
Computers & Graphics 95 (2021) 141–155

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Technical Section

An augmented crowd simulation system using automatic

determination of navigable areas

✩

Yalım Do ̆gan

a , Sinan Sonlu

a , U ̆gur Güdükbay

a , ∗

Department of Computer Engineering, Bilkent University, Ankara 06800, Turkey

a r t i c l e i n f o

Article history:

Received 29 June 2020

Revised 20 January 2021

Accepted 28 January 2021

Available online 10 February 2021

MSC:

65D18

65D19

Keywords:

Pedestrian detection and tracking

Data-driven simulation

Three-dimensional reconstruction

Crowd simulation

Augmented reality

Deep learning

a b s t r a c t

Crowd simulations imitate the group dynamics of individuals in different environments. Applications in

entertainment, security, and education require augmenting simulated crowds into videos of real people.

In such cases, virtual agents should realistically interact with the environment and the people in the

video. One component of this augmentation task is determining the navigable regions in the video. In this

work, we utilize semantic segmentation and pedestrian detection to automatically locate and reconstruct

the navigable regions of surveillance-like videos. We place the resulting flat mesh into our 3D crowd

simulation environment to integrate virtual agents that navigate inside the video avoiding collision with

real pedestrians and other virtual agents. We report the performance of our open-source system using

real-life surveillance videos, based on the accuracy of the automatically determined navigable regions

and camera configuration. We show that our system generates accurate navigable regions for realistic

augmented crowd simulations.

© 2021 Elsevier Ltd. All rights reserved.

1

s

p

f

a

s

t

t

i

e

r

a

s

r

v

r

e

p

t

b

b

r

l

e

s

a

v

t

r

a

m

c

t

h

0

. Introduction

Crowd simulations investigate the interaction of individuals in-

ide and among groups of people, in terms of behavior, appearance,

ersonality, and emotions. Models used in such simulations aim

or a realistic interaction with the environment; hence, the appear-

nce and behavior of the virtual agents that represent individuals

hould fit the context of the scene for better immersion. Quanti-

ative methods assess the realism of such simulations, comparing

he simulated crowd with real-world data.

Augmenting virtual crowds into real-life videos has applications

n entertainment, security, and education. Virtual crowds can cost-

ffectively fill environments in movies, appearing together with

eal actors; virtual tutors can move inside live environments to cre-

te immersion in training applications. In such augmented crowd

imulations, virtual agents should be indistinguishable from the

eal people and should interact with the real crowd and the en-

ironment realistically. This requires careful inspection of the envi-
onment and the individuals in the video.

✩ This paper was recommended for publication by Stefanie Zollmann.
∗ Corresponding author.

E-mail addresses: yalim.dogan@bilkent.edu.tr (Y. Do ̆gan), sinan.sonlu@bilkent.

du.tr (S. Sonlu), gudukbay@cs.bilkent.edu.tr (U. Güdükbay).

t

r

l

ttps://doi.org/10.1016/j.cag.2021.01.012

097-8493/© 2021 Elsevier Ltd. All rights reserved.
Augmented crowd simulations benefit from data-driven ap-

roaches for pedestrian and scene inference. Using a model for

he environment and pedestrian trajectories, a virtual crowd can

e augmented into the input video, so that virtual agents plausi-

ly move in the scene without colliding with each other and the

eal pedestrians. However, in such a workflow, many steps require

abor-intensive manual processing, including the construction of an

nvironment model for the virtual crowd.

We introduce our open-source augmented crowd simulation

ystem that utilizes an automated approach for the determination

nd reconstruction of navigable regions in real-life surveillance-like

ideos. We make use of existing methods of semantic segmenta-

ion and pedestrian tracking to determine image-level navigable

egions. Then we reconstruct the aerial view of these regions as

 flat mesh and position it in our 3D crowd simulation environ-

ent. From the perspective of the automatically calibrated scene

amera, the virtual agents move inside the navigable regions of

he video, avoiding scene obstacles, real pedestrians, and other vir-

ual agents. We evaluate the accuracy of the generated navigable

egions in comparison to the ground truth, using real-life surveil-

ance videos.

We list our contributions as:

• Automatic determination and reconstruction of image-level

navigable areas in surveillance-like videos for seamless integra-

tion of virtual agents.

https://doi.org/10.1016/j.cag.2021.01.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2021.01.012&domain=pdf
mailto:yalim.dogan@bilkent.edu.tr
mailto:sinan.sonlu@bilkent.edu.tr
mailto:gudukbay@cs.bilkent.edu.tr
https://doi.org/10.1016/j.cag.2021.01.012

Y. Do ̆gan, S. Sonlu and U. Güdükbay Computers & Graphics 95 (2021) 141–155

2

2

r

K

q

s

i

i

t

i

B

u

b

m

c

2

p

c

e

t

t

m

b

o

t

i

s

f

O

s

t

c

m

i

l

l

D

a

s

t

2

r

h

fi

p

Z

c

s

i

w

e

c

t

t

z

i

b

b

J

i

f

s

f

o

r

t

a

g

h

i

p

g

B

g

b

m

s

Z

t

e

s

v

fi

3

a

l

w

n

s

s

o

t

t

n

o

f

• Evaluation of the resulting image-level navigable areas using

different combinations of segmentation networks and training

sets.

. Related work

.1. Data-driven crowd simulations

Many applications of crowd simulations utilize real-life data for

ealistic agent behavior. Musse et al. [1] , Lerner et al. [2] , and

im et al. [3] extract pedestrian trajectories from real-life video se-

uences to simulate movements of virtual agents in various crowd

cenarios. Jablonski et al. [4] evaluate the accuracy and the real-

sm of crowd simulations in comparison to real-life footage, us-

ng pedestrian flow. Amirian et al. [5,6] generate crowd trajec-

ories that mimic the behavior of real-life pedestrians, regard-

ng their interaction with the environment and other pedestrians.

era et al. [7] learn pedestrian motion models from video to sim-

late agents that act like real pedestrians. Instead of learning the

ehavior of the real crowd, we utilize the pedestrian data to auto-

atically determine the navigable regions of the scene to realisti-

ally integrate virtual agents.

.2. Augmenting virtual agents into real-life videos

Numerous works augment virtual agents into videos of real

eople and environments. Zheng and Li [8] manipulate virtual

rowds using an augmented reality interface. Baiget et al. [9] gen-

rate augmented video sequences with virtual crowds that react to

he environment and people, utilizing multi-object tracking to de-

ect dynamic entities in the video feed. They generate the environ-

ent using a calibrated static camera and model the context-aware

ehaviors of the agents using Situation Graph Trees. In contrast to

ur approach, they do not generate the navigable area based on

he input video, and they do not use collision avoidance for the

nteraction of virtual agents with real pedestrians and other ob-

tacles in the video. Instead, they generate paths on the ground

or specific behaviors such as walking in a circle or a spiral path.

livier et al. [10] use virtual reality (VR) in a collision-avoidance

cenario between a participant and a single virtual agent to inves-

igate the effect of VR on visibility to avoid collisions.

Rivas et al. [11] propose a framework for coupling simulated

rowds with real pedestrians on completely navigable environ-

ents. Zhang et al. [12] propose a framework for the seamless

ntegration of virtual agents into videos where agents avoid col-

ision with real pedestrians. They use an alpha map-based so-

ution to handle occlusion between agents and real pedestrians.

o ̆gan et al. [13] track pedestrians using a HOG-based detector

nd Kalman filtering, to augment virtual agents on manually con-

tructed navigable areas. In contrast, we analyze the video to ex-

ract the navigable regions automatically.

.3. Reconstructing navigable regions

The reconstruction of navigable regions requires a geomet-

ic understanding of the scene. To this end, an image-based

orizon approximation can give an idea about the camera con-

guration. To find the horizon and a suitable third vanishing

oint, Li et al. [14] use intersections of Hough lines, whereas

hai et al. [15] use deep convolutional neural networks. Tro-

oli and Oliveira [16] generate a histogram of angles using the line

egments of the image and use the peaks to search for vanish-

ng points. These methods rely on the existence of horizontal lines,

hich usually exist in man-made structures, but not guaranteed in

very input scene.
142
In contrast, various studies utilize pedestrian features to cal-

ulate vanishing points, treating pedestrians as vertical poles in-

ersecting at the third vanishing point. Pedestrian trajectories are

hen used to calculate the remaining vanishing points on the hori-

on. Liu et al. [17] use pedestrian postures to find the third van-

shing point and use this information for automatic camera cali-

ration. Similarly, Brouwers et al. [18] consider the height distri-

ution of the pedestrians to calculate the tilt angle of the camera.

ung et al. [19] estimate normalized pedestrian height using track-

ng based camera calibration. We utilize both line and pedestrian

eatures for camera calibration, which performs better in arbitrary

cenes.

After calibration, we generate the blueprint (the top-down view

rom an imaginary camera that is orthogonal to the ground plane)

f the navigable regions for reconstruction, which requires met-

ic rectification. Liebowitz et al. [20,21] apply metric rectifica-

ion to correct distorted perspective in images, and reconstruct

rchitectural scenes in 3D. Bose and Grimson [22] rectify the

round plane by tracking the moving objects in the scene. Chaud-

ury et al. [23] use line properties to find two vanishing points

n general images, to perform affine rectification that corrects the

erspective distortion partially, without recovering the real an-

les. In our blueprint generation, we utilize the approaches of

ose and Grimson [22] , and Chaudhury et al. [23] .

Various works that reconstruct the scene in 3D using a sin-

le image or a static camera are also worth mentioning. Bul-

ul and Dahyot [24] use social media location data to populate

anually built 3D cities. Iizuka et al. [25] use manual annotation of

pecific boundaries in a single image to reconstruct the 3D scene.

hang et al. [26] automatically reconstruct the 3D scene based on

he epipolar geometry of multiple views. Hoiem et al. [27] and Sax-

na et al. [28] use single view approaches that reconstruct the 3D

cene automatically. Although we place virtual agents in a 3D en-

ironment, the reconstructed navigation mesh is flat, which is suf-

cient for projecting virtual agents onto the video.

. Framework

Our open-source framework, outlined in Fig. 1 , provides an

ugmented interactive crowd simulation in Unity [29] . We simu-

ate virtual agents walking in navigable regions of the input video

hile avoiding collision with real pedestrians. To reconstruct the

avigable scene, we preprocess the input video using computer vi-

ion techniques included in the OpenCV library [30] . The crowd

imulation runs in real-time, and the preprocessing is performed

ff-line.

The input of our system is the video of an environment con-

aining pedestrians. We assume this video is recorded with a sta-

ionary camera, using an angle similar to surveillance footage. The

umber of active pedestrians in the scene increases the accuracy

f the reconstruction. The main stages of our workflow are as

ollows:

1. Pedestrian Detection and Tracking: We detect the pedestrians

in the video and track their positions in consecutive frames.

We record the tracking data, including pedestrian locations and

postures, into a MOT [31] compatible file.

2. Navigable Region Calculation: We first apply semantic segmen-

tation on multiple frames of the input video to form naviga-

ble region candidates. We filter out the obvious non-navigable

regions such as walls. We then use pedestrian information to

evaluate each region. We accept regions with sufficient pedes-

trian occupancy as navigable.

3. Scene Reconstruction: We extract the vanishing points from the

video and apply perspective correction on the navigable areas

to obtain an aerial view of the navigable scene. We use the

Y. Do ̆gan, S. Sonlu and U. Güdükbay Computers & Graphics 95 (2021) 141–155

Fig. 1. The augmented crowd simulation framework.

g

s

3

i

s

c

r

t

d

t

t

a

c

d

p

t

f

c

p

t

p

t

d

r

t

o

s

a

3

a

m

l

g

w

c

p

g

e

s

d

t

l

s

I

d

s

b

i

n

s

c

r

t

j

i

w

T

c

a

s

t

a

E

c

t

t

U

f

r

term “blueprint” for this top-down view. We utilize an itera-

tive Perspective-n-Point (PnP) solution to correct the imperfect

blueprint to match its real-life counterpart. We then convert

the blueprint to a 2D mesh.

4. Crowd Simulation: We place the 2D navigation mesh into Unity

and position the 3D scene camera so that the navigable regions

of the video overlaps with the projection of the 2D mesh. We

project real pedestrians in the video that are detected in Pedes-

trian Detection and Tracking stage onto the navigable mesh as

dynamic obstacles. The user can insert virtual agents into the

scene and set their destination on the navigable region with

mouse input. Each agent walks towards its destination while

avoiding collision with the projected pedestrians and other

agents.

We discuss our approach for reconstructing the navigable re-

ions in Section 4 . The following subsections describe the other

tages in more detail.

.1. Pedestrian detection and tracking

We first preprocess the input video to extract the pedestrian

nformation. Although we assume the video is recorded with a

tationary camera, there may be minor position or orientation

hanges caused by environmental factors. To eliminate such dis-

uptions, we stabilize the video using optical flow [32] .

We process the video using one of the available pedes-

rian detection techniques including Histogram of Oriented Gra-

ients (HOG) [33] and one-shot SSD networks [34] : either Incep-

ion v2 [35,36] and MobileNet [37] . We use pretrained versions of

hese networks available in OpenCV Tensorflow API [38,39] .

To reduce processing time, we assume anything immobile is not

 pedestrian. This also eliminates idle pedestrians; we find this ac-
143
eptable because their role in collision avoidance is minimal. We

etect movement using background subtraction [40] and look for

edestrians only in these areas.

We detect the pedestrians in the current frame and update the

racking information using the pedestrians detected in preceding

rames. We use Kalman Filtering [41] to minimize position jumps

aused by noisy detection. At the end of this stage, we only re-

ort consistently tracked pedestrians. Tracking information con-

ains pedestrian positions per frame, including the head and foot

ositions of each pedestrian. We define head and foot positions as

he endpoints of the foreground pixel blob which encapsulates the

etected pedestrian. We use this pedestrian data in the navigable

egion calculation, camera calibration, and dynamic obstacle posi-

ioning. We use foot positions to project dynamic obstacles in place

f real pedestrians. We use the combination of head and foot po-

itions as vertical poles for camera calibration and to determine

verage pedestrian height in simulation.

.2. Augmented crowd simulation

We simulate virtual agents in the reconstructed scene that

void real pedestrians. We generate a variety of realistic human

odels using MakeHuman [64] to act as virtual agents. We uti-

ize pathfinding techniques included in Unity to generate a navi-

ation mesh from the reconstructed scene. For collision avoidance,

e use Reciprocal Velocity Obstacles (RVO) [42,43] . RVO is not in-

luded in Unity’s pathfinding tools; therefore, we use the RVO im-

lementation available at [65] . We use Unity’s pathfinding tools for

lobal path planning over the calculated navigation mesh where

ach virtual agent follows a trajectory with sub-goals to the de-

ired position. We utilize RVO for local path planning, i.e., collision

etection and avoidance, where we dynamically adjust the veloci-

ies of virtual agents towards the next goal position to avoid col-

iding with other agents. In traditional RVO, each agent is respon-

ible for adjusting its velocity and direction to prevent oscillations.

n augmented crowd simulations, the real pedestrians follow pre-

etermined paths; only virtual agents actively participate in colli-

ion avoidance. We integrate real pedestrians into the simulation

y setting the maximum number of considered neighboring agents

n RVO to zero. As a result, the real pedestrians simply act as dy-

amic obstacles without any change to their velocity during colli-

ion avoidance.

We project the pedestrians onto the navigable mesh by sending

amera rays through their feet positions on the image plane. We

efresh the projection in every frame and update the position of

hese dynamic obstacles formed by the real pedestrians. If a pro-

ection becomes out of sync with the associated pedestrian’s track-

ng information, it means the tracker lost the pedestrian, therefore

e remove the corresponding dynamic obstacle after a few frames.

he projected dynamic obstacle uses its latest displacement as its

urrent movement vector.

We determine the height of a virtual agent based on the aver-

ge height of the pedestrian detection boxes, projected to the 3D

cene. We send a camera ray r to the head position of the pedes-

rian in the image plane. Given the 3D location of the camera C

nd the feet position F , we determine the head location H using

q. (1) , where D is the vector between the camera and the feet lo-

ation on the XZ-plane. We calculate the distance from the camera

o the head in terms of the ray unit vector ˆ r using D and add it to

he camera location. The height is relative to the unit distance in

nity. We calculate the height at the beginning of the simulation

or an initial approximation, but it can be specified by the user at

un time, considering the existing bounding boxes.

D = (F x , 0 , F z) − (C x , 0 , C z) ,

H =

ˆ r ‖ D ‖ + C.
(1)
ˆ r ·D

Y. Do ̆gan, S. Sonlu and U. Güdükbay Computers & Graphics 95 (2021) 141–155

Fig. 2. The screenshot shows a reconstructed scene including real pedestrians and

virtual agents (in yellow) walking around without colliding with pedestrians or

each other. The original scene is courtesy of PETS09-S2L1 video [44] . (For inter-

pretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)

t

t

c

i

v

s

t

a

s

4

n

v

w

a

w

p

4

t

t

s

Fig. 3. Navigable region calculation of PETS09-S2L1 [44] using Xception network

for segmentation. (a) the original frame, (b) the navigable region candidates with

pedestrian trajectories (in white), (c) union of the navigable regions (in white), (d)

navigable regions visualized on the original frame.

T

(

s

c

m

u

M

w

a

e

t

I

u

s

m

u

o

o

t

s

i

g

d

s

4

n

a

n

b

p

4

s

Our augmented crowd simulation framework starts by inputting

he stabilized video, the pedestrian tracking and camera calibra-

ion data, and the reconstructed navigable mesh. After placing the

amera and the navigable mesh, the simulation starts by project-

ng the video as a background in the camera frustum, and the

irtual agents are visible on top of the navigable regions. Fig. 2

hows a screenshot of a reconstructed scene including real pedes-

rians and virtual agents. In the following section, we focus on the

utomatic determination of navigable areas for augmented crowd

imulations.

. Navigable area reconstruction

We infer the navigable regions of the scene and generate a 2D

avigation mesh based on the union of these regions in an aerial

iew. We position the 2D mesh into our simulation environment

ith the camera configuration of the video, so that the virtual

gents that walk on the navigation mesh appear as if they are

alking on the navigable regions of the video. This reconstruction

rocess involves the following steps:

1. We analyze the video frames to determine the navigable re-

gions using deep-learning-based semantic segmentation and

pedestrian tracking.

2. We determine the scene geometry by detecting the horizon

and the third vanishing point, using line features from the first

frame and pedestrian data. We then use homography to gener-

ate the “blueprint” of the navigable regions.

3. We orient the camera in the reconstructed scene according to

the perspectively-corrected navigable regions. Because the data

used in the previous step contains noise, the perspective cor-

rection is not perfect, which also affects camera placement. For

this reason, perspective correction is readjusted to match the

real-life counterpart for optimum camera placement.

4. We then convert the “blueprint” of the final corrected navigable

regions from an image to a 2D mesh that can be placed in the

3D scene in Unity.

In the following subsections, we discuss each step in detail.

.1. Semantic segmentation for navigable region detection

The first step of the reconstruction process is to determine

he navigable regions using multiple video frames. Even though

he video is stationary, using only the first frame is not enough,

ince walking pedestrians would obscure navigable areas behind.
144
herefore we update the navigable region map every N frames

user-defined) by accumulating the segmented regions. To improve

egmentation performance for videos with hard shadows where

ontext is hardly distinguishable, we apply the shadow removal

ethod by Murali and Govindan [45,46] .

We segment the frames and update navigable region candidates

sing one of the state-of-the-art semantic segmentation methods:

obileNetV2 [47] or Xception [4 8,4 9] . We associate each segment

ith a label, which helps us filter out the obvious non-navigable

reas such as walls, buses, and cars. The labels are different for

ach dataset that we use in training. We used networks pre-

rained [50,51] on ADE20K [52,53] and Cityspaces [54] datasets.

n the evaluation section, we experiment on different input videos

sing various combinations of segmentation networks and training

ets.

We determine the “navigability” of a region not only by its se-

antic label but also by considering the pedestrian data. A partic-

lar region is navigable if the ratio of frames in which the region is

ccupied by at least one pedestrian exceeds a user-defined thresh-

ld. This threshold will be referred to as the “navigation density

hreshold” for the rest of the work. We assess this per-region in-

tance, therefore identifying a region of a particular label as nav-

gable does not change the navigability of other disconnected re-

ions with the same label. In the absence of any pedestrians, we

etermine the navigability based on the semantic label only. Fig. 3

hows the navigable regions extracted from PETS09-S2L1 [44] .

.2. Perspective correction for blueprint generation

To reconstruct a 2D navigation mesh using the image of the

avigable regions, we first obtain their “blueprint”, i.e., the rectified

erial view. To this end, we utilize various computer vision tech-

iques, including RANSAC-based horizon detection, homography-

ased perspective correction, and the solutions for the PnP

roblem.

.2.1. Horizon detection

We first find the vanishing points in the scene to extract the

cene structure observed from the camera viewpoint. In a given

Y. Do ̆gan, S. Sonlu and U. Güdükbay Computers & Graphics 95 (2021) 141–155

i

o

h

t

p

s

n

m

i

I

t

f

i

w

s

i

o

fi

i

w

l

i

s

d

l

v

a

i

c

t

l

c

f

i

p

e

t

a

c

t

l

s

t

a

s

c

v

j

h

t

p

α

p

c

v

Fig. 4. The head and foot positions of the pedestrian at different frames create par-

allel lines in the real world (shown in black), which defines a single vanishing point

at their intersection. We extract the red lines from the image (which are parallel in

the 3D scene) and define another vanishing point where they together define the

horizon, shown in blue. Additionally, we use the postures (head to foot vertical line

of each pedestrian, shown in green) to find the nadir vanishing point, which cannot

be seen in the example because it is too far away. (For interpretation of the refer-

ences to color in this figure legend, the reader is referred to the web version of this

article.)

4

s

w

e

v

t

a

x

d

p

s

o

t

i

t

f

t

t

g

a

r

t

a

t

α

w

t

c

m

u

c

mage, it is possible to find infinitely many vanishing points; in

ur case, we are interested in finding only the three: two on the

orizon and a third one that is not on the horizon. The position of

he third vanishing point concerning the horizon depends on the

lacement of the camera, specifically its tilt angle.

We assume the camera is looking down on the scene in a

urveillance-like configuration, in which it is easier to generate the

avigable areas in comparison to pedestrian level camera place-

ents. Besides, the areas below the horizon have more coverage

n this configuration, enabling a better view of the ground plane.

n this configuration, the horizon is above the image center and

he third point is below it. We refer to the third point as “nadir”

rom this point forward.

To find the vanishing points, we utilize the lines found in the

mage, similar to Li et al. [14] . The lines that are parallel in the real

orld, which can be found abundantly in man-made scenes, inter-

ect at a vanishing point in the image. The intersections of hor-

zontal lines are positioned on the horizon and the intersections

f vertical lines give us the third vanishing point. We can easily

nd such lines by filtering and Hough transform. Given four points

, j, u, v in the 2D image, where ij is parallel to uv in 3D space,

e find each vanishing point using homogeneous coordinates fol-

owing Eq. (2) . To find the horizon, we calculate multiple vanish-

ng points using different line pairs, that are all parallel in the 3D

pace. We then find a line that connects these vanishing points to

etermine the horizon.

p i = [i x , i y , 1] ,

p j = [j x , j y , 1] ,

 i j = p i × p j ,

 p = l i j × l u v .

(2)

In cases where the visual cues of the image background

re not sufficient, we use pedestrian data to calculate vanish-

ng points [17–19,55] . We treat pedestrians as vertical poles that

hange position between frames, assuming they do not change

heir stance too much. We use their postures as parallel vertical

ines that converge at the nadir vanishing point. We use their lo-

ation changes to generate trajectories to be used as additional line

eatures. Having the head and foot positions of the pedestrians

n each frame, we sample the head and foot trajectories of each

edestrian at user-defined intervals. We assume that the height of

ach pedestrian is constant throughout the video; hence, we take

he aforementioned lines to be parallel in the real world and meet

t the horizon in the image (cf. Fig. 4).

Because the pedestrian data and lines from the image may

ontain noise, we use RANSAC [56] and thresholding to reduce

he noise. We only consider a subset of the given lines based on

ength [23] . For every random line combination, we calculate a

core according to the other lines in the subset. If the angle θ be-

ween the voting line and the potential vanishing point is below

n empirically-determined threshold, the vanishing point obtains a

core equivalent to its length. We use the model with the highest

ount as the vanishing point. Additionally, we enforce the horizon

anishing points to be above any line segment from pedestrian tra-

ectories, which ensures that the navigable area stays below the

orizon. Similarly, the nadir point is expected to be below the

rajectories.

For the camera calibration, we need to determine its intrinsic

arameter matrix (K). In K, we assume zero skew (s = 0) and take

as the aspect ratio of the image. We calculate the focal length

f using the orthocenter of the triangle defined by the vanishing

oints as f 2 = | vp 1 − p|| vp 2 − p| − | o − p| 2 , where o is the ortho-

enter, p is the projection of the orthocenter on the horizon, and

p and vp are the vanishing points on the horizon.
1 2

145
.2.2. Image rectification

We use the vanishing points for perspectively correcting the

egmented image. To this end, we rectify the image by projectively

arping it as if the generated image is taken from a frontal, bird’s

ye view angle. When we take an image from such an angle, the

iew plane is parallel to the navigation area in the frame. To rec-

ify an image, we use homography [57] . Given points in one plane

s x, we calculate the corresponding points in the second plane as

′ = Hx where H is the Homography matrix.

To construct H, we need to have at least four-point correspon-

ences between two planes. In our scenarios, we do not have such

oint correspondences as they require knowledge of the scene,

uch as a window with a known shape in the real world. An-

ther way of constructing H, called stratified rectification [20,21] , is

o look at its decomposition (see Eq. (3)). The leftmost matrix H s

s the similarity matrix (metric part), which contains rotation (r),

ranslation (t), and scaling (s) components. H a is the affine trans-

ormation matrix, and H p is the projective transformation matrix.

H = H s H a H p

=

[

sr 11 sr 12 t x
sr 21 sr 22 t y

0 0 1

] [

1 /β −α/β 0

0 1 0

0 0 1

] [

1 0 0

0 1 0

l 1 l 2 1

]

.

(3)

We construct H starting from the projective transformation ma-

rix. In Eq. (3) , the bottom line of H p corresponds to the horizon of

he image in homogeneous coordinates, l ∞

= (l 1 , l 2 , 1) . The homo-

eneous horizon is obtained with vp 1 × vp 2 = l ∞

where each vp is

 vanishing point on the horizon. Applying the projection matrix

ecovers the parallelism of the lines in the image (affine rectifica-

ion). The next step is to recover the metric properties of the im-

ge such as the length ratios and angles of non-parallel lines using

he affine transformation matrix H a . We calculate the parameters

and β in H a using the concept of circular points [58] .

Each method defines circles with center (c α, 0) and radius r,

here the first axis is α and the second is β . The intersections of

he circles determine the affine parameters α and β . To find those

ircular points, Bose and Grimson [22] utilize the trajectories of

oving objects to be used for ratios of lengths in the image. They

se lines in 4 and 5 to calculate the centers and radius of each

ircle. They define each line using two points p and p , where
1 2

Y. Do ̆gan, S. Sonlu and U. Güdükbay Computers & Graphics 95 (2021) 141–155

Fig. 5. The overview of the metric rectification process for PETS09-S2L1. The original image (a). After determining the horizon for the image to calculate the projective

transformation (c), we use the pedestrian trajectories to find the circular points to be used in affine transformation (d). We apply the resulting homography matrix to warp

the image as if the generated image is taken from a bird’s eye view (b).

s

l

i

w

t

w

t

(

r

r

f

p

m

p

i

4

o

e

m

m

w

t

e

a

a

(

P

w

t

e

i

M

2

i

t

X

a

P

t

s

f

r

f

 is the length ratio, �x = p 1 x − p 2 x and similarly for �y . We uti-

ize the feet trajectories of pedestrians as non-parallel paths in the

mage. We assume pedestrians have the same velocity in the real

orld and took all paths with a constant velocity. Therefore, s is

aken as 1. Because there are many intersection points for circles,

e take their average. We then use the resulting point (α, β) in

he affine transformation matrix H a .

c α, c β) =

(
�x 1 �y 1 − s 2 �x 2 �y 2

�y 2
1

− s 2 �y 2
2

, 0

)
, (4)

 =

∣∣∣∣ s (�x 2 �y 1 − �x 1 �y 2)

�y 2
1

− s 2 �y 2
2

∣∣∣∣. (5)

We apply similarity transformations to our resulting metric-

ectified image, as described by Chaudhury et al. [23] to keep its

eatures within the image boundaries. We use the implementation

rovided by Chilamkurthy [59] . Fig. 5 illustrates the stages of the

etric rectification process. The initial rectification has errors from

rojection, but the camera placement process will refine it so that

t is closer to a frontal image.

.3. Camera placement

After applying metric rectification on our segmented image to

btain the aerial view, we determine the orientation of our cam-

ra so that the navigable model’s projection on the view plane

atches its real-world counterpart. We use the pinhole camera

odel for projection, which projects the 3D points (X, Y, Z) in the

orld scene to 2D image points (u, v) based on the projection ma-

rix P in Eq. (7) . K is the intrinsic matrix of the camera, and the
146
xtrinsic part of the camera model is [R | t] . We describe how we

pproximate the extrinsic part of the camera model, as we have

lready constructed the intrinsic matrix using the vanishing points.

u

v
1

)

= P

⎛

⎜ ⎝

X

Y
Z
1

⎞

⎟ ⎠

, (6)

 = K[R | t] , (7)

To find the transformation expressed in the extrinsic matrix,

e utilize PnP solutions that use point correspondences between

he 2D image points and the 3D world points to approximate cam-

ra orientation. A stable implementation of an iterative PnP solver

s provided by the OpenCV library [30] , which uses Levenberg-

arquardt optimization [60] .

We use the warped segmented image as the blueprint of our

D navigable area model, placed in the 3D environment. We use

ts four corners as points in our 3D world, which correspond to

he corners of the image. The flat navigation mesh is placed on the

Z-plane, therefore, the Z axis of the model coordinates are taken

s image height − v from the image and Y is 0. When running the

nP solver, we provide the intrinsic matrix K and assume zero dis-

ortions, which would affect the projection. The initial run of the

olver is generally inaccurate because of metric rectification and

ocal length errors. Fig. 6 (a) shows a sample output. The axes that

epresent the projections of the four corners of the model are away

rom the corners of the image (see Fig. 6 (b)).

Y. Do ̆gan, S. Sonlu and U. Güdükbay Computers & Graphics 95 (2021) 141–155

Fig. 6. The model adjustment process starts with an initial solution to plane-to-plane homography using the PnP solution (b) for (a). As the resulting placement (c) is noisy,

we multiply H −1
projection

with image corners (e) to obtain the perfect fitting model (d). In (c) and (f), the RGB lines correspond to X, Y, and Z coordinates in Unity. The model

images in (a) and (d) are not in scale with illustrations in (b) and (e).

Fig. 7. Example triangulation of the navigable area. We preprocess the model image

with erosion and dilation for refinement.

Table 1

The quantitative comparison of various pedestrian trackers. Overall, deep learning

approaches can achieve more detections at the expense of more false positives;

as seen in lower precision, MOTA, and with higher recall, MOTP than HOG. FPS

is frames processed per second. The deep learning approaches have lower FPS be-

cause they were run using a CPU. The experiments were performed on a personal

computer with Intel®Core TM i7-4500U CPU @1.8 GHz, 8 GB RAM, and NVIDIA 740M.

PETS09-S2L1 (768 ×576 @15 fps)

Method Recall Precision MOTA MOTP FPS

HOG 81.8 76.8 55.5 0.314 0.5

Inception v2 92.8 47.6 -10.5 0.241 0.114

MobileNet 91.4 63.2 36.8 0.244 0.188

Custom (1280 ×720 @30 fps)

Method Recall Precision MOTA MOTP FPS

HOG 18.1 41.4 −7.8 0.400 0.243

Inception v2 42.9 31.8 −50.2 0.343 0.075

MobileNet 30 28 −48 0.334 0.115

c

(

m

m

t

i

Table 2

Dice scores of the segmentation results (higher is better) for PETS09-S2L1 [44] ,

Town Centre [62] , MOT16-04 [31] and our custom video. “No. frames” is the number

of frames used for segmentation update, “Threshold” is density ratio to filter rarely

navigated areas. High dice scores with lower than 50 segmentation updates indicate

that our approach produce accurate navigable regions with threshold as 0.3.

Threshold

Scene No. frames 0.0 0.3 0.7 0.95

PETS09-S2L1 40 0.887 0.895 0.711 0.711

Town Centre 46 0.945 0.945 0.945 0.912

MOT16-04 35 0.912 0.912 0.912 0.912

Custom video 38 0.833 0.833 0.833 0.833

r

p

o

t

t

T

t

w

e

m

e

w

T

m

t

c

a

fi

[

Assume that there is a projection matrix P that maps the 3D

orners of the model to their projections on the image plane

 Eq. (8)). This projection matrix is the inverse of one that would

ap the original image corners in the 2D image plane to the ideal

odel corners; as the camera is identical for both cases. However,

he inverse projection of an image point is ambiguous as there are

nfinite points that are projected on it. To solve this problem, we
147
emove the Y component of the 3D position vector. This turns our

roblem into plane-to-plane homography.

We use the PnP solver to obtain the projection of the corners

f the initial model on the image plane. We calculate H projection be-

ween the corners of the model in the model plane and the projec-

ion in the image plane using four-point correspondence (Eq. (9)).

hen by applying H

−1
projection

to the original image corners, we obtain

he corners for the ideal model on the XZ-plane (Eq. (10)). Because

e now know the ideal model, we use homography to warp our

xisting model corners to its corners (Eq. (11)). The homography

atrix H adjustment is found using 4 points correspondence between

ach models’ corners on the XZ-plane. After adjusting the model,

e estimate the camera pose again using an iterative PnP solution.

o keep the corners of the adjusted model inside the image, we

inimize the initial model and apply similarity transformations to

he final model. Fig. 6 (c) and (d) summarize this correction pro-

ess. We use the result of the PnP solution together with the im-

ge frame properties (e.g., resolution, center) in Unity. We use the

eld of view calculated from the focal length as the vertical FoV.

u

v
1

]

projection

= P

⎡

⎢ ⎣

X

Y
Z
1

⎤

⎥ ⎦

(8)
initial

Y. Do ̆gan, S. Sonlu and U. Güdükbay Computers & Graphics 95 (2021) 141–155

Fig. 8. The example reconstruction of the navigable area model for each video. From top to bottom: the original frame, navigable areas, calculated horizons, the final model

blueprint, detected pedestrians on top of the flat navigation mesh (rendered in black) projected on top of the input video, and the output with real pedestrians and virtual

agents. From left to right: PETS09-S2L1 [44] , Town Centre [62] , MOT16-04 [31] and our custom video. In some videos, the postures of the projected pedestrians do not

perfectly match the pedestrians in the video because of the small errors in the horizon and focal length calculations. We reconstruct the navigable area and place it on the

3D scene successfully even in the presence of such errors.

[
H

u

v
1

]

projection

= H projection

[

X

Z
1

]

initial

(9)
148

−1
projection

[

u

v
1

]

=

[

X

Z
1

]

(10)
corners ideal

Y. Do ̆gan, S. Sonlu and U. Güdükbay Computers & Graphics 95 (2021) 141–155

⎡
⎢⎣
4

o

b

i

a

n

s

t

c

e

t

t

“

a

T

a

i

w

t

a

U

5

v

0

n

a

t

p

p

a

t

c

t

o

i

n

d

t

w

n

a

t

a

m

a

i

r

c

t

v

a

Fig. 9. Segmentation performance in terms of dice scores (higher is better) for

each video. Overall, the performance is more stable with Xception [4 8,4 9] / Citys-

paces [54] combination while decreasing segmentation frequency. PETS video has

problems with MobilenetV2 [47] , especially when using Cityspaces [54] . We obtain

the best results for our custom video when using Xception/Cityspaces.

M

A

t

m

c

t

t

t

a

w

c

t

t

t

i

c

s

w

f

t

t

g

c

e

o

A

i

c

t

v

n

v

1

f

b

X

0

Z
1

⎤

⎥ ⎦

ideal

= H adjustment

⎡

⎢ ⎣

X

0

Z
1

⎤

⎥ ⎦

initial

(11)

.4. Mesh construction

After determining the navigable regions in the video frame and

btaining their frontal view blueprint, we need to convert the

lueprint to a mesh on which agents can navigate. To this end, we

mplemented a mesh generator that converts the given binary im-

ge into a 2D mesh. White areas in this binary image represent

avigable regions. We assume that the area is flat; there are no

tairs or any elevation change in the environment.

We apply dilation and erosion operations on the binary image

o eliminate possible noise, tiny clusters, and holes. Then we find

ontours using OpenCV. We use the tree hierarchy of OpenCV that

numerates each contour from outer to inner. To convert this con-

our hierarchy of border vertices and edges into a mesh, we use

he Triangle [61] framework. This framework uses the notion of a

triangle-eating virus” to process the holes, which removes the tri-

ngulation from its initial point to the closest segment it reaches.

he planting location of the virus needs to be within the whole

rea. To find such a point, we construct the hole as a polygon using

ts encapsulating contours and the contours it encapsulates. Then,

e find a representing point inside the hole region, which will be

he initial point of the virus. Fig. 7 shows a generated mesh ex-

mple. After the triangulation, the resulting mesh is exported to

nity.

. Evaluation

We test our framework on various stationary surveillance-like

ideos including PETS09-S2L1 [44] , Town Centre [62] , MOT16-

4 [31] , and a custom video. Fig. 8 includes the horizon, extracted

avigable areas, their placement into the 3D scene with dummy

gents, and the final output with virtual agents for each test video.

Table 1 shows a quantitative comparison of different pedes-

rian trackers for PETS09-S2L1 and our custom video. Recall is the

ercentage of identified pedestrians overall in the video, whereas

recision is the percentage of correct detections overall. MOTP

nd MOTA represent multi-object precision and accuracy, respec-

ively [63] . MOTP measures the mean dissimilarity between the

orrect detections and the ground truth, where the smaller is bet-

er. MOTA focuses on mismatch errors that occur when a single

bject is identified multiple times as different objects. It can result

n negative values when the detection errors are higher than the

umber of pedestrians.

The results indicate that deep learning-based methods achieve

etections that capture a high number of pedestrians but some of

hem are false positives. This would populate the navigable region

ith more pedestrians than there are in the video; limiting the

avigation of augmented agents. However, for augmented reality

pplications, missing pedestrians in the video is a more impor-

ant problem than false positives; therefore, deep learning-based

pproaches are preferable.

To evaluate the performance of our reconstruction method, we

easure the similarity of the automatically determined navigable

reas in comparison to the ground truth. We report this similar-

ty in terms of the dice score using different parameter configu-

ations. The dice score represents the overlapping pixel area per-

entage between the ground truth and the predicted regions, in

he range [0 . 0 , 1 . 0] . We manually craft segmentation maps of each

ideo to use as the ground truth. We test two available network

rchitectures for semantic segmentation: Xception [4 8,4 9] and
149
obileNetV2 [47] , and compare two datasets for the training:

DE20K [52,53] and Cityspaces [54] . In each combination, we also

ry different frame steps (skipped frame count between each seg-

ented frame).

Fig. 9 shows the dice score of different network-training set

ombinations for each video. Throughout the experiments, we kept

he shadows and fixed the pedestrian navigation density threshold

o 0.33. The results show that the Xception/Cityspaces combina-

ion yields the most stable results in terms of performance. Over-

ll, the dice score decreases as the frame step increases, especially

hen we use Mobilenet/ADE20K. We did not observe significant

hanges in the dice score when we increase the pedestrian naviga-

ion density threshold from 0.3 to 0.7. We think this is related to

he crowd density of the scenes. However, this experiment shows

hat the segmentation frequency is an important parameter that

nfluences performance.

Although we can use all frames of the input video, this in-

reases the running time significantly. We show that we can skip

ome frames of the input without losing accuracy. For example,

hen using Xception/ADE20K, we can segment one frame per 100

rames of PETS and maintain accuracy. This decreases the running

ime of the network by 100 fold. If the frame step is too high,

hen the network does not have enough information on the re-

ions occluded by pedestrians. For example, the segmented frames

ould include different pedestrians at the same position at differ-

nt times, thus the network cannot capture a clear view of the

ccluded region. This effect is more obvious in crowded scenes.

dditionally, in certain cases like Town in Xception/ADE20K, us-

ng a lower frame step results in lower accuracy. We believe this is

aused by the network capturing the noise rather than focusing on

he overall scene. This also justifies skipping some frames.

Table 2 shows the quantitative segmentation results for the test

ideos. For these results, we process all videos using the Xception

etwork based on ADE20K dataset labels, except for the custom

ideo, which is based on Cityscapes labels. A dice score close to

.0 indicates high similarity. We tested different threshold values

or each video, where 0.0 means only pre-defined navigable la-

els are used, not the pedestrian trajectory data. Our custom video

Y. Do ̆gan, S. Sonlu and U. Güdükbay Computers & Graphics 95 (2021) 141–155

Fig. 10. Qualitative comparison between example predicted and ground truth navi-

gable regions. Non-white pixels, red and green, are only navigable in prediction and

ground truth respectively. From top to bottom: PETS09-S2L1 [44] , Town Centre [62] ,

MOT16-04 [31] and our custom video. The segmentation process obtains satisfac-

tory results as long as the navigation density of the pedestrians is high enough, in

terms of the user-defined threshold. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)

p

s

s

w

i

e

d

d

t

s

n

o

c

s

i

a

R

w

f

Fig. 11. Differences between the positions and orientations of impostors and pedes-

trians in the video. A camera with a focal length smaller than expected will be

placed closer to the area, resulting in misplaced impostors (left). The impostors are

better positioned and oriented when the focal length approximation is more accu-

rate (right).

Table 3

RMSE values (lower is better) and failed projection rates (lower is better) along

with basic camera configuration for each video. P height denotes the pedestrian height,

C height denotes the camera height, and NC height is the normalized camera height ob-

tained by normalizing the pedestrian height to 1.65 meters and then adjusting the

camera height accordingly. Except for low FoV cases (MOT16-04), we obtain rela-

tively good results in terms of RMSE . The custom video suffers from a high failed

projection rate due to its poor area segmentation result.

Metric / Data PETS Town MOT Custom

RMSE 0.051 0.036 1.45 0.110

Failed (%) 0.006 5.99 10.09 52.60

FoV 34.95 24.8 9.83 34.05

P height 24 79 46 26

C height 131.45 437.57 569.09 457.83

NC height 9.04 9.14 20,41 29.06

b

p

a

m

d

a

t

t

n

t

U

h

(

h

t

p

m

w

i

n

t

(

m

S

c

t

h

o

t

o

oses a difficult challenge because of its complex structure and

hadows. To improve the performance in this video, we remove

hadows and increase the segmentation update frequency. When

e increase the threshold, we can see an immediate improvement

n PETS video, which is most likely due to getting rid of noisy ar-

as. However, increasing the threshold further starts decreasing the

ice score because navigable areas can be lost in the process. This

oes not apply to MOT16-04 and our custom video, however, as

hey contain a large singular navigable region rather than many

mall chunks (cf. Fig. 10).

Fig. 10 provides a qualitative comparison between predicted

avigable areas and ground truth (manually annotated). Except for

ur custom video where the navigable region is distant from the

amera, we successfully segment most of the navigable regions and

urpass small occlusions (such as poles and traffic cones).

Table 3 shows the performance of our reconstruction method

n terms of Root-Mean-Square-Error (RMSE) [17] following Eq. (12) ,

nd failed projection rates.

MSE =

∑

gt

(
dist (p h , p

gt

h
)

dist (p f , p
gt

h
)

)2

, (12)

here p h and p f are the 2D head and foot positions, respectively,

or pedestrians on the image plane as we project to the naviga-
150
le region in the 3D environment. p
gt

h
are the ground truth head

ositions of pedestrians on the image plane. RMSE represents the

ccuracy of our camera configuration estimation in terms of the

atch between the postures of real pedestrians and corresponding

ummy agents in the 3D scene. A low error shows that the height

nd posture of dummy agents are very close to that of real pedes-

rians. We sum RMSE for each pedestrian in the ground truth de-

ection (denoted as gt) that we can successfully project onto the 2D

avigable map. Failed projections do not contribute to the calcula-

ion of RMSE . For the pedestrian height, we take the first height (in

nity units) determined while the simulation is running.

Except for MOT16-04, the RMSE rates are as low as 0.036. The

igher RMSE rate for MOT16-04 is due to its low Field of View

FoV) angle, which causes the camera to be positioned relatively

igh. In such failure cases, the focal length is very different from

he expected value. Even though the focal length does not affect

erspective correction, it becomes important during camera place-

ent. Camera placement takes into account the calibration process

hen determining its orientation and we adjust our model accord-

ngly. A shorter focal length results in a camera much closer to the

avigable area than its actual counterpart in the real world, and

he inverse applies to a longer focal length. This causes impostors

dummy models used for collision detection and avoidance) to be

isplaced in the 3D scene (cf. Fig. 11 for an example from PETS09-

2L1 [44]). A good focal length estimation is as important as a de-

ent horizon orientation to reduce projection errors.

Table 3 also shows the calculated camera height relative to

he ground (y = 0). For comparison, we normalize the calculated

eight to the average human height of 1.65 m. Table 4 compares

ur results and the ground truth configuration from Town Cen-

re [62] . We do not have the ground truth configurations of the

ther videos. The results show that we can successfully project our

Y. Do ̆gan, S. Sonlu and U. Güdükbay Computers & Graphics 95 (2021) 141–155

Table 4

The comparison of the calculated and ground truth camera internal and external

parameters for Town Center [62] video.

Ground Truth Calculated

Focal length Camera height Focal length Camera height

2696.30 12.39 2455.83 9.14

Fig. 12. The union of three of the manually created navigable region maps for each

input video by three different users. Each color channel in these RGB images repre-

sents the navigable areas determined by one user. White corresponds to the com-

mon navigable regions and black corresponds to the common impassable regions.

m

t

(

i

f

m

i

e

r

Table 5

Average (Avg.) and Standard Deviation (SD) for the dice scores and time measure-

ments (in seconds) of the manual approach in the first preliminary user experiment

with 17 participants for each scene. We compare the average user dice scores to the

performance of our implementation.

Manual Automatic

Scene Dice Avg. Dice SD. Time Avg. Time SD Dice

PETS09-S2L1 0.835 0.140 202.6 162.4 0.895

Town Centre 0.963 0.017 230.7 181.7 0.945

MOT16-04 0.950 0.017 309.6 344.8 0.912

Custom video 0.828 0.045 358.5 367.7 0.833

Table 6

Average time (in seconds) for the users to finish modelling the navigable mesh and

position it into the scene with appropriate camera settings. We compare this to the

total running time of our system using the settings that yield the best navigable

region map accuracy.

Scene Avg. User Time (s) System Time

PETS09-S2L1 438 175.67

Town Centre 230 183

MOT16-04 764 93.7

Custom video 805 126.99

t

a

f

a

a

2

a

a

c

t

s

w

e

g

w

F

S

odels with a very small error because our camera view is as if

he original camera is put closer to the scene with a lower zoom

higher FoV).

Overall, we can detect a horizon even under complex scenar-

os where there are many pedestrians and noisy image features,

or example, MOT16-04. We can fit the corrected navigable area

odel onto the 3D scene for the input video with minimal error

n terms of RMSE. Even in cases where the detected horizons have

rrors, the proposed navigable area correction method successfully

ectifies the navigable region and matches the camera orientation.
ig. 13. Zoomed in still frames showing the collision avoidance of the virtual agent (indic

2L1 [44] video. (For interpretation of the references to color in this figure legend, the re

151
With two follow up preliminary user experiments, we compare

he results of our system to the manual approach in terms of speed

nd accuracy. In the first preliminary user feedback, we ask 17 dif-

erent users (70 . 6% male and 29 . 4% female) to paint the impass-

ble regions on top of each input video. Participants are gradu-

te and undergraduate university students with an average age of

3 . 4 ± 2 . 7 . Participants use an online tool for painting the impass-

ble regions using their personal computers. Three participants use

 graphics tablet, and the remaining fourteen participants use a

omputer mouse. The online tool first displays the instructions and

hen plays the video on a loop. The participants can pause and re-

ume the video as they desire. The tool starts to keep the time

ith the first stroke of the participant. Different brush sizes and

rasers are available to participants. In the resulting navigable re-

ion maps, the black color shows the impassable regions and the

hite color shows the navigable regions. In Fig. 12 , we combine
ated with yellow), when a faster real pedestrian comes from behind, using PETS09-

ader is referred to the web version of this article.)

Y. Do ̆gan, S. Sonlu and U. Güdükbay Computers & Graphics 95 (2021) 141–155

Fig. 14. Still frames showing the virtual agents (indicated with yellow in the first frame) walking on the navigable regions of the environment, while avoiding collision with

other virtual agents and real pedestrians, using Town Centre [62] video.) (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)

Fig. 15. Zoomed in still frames showing the virtual agent (indicated with yellow) walking on the navigable areas of the environment, with the user-defined destination

on the top right, avoiding collision with the real pedestrians, using MOT16-04 [31] video. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

t

t

r

g

i

s

t

w

n

p

t

t

s

i

i

u

F

l

P

g

d

F

i

b

he maps created by a subset of three users into RGB images such

hat each color channel comes from one user.

In Fig. 12 (b), we see that users mostly agree on the navigable

egions. We believe this is because in this scene impassable re-

ions are more obvious. For example, in Fig. 12 (a) and (d), there

s high variance. While some users regard grass areas and con-

truction sites as impassable some users do not. This is a result of

he assumptions of the users; in the user study, we do not specify

hether any of these regions should be regarded as navigable or

ot. Some users determine the grass regions as navigable based on

edestrians that walk on such areas. Dice scores calculated using

hese user-defined navigable regions are given in Table 5 . We see

hat lack of consistency results in poor accuracy while in simpler
152
cenes such as Town Centre, the accuracy of the manual approach

s similar to our results. However, we believe that consistency is

mportant if multiple scenes are analyzed by different users, thus

sing an automatic approach is necessary.

We include frames from our crowd simulation examples in

igs. 13–16 . In Fig. 13 , we focus on a virtual agent that avoids col-

ision with a fast-moving pedestrian that comes from behind in

ETS09-S2L1 [44] . The virtual agent moves slightly out of its path

iving way to the real pedestrian. In Fig. 15 , the virtual agent up-

ates its track to avoid multiple real pedestrians in MOT16-04 [31] .

igs. 14 and 16 show virtual crowds of different densities blend-

ng in the environment of the input video, which is made possi-

le by the correct positioning of the 3D camera and the navigation

Y. Do ̆gan, S. Sonlu and U. Güdükbay Computers & Graphics 95 (2021) 141–155

Fig. 16. Still frames showing the virtual agents (indicated with yellow in the first frame) navigating in the environment of our custom video. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)

m

p

w

t

g

2

e

3

t

a

l

T

a

t

c

l

t

w

6

t

s

i

l

e

t

c

n

t

A

t

a

n

w

a

c

t

r

r

T

p

n

c

t

p

t

t

f

w

f

r

v

a

o

i

t

h

t

t

m

a

r

r

t

n

s

c

m

v

b

i

F

esh. Virtual agents in these videos also avoid collision with real

edestrians.

In the second preliminary user experiment, we ask three users

ho participated in the first experiment to model the flat mesh

hat corresponds to the navigable regions of the scene in the

iven videos. These three users (2 male and 1 female, average age:

4 . 6 ± 3 . 7) are the ones that indicate a high skill level in 3D mod-

ling. We also ask the user to position this flat mesh into the

D scene with appropriate camera settings. Participants are free

o use any 3D modeling software with which they are comfort-

ble. They can view the video and the navigable region map they

abeled in the first experiment while modeling and positioning.

able 6 shows that our system generates the resulting flat mesh

nd places it into the scene with appropriate camera configura-

ions much faster than the average user time. The system time in-

ludes segmentation, rectification, mesh generation, and simulation

oading. The system time includes the user’s line feature parame-

er adjustments in rectification to obtain the best result in cases

here pedestrian trajectories are noisy.

. Conclusion

We introduce an open-source augmented crowd simulation sys-

em that utilizes automatic determination of navigable regions in

urveillance-like videos. The GitHub project including the repos-

tories that contain the source codes of the proposed system is

ocated at https://github.com/users/YalimD/projects/2 . We combine

xisting techniques of semantic segmentation and pedestrian de-

ection for accurate determination of the navigable regions. We

ompare our results with the ground truth and manually labeled

avigable regions. As opposed to the manual approach, we show

hat our solution generates more consistent navigable region maps.

lthough the users can identify the objects of the scene better,

heir decision about which segments are navigable is subjective

nd therefore is not consistent among different users.

As an example use case scenario, we integrate the resulting

avigable regions in augmented crowd simulations. To this end,

e generate a flat navigation mesh using the navigable region map

nd simulate virtual agents on its surface. Thanks to the automati-

ally calibrated scene camera, virtual agents appear to walk inside
153
he navigable regions of the scene while avoiding collision with

eal pedestrians.

In terms of generating the corresponding navigable mesh from

aw footage, our solution works much faster than the average user.

he difficulty of the manual approach is modeling a flat mesh

urely based on single view footage with perspective. The user

eeds to imagine the view of the scene from above and model the

orresponding flat mesh. Additionally, for the augmentation task,

he 3D scene camera should imitate the original camera of the in-

ut footage. Users need to try many configurations to determine

he appropriate camera settings while our system works faster. As

here is no ground truth available for the 3D scenes, our evaluation

ocuses on the generated navigable maps and for the final output,

e present visual results. Since we make use of known techniques

or 3D reconstruction, we expect the navigable meshes to be accu-

ate since the input navigable regions are shown to be accurate.

The use case of the resulting system applies to filling real en-

ironments with virtual characters as in movies. For example, in

 wide shot where the main characters are acting, we can fill the

therwise unoccupied regions with virtual characters to increase

mmersion. In this case, it is important for the virtual characters

o only exist in the navigable regions of the scene so as not to

urt the realism. Since such virtual characters may walk inside

he scene, they need to avoid collision with the main characters

hat preexist in the input video. With our proposed solution ani-

ated characters can be augmented into real-life videos without

ny manual labeling.

The same scenario also applies to integrating virtual tutors into

eal-life scenes. For example, let’s consider a city guide that uses

eal-life footage of different environments. To keep the content up

o date, we may utilize daily footage and thus there could be mi-

or or major differences in the navigable regions of a particular

cene (i.e., cars or construction may block certain regions). In this

ase, our automatic approach can generate the current navigable

esh daily. We can use the same origin and destination for the

irtual tutor and it will navigate according to the current naviga-

le regions and pedestrians without a need for manual labor.

The resulting navigation mesh can also be used for navigat-

ng robot agents in real environments using live surveillance feed.

or example, a drone camera can record short videos at specific

https://github.com/users/YalimD/projects/2

Y. Do ̆gan, S. Sonlu and U. Güdükbay Computers & Graphics 95 (2021) 141–155

l

i

v

i

b

p

g

b

f

w

m

t

t

m

s

D

A

p

S

f

R

[

[

[

[

[

[

[

[

[

[

ocations to reconstruct the navigable regions for the robot to nav-

gate. While the navigable regions are detected using multiple pre-

ious frames, the current dynamic obstacles can be determined us-

ng the current frame of the live feed. For this example, manual la-

eling of the regions is not feasible as the environments could be

reviously unseen and require fast determination of navigable re-

ions. This also justifies our use of segmentation on a limited num-

er of frames. As our results indicate, we do not need all of the

rames of the input video for accurate reconstruction and therefore

e can get the same accuracy much faster.

Our method can function in arbitrary scenes with minimal geo-

etric information. Even in cases where the detected horizon and

he calculated focal length have errors, the navigable area correc-

ion step compensates the distortion to a level so that the final

odel matches the image corners after projection.

The limitations of our work, including the possible further re-

earch areas, can be listed as follows:

• Noisy data in the input video can make it hard to find a valid

horizon, which may create cases in which the navigable area

correction process cannot handle. Furthermore, our horizon cal-

culation algorithm is sensitive to parameters such as the pedes-

trian posture sample rate, and scene line configuration.
• Our rectification algorithm cannot handle cases where the hori-

zon is visible in the image. This is because the 3D model points

are expected to match with the 2D image points. However, the

points above the horizon do not satisfy this constraint. In this

case, it is necessary to crop the input image so that all pixels

lie below the horizon. Afterward, we should calculate the cam-

era configuration accordingly so that the corners of the cropped

image can match the corners of the cropped model.
• Our navigable area extraction method takes only the trajecto-

ries of pedestrians in the video into account when determining

navigability, which might limit the area of navigable regions.
• We do not consider the illumination conditions of the input

footage, and the possible occlusion of real pedestrians by vir-

tual agents. We render each virtual agent in front of the video

and the real pedestrians, even if the agent is behind the pedes-

trian in the 3D scene.
• For projected pedestrians to be able to occlude virtual agents,

we can utilize the foreground pixels of background subtraction

and follow a “billboarding” approach: use each pixel cluster as

a textured plane at its corresponding pedestrian location and

use it as an occlusion mask.
• We omit immobile pedestrians in our pedestrian detection

stage for increased performance. Idle pedestrians that start

moving could cause sudden velocity changes in virtual agents

that appear unnatural. Pedestrian detection could work on the

whole image in exchange for fast preprocessing in videos where

idle pedestrians are frequent.

eclaration of Competing Interest

The authors declare that they have no conflicts of interest.

cknowledgments

The authors are grateful to Lori Russell-Da ̆g and İpek Sözen for

roofreading the manuscript.

upplementary material

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.cag.2021.01.012 .
154
eferences

[1] Musse SR , Jung CR , Jacques J , Braun A . Using computer vision to simulate the

motion of virtual agents. Comput Anim Virtual Worlds 2007;18(2):83–93 .

[2] Lerner A , Chrysanthou Y , Lischinski D . Crowds by example. Comput Graph Fo-
rum 2007;26(3):655–64 .

[3] Kim S , Bera A , Best A , Chabra R , Manocha D . Interactive and adaptive data–
driven crowd simulation. In: Proceedings of IEEE virtual reality. VR ’16;. IEEE;

2016 . 29–38.
[4] Jablonski K , Argyriou V , Greenhill D , Velastin SA . Evaluation framework for

crowd behaviour simulation and analysis based on real videos and scene re-

construction. In: Proceedings of the 6th Latin-American conference on net-
worked and electronic media. LACNEM ’15;. IET; 2015 . 1–6.

[5] Amirian J , van Toll W , Hayet JB , Pettré J . Data-driven crowd simulation with
generative adversarial networks. In: Proceedings of the 32nd international con-

ference on computer animation and social agents. CASA 19;. New York, NY,
USA: Association for Computing Machinery . 7–10.

[6] Amirian J , Hayet JB , Pettre J . Social ways: learning multi-modal distributions of
pedestrian trajectories with GANs. In: Proceedings of the IEEE/CVF conference

on computer vision and pattern recognition workshops. CVPRW ’19;; 2019b.

p. 2964–72 .
[7] Bera A , Kim S , Manocha D . Online parameter learning for data-driven crowd

simulation and content generation. Comput Graph 2016;55:68–79 .
[8] Zheng F , Li H . ARCrowd-a tangible interface for interactive crowd simulation.

In: Proceedings of the 16th international conference on intelligent user inter-
faces. IUI ’11;. ACM; 2011 . 427–430.

[9] Baiget P , Fernández C , Roca X , Gonzàlez J . Generation of augmented video se-

quences combining behavioral animation and multi-object tracking. Comput
Anim Virtual Worlds 2009;20(4):473–89 .

[10] Olivier AH , Bruneau J , Kulpa R , Pettré J . Walking with virtual people: Evalua-
tion of locomotion interfaces in dynamic environments. IEEE Trans Vis Com-

putGraph 2018;24(7):2251–63 .
[11] Rivalcoba JI , De Gyves O , Rudomin I , Pelechano Gómez N . Coupling cam-

era-tracked humans with a simulated virtual crowd. In: Proceedings of the

9th international conference on computer graphics theory and applications.
GRAPP ’14;. SciTePress; 2014 . 312–321.

[12] Zhang Y , Pettre J , Ond ̌rej J , Qin X , Peng Q , Donikian S . Online inserting
virtual characters into dynamic video scenes. Comput Anim Virtual Worlds

2011;22(6):499–510 .
[13] Do ̆gan Y , Demirci S , Güdükbay U , Dibeklio ̆glu H . Augmentation of virtual

agents in real crowd videos. Signal Image Video Process 2019;13(4):643–

650 .
[14] Li B , Peng K , Ying X , Zha H . Vanishing point detection using cascaded 1D

Hough Transform from single images. Pattern Recognit Lett 2012;33(1):1–8 .
[15] Zhai M , Workman S , Jacobs N . Detecting vanishing points using global im-

age context in a non-Manhattan world. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition. CVPR ’16; 2016. p. 5657–

5665 .

[16] Trocoli T , Oliveira L . Using the scene to calibrate the camera. In: Proceedings of
the 29th SIBGRAPI conference on graphics, patterns and images. SIBGRAPI’16.

IEEE; 2016 . 455–461.
[17] Liu J , Collins RT , Liu Y . Surveillance camera autocalibration based on pedestrian

height distributions. In: British machine vision conference. In: BMVC ’11, 2;
2011. p. 1–11 .

[18] Brouwers GM , Zwemer MH , Wijnhoven RG , de With P . Automatic calibration of

stationary surveillance cameras in the wild. In: European conference on com-
puter vision. ECCV ’16;. Springer; 2016 . 743–759.

[19] Jung J , Yoon I , Lee S , Paik J . Object detection and tracking-based camera cali-
bration for normalized human height estimation. J Sens 2016;2016 . Article no.

8347841, 9 pages
20] Liebowitz D , Zisserman A . Metric rectification for perspective images of planes.

In: Proceedings of the IEEE computer society conference on computer vision
and pattern recognition. CVPR ’98;. IEEE; 1998 . 482.

[21] Liebowitz D , Criminisi A , Zisserman A . Creating architectural models from im-

ages. Comput Graph Forum 1999;18(3):39–50 .
22] Bose B , Grimson E . Ground plane rectification by tracking moving objects. In:

Proceedings of the joint IEEE International workshop on visual surveillance
and performance evaluation of tracking and surveillance; 2003. p. 94–101 .

23] Chaudhury K , DiVerdi S , Ioffe S . Auto-rectification of user photos. In: IEEE in-
ternational conference on image processing. (ICIP ’14). IEEE; 2014 . 3479–3483.

24] Bulbul A , Dahyot R . Populating virtual cities using social media. Comput Anim

Virtual Worlds 2017;28(5) . Article no. e1742, 10 pages.
25] Iizuka S , Kanamori Y , Mitani J , Fukui Y . Efficiently modeling 3D scenes from a

single image. IEEE Comput Graph Appl 2012;32(6):18–25 .
26] Zhang G , Qin X , An X , Chen W , Bao H . As-consistent-as-possible composit-

ing of virtual objects and video sequences. Comput Anim Virtual Worlds
2006;17(3-4):305–14 .

27] Hoiem D , Efros AA , Hebert M . Automatic photo pop-up. ACM Trans Graph

2005;24(3):577–84 .
28] Saxena A , Sun M , Ng AY . Make3D: learning 3D scene structure from a single

still image. IEEE Trans Pattern Anal MachIntell 2009;31(5):824–40 .
29] Team U.. Unity. Accessed 07 Sep. 2020a. Available at http://unity3d.com/ .

30] Team O.. OpenCV (open source computer vision library). Accessed 07 Sep.
2020b. Available at http://opencv.org .

[31] Milan A, Leal-TaixéL, Reid ID, Roth S, Schindler K. MOT16: a benchmark for

multi-object tracking. CoRR 2016 . http://arxiv.org/abs/1603.00831 .

https://doi.org/10.1016/j.cag.2021.01.012
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0001
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0001
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0001
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0001
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0001
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0002
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0002
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0002
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0002
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0003
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0003
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0003
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0003
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0003
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0003
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0003
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0004
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0004
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0004
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0004
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0004
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0004
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0005
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0005
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0005
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0005
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0005
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0005
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0006
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0006
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0006
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0006
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0007
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0007
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0007
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0007
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0008
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0008
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0008
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0008
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0009
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0009
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0009
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0009
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0009
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0010
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0010
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0010
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0010
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0010
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0011
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0011
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0011
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0011
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0011
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0011
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0012
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0012
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0012
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0012
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0012
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0012
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0012
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0013
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0013
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0013
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0013
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0013
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0014
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0014
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0014
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0014
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0014
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0015
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0015
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0015
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0015
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0016
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0016
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0016
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0016
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0017
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0017
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0017
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0017
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0018
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0018
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0018
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0018
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0018
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0018
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0019
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0019
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0019
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0019
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0019
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0019
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0020
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0020
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0020
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0020
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0021
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0021
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0021
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0021
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0022
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0022
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0022
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0023
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0023
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0023
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0023
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0023
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0024
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0024
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0024
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0024
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0025
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0025
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0025
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0025
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0025
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0026
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0026
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0026
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0026
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0026
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0026
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0027
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0027
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0027
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0027
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0028
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0028
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0028
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0028
http://unity3d.com/
http://opencv.org
http://arxiv.org/abs/1603.00831

Y. Do ̆gan, S. Sonlu and U. Güdükbay Computers & Graphics 95 (2021) 141–155

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
32] Lucas BD , Kanade T . An iterative image registration technique with an applica-
tion to stereo vision. In: Proceedings of the 7th international joint conference

on artificial intelligence. In: IJCAI ’81, 2; 1981. p. 674–9 . Vancouver, BC, Canada.
33] Dalal N , Triggs B . Histograms of oriented gradients for human detection. In:

Proceedings of the IEEE computer society conference on computer vision and
pattern recognition. In: CVPR ’05, 1. IEEE; 2005 . 886–893.

34] Liu W , Anguelov D , Erhan D , Szegedy C , Reed S , Fu CY , et al. SSD: single
shot multibox detector. In: European conference on computer vision. ECCV ’16.

Springer; 2016 . 21–37.

35] Szegedy C , Liu W , Jia Y , Sermanet P , Reed S , Anguelov D , et al. Going deeper
with convolutions. In: Proceedings of the ieee conference on computer vision

and pattern recognition. CVPR ’15; 2015. p. 1–9 .
36] Szegedy C , Vanhoucke V , Ioffe S , Shlens J , Wojna Z . Rethinking the inception

architecture for computer vision. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. CVPR ’16; 2016. p. 2818–26 .

37] Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, et al. Mo-

bileNets: efficient convolutional neural networks for mobile vision applica-
tions. CoRR 2017 . http://arxiv.org/abs/1704.04861 .

38] Huang J , Rathod V , Sun C , Zhu M , Korattikara A , Fathi A , et al. Speed/accuracy
trade-offs for modern convolutional object detectors. In: Proceedings of the

IEEE Conference on computer vision and pattern recognition. CVPR ’17; 2017.
p. 3296–305 .

39] Kurtaev D.. OpenCV tensorflow object detection API. Accessed

07 Sep. 2020. Available at https://github.com/opencv/opencv/wiki/
TensorFlow- Object- Detection- API .

40] Zivkovic Z , van der HF . Efficient adaptive density estimation per im-
age pixel for the task of background subtraction. Pattern Recognit Lett

2006;27(7):773–80 .
[41] Welch G., Bishop G.. An introduction to the Kalman filter. 1995. Tech.

Rep.,Chapel Hill, NC, USA, University of North Carolina at Chapel Hill.

42] Van den Berg J , Lin M , Manocha D . Reciprocal velocity obstacles for real-time
multi-agent navigation. In: Proceedings of the IEEE international conference on

robotics and automation. ICRA ’08. IEEE; 2008 . 1928–1935.
43] Van Den Berg J , Guy SJ , Lin M , Manocha D . Reciprocal n-body collision avoid-

ance. In: Robotics research. Springer; 2011 . 3–19.
44] Ferryman J , Shahrokni A . Pets2009: dataset and challenge. In: Proceedings of

the twelfth IEEE international workshop on performance evaluation of tracking

and surveillance. IEEE; 2009 . 1–6.
45] Murali S , Govindan V . Shadow detection and removal from a single image us-

ing LAB color space. Cybern Inf Technol 2013;13(1):95–103 .
46] Murali S , Govindan V . Removal of shadows from a single image. In: Proceed-

ings of first international conference on futuristic trends in computer science
and engineering, 4; 2006. p. 111–14 .

[47] Sandler M , Howard A , Zhu M , Zhmoginov A , Chen LC . MobileNetV2: inverted

residuals and linear bottlenecks. In: Proceedings of the IEEE conference on
computer vision and pattern recognition; 2018. p. 4510–20 .

48] Chollet F . Xception: deep learning with depthwise separable convolutions. In:
Proceedings of the IEEE conference on computer vision and pattern recogni-

tion. CVPR ’17; 2017. p. 1251–8 .
155
49] Dai J, Qi H, Xiong Y, Li Y, Zhang G, Hu H, et al. Deformable convolutional net-
works. CoRR 2017 . http://arxiv.org/abs/1703.06211 in “ICCV COCO Challenge

Workshop”.
50] Chen L, Papandreou G, Schroff F, Adam H. Rethinking atrous convolution for

semantic image segmentation. CoRR 2017 . http://arxiv.org/abs/1706.05587 .
[51] Chen LC , Zhu Y , Papandreou G , Schroff F , Adam H . Encoder-decoder with

atrous separable convolution for semantic image segmentation. In: Ferrari V,
Hebert M, Sminchisescu C, Weiss Y, editors. Proceedings of the 15th Euro-

pean conference computer vision. ECCV ’18, Lecture Notes in Computer Sci-

ence, 11211. Cham: Springer International Publishing; 2018 . 833–851.
52] Zhou B , Zhao H , Puig X , Fidler S , Barriuso A , Torralba A . Scene parsing through

ADE20K dataset. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. CVPR ’17; 2017. p. 5122–30 .

53] Zhou B , Zhao H , Puig X , Xiao T , Fidler S , Barriuso A , et al. Semantic
understanding of scenes through the ADE20K dataset. Int J Comput Vis

2019;127(3):302–21 .

54] Cordts M , Omran M , Ramos S , Rehfeld T , Enzweiler M , Benenson R , et al. The
CityScapes dataset for semantic urban scene understanding. In: Proceedings

of the IEEE conference on computer vision and pattern recognition. CVPR ’16;
2016. p. 3213–23 .

55] Lv F , Zhao T , Nevatia R . Camera calibration from video of a walking human.
IEEE Trans Pattern Anal MachIntell 2006;28(9):1513–18 .

56] Fischler MA , Bolles RC . Random Sample Consensus: a paradigm for model fit-

ting with applications to image analysis and automated cartography. Commun
ACM 1981;24(6):381–95 .

57] Hartley R , Zisserman A . Multiple view geometry in computer vision. Cam-
bridge University Press; 2003 .

58] Semple J , Kneebone G . Algebraic projective geometry. Oxford, UK: Oxford Uni-
versity Press; 1979 .

59] Chilamkurthy S.. Github: automated rectification of image. 2016, Accessed 6

Sep. 2020. Available at https://github.com/chsasank/Image-Rectification .
60] Moré JJ . The Levenberg-Marquardt algorithm: implementation and theory. In:

Watson G, editor. Numerical analysis. Lecture Notes in Mathematics, 230.
Berlin, Heidelberg: Springer; 1978 . 105–116.

61] Shewchuk J . Triangle: engineering a 2D quality mesh generator and Delaunay
triangulator. Appl Comput Geom Towards Geom Eng 1996:203–22 .

62] Benfold B , Reid ID . Guiding visual surveillance by tracking human attention. In:

Proceedings of the British machine vision conference. BMVC ’09; 2009. p. 1–11 .
63] Leal-Taixé L, Milan A, Reid ID, Roth S, Schindler K. MOTChallenge 2015: to-

wards a benchmark for multi-target tracking. CoRR 2015 . Accessed 28 Nov.
2018; available at http://arxiv.org/abs/1504.01942 .

64] team T.M.. Makehuman 1.2.0. 2020. http://www.makehumancommunity.org/
Accessed: 2020-12-8.

65] van den Berg, J., Guy, S. J., Snape, J. Lin, M. C., Manocha, D., RVO2 library: recip-

rocal collision avoidance for real-time multi-agent simulation. http://gamma.
cs.unc.edu/RVO2/ Accessed: 2020-12-12.

http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0032
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0032
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0032
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0032
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0033
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0033
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0033
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0033
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0034
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0034
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0034
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0034
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0034
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0034
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0034
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0034
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0034
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0035
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0035
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0035
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0035
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0035
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0035
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0035
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0035
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0036
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0036
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0036
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0036
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0036
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0036
http://arxiv.org/abs/1704.04861
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0038
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0038
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0038
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0038
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0038
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0038
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0038
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0038
https://github.com/opencv/opencv/wiki/TensorFlow-Object-Detection-API
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0040
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0040
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0040
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0042
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0042
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0042
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0042
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0042
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0043
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0043
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0043
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0043
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0043
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0043
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0044
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0044
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0044
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0044
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0045
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0045
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0045
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0046
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0046
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0046
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0047
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0047
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0047
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0047
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0047
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0047
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0048
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0048
http://arxiv.org/abs/1703.06211
http://arxiv.org/abs/1706.05587
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0051
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0051
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0051
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0051
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0051
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0051
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0051
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0052
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0052
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0052
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0052
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0052
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0052
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0052
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0053
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0053
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0053
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0053
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0053
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0053
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0053
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0053
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0054
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0054
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0054
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0054
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0054
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0054
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0054
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0054
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0055
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0055
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0055
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0055
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0056
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0056
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0056
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0057
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0057
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0057
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0058
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0058
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0058
https://github.com/chsasank/Image-Rectification
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0060
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0060
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0060
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0061
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0061
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0062
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0062
http://refhub.elsevier.com/S0097-8493(21)00012-1/sbref0062
http://arxiv.org/abs/1504.01942
http://www.makehumancommunity.org/
http://gamma.cs.unc.edu/RVO2/

	An augmented crowd simulation system using automatic determination of navigable areas
	1 Introduction
	2 Related work
	2.1 Data-driven crowd simulations
	2.2 Augmenting virtual agents into real-life videos
	2.3 Reconstructing navigable regions

	3 Framework
	3.1 Pedestrian detection and tracking
	3.2 Augmented crowd simulation

	4 Navigable area reconstruction
	4.1 Semantic segmentation for navigable region detection
	4.2 Perspective correction for blueprint generation
	4.2.1 Horizon detection
	4.2.2 Image rectification

	4.3 Camera placement
	4.4 Mesh construction

	5 Evaluation
	6 Conclusion
	Declaration of Competing Interest
	Acknowledgments
	Supplementary material
	References

