and it will navigate according to the current naviga- 

le regions and pedestrians without a need for manual labor. 

The resulting navigation mesh can also be used for navigat- 

ng robot agents in real environments using live surveillance feed. 

or example, a drone camera can record short videos at specific 

https://github.com/users/YalimD/projects/2
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ocations to reconstruct the navigable regions for the robot to nav- 

gate. While the navigable regions are detected using multiple pre- 

ious frames, the current dynamic obstacles can be determined us- 

ng the current frame of the live feed. For this example, manual la- 

eling of the regions is not feasible as the environments could be 

reviously unseen and require fast determination of navigable re- 

ions. This also justifies our use of segmentation on a limited num- 

er of frames. As our results indicate, we do not need all of the 

rames of the input video for accurate reconstruction and therefore 

e can get the same accuracy much faster. 

Our method can function in arbitrary scenes with minimal geo- 

etric information. Even in cases where the detected horizon and 

he calculated focal length have errors, the navigable area correc- 

ion step compensates the distortion to a level so that the final 

odel matches the image corners after projection. 

The limitations of our work, including the possible further re- 

earch areas, can be listed as follows: 

• Noisy data in the input video can make it hard to find a valid

horizon, which may create cases in which the navigable area 

correction process cannot handle. Furthermore, our horizon cal- 

culation algorithm is sensitive to parameters such as the pedes- 

trian posture sample rate, and scene line configuration. 
• Our rectification algorithm cannot handle cases where the hori- 

zon is visible in the image. This is because the 3D model points 

are expected to match with the 2D image points. However, the 

points above the horizon do not satisfy this constraint. In this 

case, it is necessary to crop the input image so that all pixels 

lie below the horizon. Afterward, we should calculate the cam- 

era configuration accordingly so that the corners of the cropped 

image can match the corners of the cropped model. 
• Our navigable area extraction method takes only the trajecto- 

ries of pedestrians in the video into account when determining 

navigability, which might limit the area of navigable regions. 
• We do not consider the illumination conditions of the input 

footage, and the possible occlusion of real pedestrians by vir- 

tual agents. We render each virtual agent in front of the video 

and the real pedestrians, even if the agent is behind the pedes- 

trian in the 3D scene. 
• For projected pedestrians to be able to occlude virtual agents, 

we can utilize the foreground pixels of background subtraction 

and follow a “billboarding” approach: use each pixel cluster as 

a textured plane at its corresponding pedestrian location and 

use it as an occlusion mask. 
• We omit immobile pedestrians in our pedestrian detection 

stage for increased performance. Idle pedestrians that start 

moving could cause sudden velocity changes in virtual agents 

that appear unnatural. Pedestrian detection could work on the 

whole image in exchange for fast preprocessing in videos where 

idle pedestrians are frequent. 
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