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Abstract Realistic illumination of virtual objects placed
in real videos is important in terms of achieving visual
coherence. We propose a novel approach for illumination
estimation on time-lapse videos and seamlessly insert vir-
tual objects in these videos in a visually consistent way. The
proposed approach works for both outdoor and indoor envi-
ronments where the main light source is the Sun. We first
modify an existing illumination estimation method that aims
to obtain sparse radiance map of the environment in order
to estimate the initial Sun position. We then track the hard
ground shadows on the time-lapse video by using an energy-
based pixel-wisemethod. The proposedmethod aims to track
the shadows by utilizing the energy values of the pixels that
forms them. We tested the method on various time-lapse
videos recorded in outdoor and indoor environments and
obtained successful results.

Keywords Sun position estimation · Light source estima-
tion · Illumination estimation · Time-lapse video · Shadow
tracking · Image/video editing

1 Introduction

One typical video editing application is to integrate vir-
tual objects seamlessly into a real video, especially in a
visual context, so that the user cannot differentiate the virtual
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objects from the real ones. To this end, consistent illumina-
tion of virtual objects within the real video is important to
obtain visual coherence. This can be achieved in different
ways, such as estimating the locations of light sources in the
real environment, considering the shadows cast by/on virtual
objects or calculating the global illumination.

Light source estimation in indoor environments is more
complex than the one in outdoor environments because
indoor environments may include different kinds of light
sources while the main light source in outdoor environments
is the Sun. However, light sources in indoor environments are
generally static, whereas the Sun position changes over time.
Regarding the environments that are lit mainly by sunlight,
a user may want to observe the virtual objects on different
times of the day where the Sun is in a different position
each time. For example, an architect may want to analyze
the appearance of a building in the course of the day. For
this purpose, time-lapse videos can be formed by capturing
frames of the real environment during the day and then they
can be combined with Augmented Reality (AR) technology.

We introduce a new approach that provides visual con-
sistency on time-lapse videos where the main light source
is the Sun. First, we estimate the initial position of the Sun
from the first frame of the time-lapse video by using a modi-
fied and enhanced state-of-the-art method. Then, by keeping
track of the shadow length and direction found on the ground,
we estimate the change in the Sun position and direction on
each frame and adjust the illumination of the virtual objects
accordingly. The contributions are as follows:

– We modify and enhance an existing method, which tries
to estimate the illumination of a real scene from a single
image, for estimating the Sun position.

– We propose a new algorithm that can estimate the Sun
position fast and accurately on time-lapse videos. By
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means of the energy-based pixel-wise algorithm we
developed, we can track the hard ground shadows during
the time-lapse video and estimate the changes in the Sun
position. We use the estimated Sun position to insert vir-
tual objects into the time-lapse videowith correct lighting
and shadows.

2 Related work

There are many studies related to illumination estimation for
both outdoor and indoor environments. Because the main
light source in outdoor environments is the Sun, the studies
related to estimating illumination on outdoor environments
mainly focus on finding the Sun position. In some studies,
the skylight is considered as the ambient light of the scene
in addition to the Sun [1–5]. Some studies assume that the
Sun position is known and find the change in intensity of the
sunlight during a period of time [6–8].

Illumination estimation in indoor environments is chal-
lenging because these environments may have more than one
dominant light source and these sources may have different
shapes. Most of the studies related to indoor environments
calculate the radiance on the scene instead of estimating the
light source positions [9–15]. For this purpose, they need the
3D model or geometric information of the scene and this is
achieved mostly by using RGB-D cameras and depth maps.

There are not so many studies related to illumination
estimation in time-lapse videos. Sunkavalli et al. [16] and
Zhang et al. [17] both decompose each image in the time-
lapse video into sunlight and skylight basis images by using
the information from whole video sequence. They aim to
relight the scene easily, to recover a portion of the scene
geometry and to perform some image editing operations.

Lalonde et al. [18] transfer appearance and illumination
from time-lapse sequences to other time-lapse sequences or
single images. They have a Webcam database that contains
time-lapse sequences. To transfer appearance to an original
image, they evaluate illumination conditions that are the sun
position, sky color and weather conditions of the original
image. They find an image from the Webcam database with
similar illumination conditions and transfer an object from
that image to the original image. For illumination transfer,
they propose a model to obtain the high dynamic range envi-
ronment maps of the images. They use the acquired environ-
ment maps to illuminate the virtual objects into the images.

3 Estimation of the initial Sun position

We need to estimate the initial Sun position before tracking
shadows to calculate the change in the Sun position during
a time-lapse video sequence. For this purpose, we use the
approach of Chen et al. [19], which tries to estimate the scene

Fig. 1 Sample outdoor environment (left), sample indoor environment
with the Sun as the main light source (right)

illumination from a single image, and modify it according to
our needs. The main advantage of this approach is that it
tries to estimate the illumination in both outdoor and indoor
environments. Because we are dealing with environments
where theSun is themain light source, thesemay include both
outdoor and indoor environments whose main light source is
the Sun (cf. Fig. 1).

The approach by Chen et al. consists of three stages.
They construct the scene geometry from a single image
using image features. They then decompose the image into
its intrinsic components, which are reflectance and shad-
ing images. Finally, with an optimization process that uses
the geometry information and the shading image, they esti-
mate the environment illumination. Their approach does not
estimate the exact positions of light sources; instead, they
approximate the environment illumination with light sources
placed symmetrically on a hemisphere covering the scene.
We describe how we modify their approach for time-lapse
videos.

3.1 Geometry extraction

Chen et al. require the geometric model of the scene repre-
sented by the image, which is used to calculate the normal
vectors of surfaces for illumination computations. To this
end, they use the approach by Saxena et al. [20], which esti-
mates the scene geometry from a single image. We observed
that the accuracy of this approach (65%) is not sufficient to
estimate a correct position of the Sun because the extracted
scene geometry includes a lot of incorrect surface normals.

We obtain the coarse 3D model of the scene in a pre-
processing stage that requires some manual processing. In a
study whose only aim is to estimate the Sun position in a sin-
gle image, the automatic geometry extraction from the image
generally gives acceptable results. However, for estimating
the initial Sun position for time-lapse videos, inaccurate
results at the initial stage will affect later stages severely.

3.2 Intrinsic components

On the second stage of the illumination estimation,Chen et al.
decompose the input image into its intrinsic components,
which are reflectance and shading images (Fig. 2b, c). An
image can be considered as per-pixel product of its intrinsic
components. The shading image obtained as a result of the
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Fig. 2 Intrinsic components of an image. Starting from the input image
(a), we compute the reflectance image (b), and the shading image (c)

decomposition can be accepted as the irradiance of the sur-
face and used in the illuminationmodel.We use the approach
byGarces et al. [21] to decompose the images into their intrin-
sic components.

3.3 Illumination model

At this stage, our aim is to estimate the Sun position from the
first frame of the time-lapse video by using the 3D model of
the scene and the shading image that we acquire on the pre-
vious stage. To this end, we use the illumination estimation
method proposed by Chen et al. tailored to our needs.

We first place eight spotlights over the 3D model of the
scene homogeneously and symmetrically in such a way that
these spotlights will construct a hemisphere over the scene.
Each spotlight is directed to the center of the constructed
hemisphere, and their lighting ranges are adjusted in such
a way that they enclose the 3D model entirely. These spot-
lights approximate the real-world illumination caused by the
main light sources in the scene. Apart from these spotlights,
a point-light is also placed over the hemisphere in order to
obtain the ambient light coming from the other points on the
scene other than the main light sources. Figure 3 depicts a
sample model with its light sources.

In the second step, we find the corresponding positions
and normals of the pixels in the 3D model. For this pur-
pose, we match the image with the 3D model of the scene by
an edge-based camera tracking algorithm that uses control
points assigned on the model edges (cf. Fig. 4). Then, a ray
is cast from the camera position to each pixel in the image.
The first point where the ray cast intersects the 3D model is
the position of the pixel. The normal value of the pixel can
also be found easily.

In the next step,wedetermine the spotlights that contribute
to the illumination of each pixel. For this purpose, we cast a

Fig. 3 A 3D model with eight spotlights and one point-light

Fig. 4 Image matched with the 3D model

ray from each of eight spotlights to the geometric position of
a pixel. If the first point where the ray cast from a spotlight
intersects the 3D model is equal to the geometric position
of the pixel to which the ray is cast, then the spotlight con-
tributes to the illumination of the pixel. Otherwise, the pixel
is blocked by some parts of the model and that spotlight does
not contribute to the illumination of the pixel. If we subtract
the position of a spotlight from the position of a pixel, we
obtain the light vector from the spotlight to the pixel, which
we use for illumination calculation. On Lambertian surfaces,
the irradiance can be represented by [22]:

S = Ia +
m∑

i=1

vi Ii (Li · N ), (1)

where S is the pixel values of the shading image, Ia is the
ambient light, Ii is the intensity of the i th light source reach-
ing to the pixel positions, Li is the direction of the i th light
source to the pixel positions,m is the number of light sources
that illuminate the pixels, N is the normal of the pixel posi-
tion, and vi is the visibility of the i th light source at each pixel.
The visibility term is 1 if the light source sees the pixel and 0
if it does not. Among these variables, we know S, Li , N , and
vi and we need to find Ia and Ii . By applying Levenberg–
Marquardt minimization using the shading image and the
estimated irradiance, which is a robust algorithm to solve
nonlinear least squares problems [23], we obtain the inten-
sity values of the eight spotlight sources and the point-light
source required to approximate the real-world illumination:

arg max
(Ia ,I1,I2,...,I8)

ns∑

j=1

(
S j −

(
Ia +

8∑

i=1

vi Ii (Li · N )

))
, (2)

where S j is the value of the j th pixel on the shading image
and ns is the total number of pixels.

Although we obtain the intensity values of the spotlights
and point-light we placed over the 3D model, in the environ-
ments where the main light source is the Sun, the source of
illumination is mostly concentrated on one or two spotlights.
For the next stage of our framework, we need to find a single
position for the Sun so that we can easily track its movement.
We determine the center of intensity formed by the spotlights
on the hemisphere as the estimated position of the Sun and
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Fig. 5 The overview of the initial Sun position estimation

place a directional light source to that position instead of the
eight spotlights. The point-light source that we place over
the hemisphere is used to account for the ambient light. The
overall framework is depicted in Fig. 5.

4 Shadow-tracking-based Sun position estimation

The minimization algorithm to estimate the initial Sun posi-
tion takes around ten seconds for a video frame of 480×640
resolution. Because of its high computational cost, we can-
not apply it on every frame. To estimate the Sun position for
the remaining frames, we propose a method that uses hard
ground shadows on the Sun direction, which we assume that
there exists at least one hard shadow in the video. Ourmethod
estimates the Sun position at each frame based on the changes
in the length and direction of the hard shadow.

First, we detect hard ground shadows in the first frame.
Then, we test these shadows according to a set of criteria
(described below), calculate the energy image of the first
frame and determine the most appropriate shadow for track-
ing. On the following frames, we track this shadow by using
a pixel-wise method that uses the energy images of these
frames. According to the changes in the length of the shadow
and its direction, we estimate the elevation and azimuth
angles of the Sun and update the Sun position.

4.1 Shadow selection

In order to estimate the Sun position during a time-lapse
video, we use hard ground shadows. Ground shadows are
more informative than the shadows on the other surfaces for

Fig. 6 An output image with shadow edges shown in blue (left), and
a sample energy image (right)

Fig. 7 Shadow edges eliminated in Steps 1, 2, 3, 4 and the selected
shadow.The elevation angle depends on the shadow length. The azimuth
angle is updated by adding the difference between the θ values in current
and previous frames

estimating the elevation and azimuth angles of the Sun. Hard
shadows are easier to track than soft shadows because soft
shadows may be unstable during the video.

Although hard shadows are good at estimating the Sun
position, every hard ground shadow may not work for our
purpose. We determine an appropriate hard ground shadow
to track during the time-lapse video. For this purpose, we
detect the hard ground shadows on the first frame by using
the method proposed by Lalonde et al. [24]. An example
output of this method can be seen in Fig. 6. We also need to
extract the energy image of the first frame. The energy image
is useful to eliminate the hard shadows not used for Sun posi-
tion estimation and to track the selected hard shadow in the
following frames because the pixels that form the shadow
edges have higher energy values than the other pixels. An
energy image can be generated by applying an energy func-
tion to each pixel in an image. We use the energy function
proposed by Avidan and Shamir [25]:

e(I) =
∣∣∣∣

∂

∂x
I

∣∣∣∣ +
∣∣∣∣

∂

∂y
I

∣∣∣∣ , (3)

where I is the input image. We apply this energy function to
the first frame of the time-lapse video and obtain its energy
image (cf. Fig. 6). We use the energy images during the
shadow tracking process in subsequent frames.

We eliminate all but one hard ground shadow and decide
the most suitable one to be used in the subsequent frames
according to the following steps in the given order (cf. Fig. 7):
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1. If the angle between a shadow edge and the estimated
initial position of the Sun is greater than 10◦, then that
shadow is eliminated. Such shadows do not give accu-
rate information about the changes on the Sun position.
Because the initial position of the Sun is estimated with
at most 10◦ error, we do not want to miss a shadow that
is on the direction of the Sun.

2. If at least one end of a shadow is on the boundary of the
frame, that shadow is also eliminated. This is because the
whole shadow is not seen in the frame. In other words, the
visible part of the shadow may disappear or the invisible
part may appear in the following frames and this may
cause errors in the results.

3. The shadowswhose energy lower than the average energy
are eliminated. First, a shadow energy is calculated for
each shadow by taking the average of the energy of the
pixels that form the shadow. The energy of the pixels is
taken from the energy image generated previously. Then
the average of all shadow energies is calculated, and the
shadows whose energy lower than the average value are
eliminated. Tracking shadows with high energy is easier
than tracking the ones with low energy.

4. The average shadow length is calculated for the remain-
ing shadows and if a shadow is shorter than the average
length, that shadow is eliminated. This is because it is
hard to obtain significant information about the changes
in the length and direction of short shadows and long
shadows provide more precise information.

5. From the remaining shadows, if there exist shadows
whose only one corner intersects with a corner of an
object in the 3D model, we choose the shadow with the
highest energy from these shadows as the final shadow.
If there is no such shadow, we search for shadows whose
both corners do not intersect any object in the 3D model
and select the one with the highest shadow energy. If
again there is no such shadow, we choose the shadow
with the highest energy as the final shadow. To decide
whether or not the corner of a shadow intersects with the
corner of an object on the model, we use the matched
image-model pair described previously.

4.2 Shadow tracking algorithm

We need to define some variables that will be used in the
proposed shadow tracking algorithm. We define the pixel
that is closest to the estimated position of the Sun from the
shadow pixels as the start pixel (s). Related with this, sx
and sy denote the horizontal and vertical pixel distances of
the start pixel s to the top-left corner of the frame, respec-
tively. Similarly, we define the pixel on the other corner of
the shadow as the final pixel f . fx and fy denote the horizon-
tal and vertical pixel distances to the top-left corner of the

frame, respectively. We calculate the shadow length as ls as

ls =
√

(fx − sx)2 + (fy − sy)2.
Let h and a denote the elevation and azimuth angles of

the Sun, respectively. We measure the azimuth angle on the
ground from the positive x-axis in counterclockwise direc-
tion. The angles h and a are initially equal to the elevation
and azimuth angles of the Sun estimated for the first frame
and updated in subsequent frames. The length of the object
that generates the shadow we are tracking, lv, is calculated
as lv = ls tan(h). It is used to calculate the elevation angle of
the Sun in subsequent frames.

Let θ denote the counterclockwise angle that the shadow
edge makes with the positive x-axis, which is calculated as

θ =

⎧
⎪⎪⎨

⎪⎪⎩

360 − arccos

(
t · v√

(fx−sx)2+(fy−sy)2

)
, if sy < fy

arccos

(
t · v√

(fx−sx)2+(fy−sy)2

)
, otherwise

(4)

where t is a vector from (sx, sy) to (sx+1, sy) and v is a vector
from (sx, sy) to (fx, fy). The difference between the θ values
in consecutive frames is used to update the azimuth angle at
each frame (cf. Eq. 7).

After the preprocessing on the first frame of the time-lapse
video, we track the shadow and estimate the Sun position in
the subsequent frames (cf. Algorithm 1).

Algorithm 1 Shadow tracking and estimation of elevation
and azimuth angles of the Sun
INPUT: time-lapse video, start pixel s, azimuth angle a, obj. length lv
OUTPUT: updated Sun position
1: while not the end of the video do
2: fetch the frame into a matrix
3: extract the energy image of the frame
4: determine the search direction according to a
5: update s using s of the previous frame
6: check ← true
7: while check do
8: search the next pixel, pn, which belongs to the shadow

according to the search direction determined using a
9: if ((energy value of pn < energy threshold) or

(slope of shadow > slope threshold)) then
10: check ← false
11: f ← pn
12: end if
13: end while
14: calculate h using f , s and lv
15: calculate a using f , s of the current frame and the a value

of the previous frame
16: update Sun position according to new h and a values
17: end while

First, we fetch the next frame on the video sequence and
extract its energy image. We check whether the start pixel s
that comes from the previous frame has still the same energy
value in the current frame. If its energy value does not change,
we continue to use s as the start pixel. Otherwise, we search

123



822 SIViP (2017) 11:817–824

Fig. 8 Shadow construction. a Searching for the start pixel for the
current frame. b Determining the search direction. According to the
value of the azimuth angle a, the appropriate search direction is chosen
to form the shadow in the current frame. A pixel with label s denotes
the start pixel, and the other four pixels are the candidates for shadow
pixels

for a new start pixel to construct the shadow on the current
frame. We determine the new position of the start pixel by
searching the pixel that is the center of mass of a 5× 5 pixel
area in terms of energy values, where the center pixel is the
old s (cf. Fig. 8a). ei,j denotes the energy value of the pixel
on the i th row and the j th column inside the pixel area. We
find the center of mass of the pixel area as follows:

mi= round

⎛

⎝
5∑

i=1

5∑

j=1

j ei,j

⎞

⎠ , mj = round

⎛

⎝
5∑

j=1

5∑

i=1

i ei,j

⎞

⎠ ,

(5)

where mi and mj denote the row and column indices of the
center of mass within the 5 × 5 pixel area. We assign the
center of mass as the new start pixel by using Eq. 6:

s = (sx − 3 + mj, sy − 3 + mi). (6)

Before we start the shadow construction in the current
frame, we need to determine the search direction for pos-
sible shadow pixels. For this purpose, we use the azimuth
angle a calculated for the previous frame and move in the
chosen search direction, starting from s (cf. Fig. 8b). While
selecting the next shadow pixel pn, we choose the pixel with
the maximum energy from four possible pixels on the search
direction. We continue by constructing the shadow edge that
we track to estimate the elevation and azimuth angles of the
Sun until one of two termination conditions occurs:

1. We stop finding the next pixel if the energy value of a
pixel is less than the energy threshold. We define the
energy threshold as the half of the energy of the initial
shadow in the first frame. A pixel whose energy is below
the threshold means that we reach the other corner of the
shadow edge (cf. Fig. 9 left).

2. While constructing the shadow edge in the current frame,
we calculate the slope of the edge after the 15th pixel.

Fig. 9 The termination condition based on energy (left) and slope
(right)

Then, at every ten pixels, we calculate the slope of the
last ten pixels and if the last calculated slope differs at
least one-third of the slope of the first 15 pixels, we stop
the shadow edge construction (cf. Fig. 9 right). It means
that we reach the other corner of the edge and probably
a new edge in another direction starts, where the yellow
pixel is the 15th pixel of the shadow edge. As it is seen,
because the slope of the last 10 pixels after the green pixel
differs from the slope of the first 15 pixels at least by its
one-third, we stop searching new pixels and accept the
green pixel as the final pixel f .

We determine the energy and slope thresholds as a result
of the repeated experiments. We observe that the second ter-
mination condition is encountered more frequently than the
first one. After we find the starting and ending pixels of the
shadow edge in the current frame, we calculate the elevation
angle, h, and the azimuth angle, a, as follows:

h = arctan(lv/ls), a = aprev + (θcurr − θprev), (7)

where aprev denote the azimuth angle for the previous frame,
θcurr and θprev denote the values of the angle θ (Eq. 4) for the
current and previous frames, respectively. The Sun position
is updated using the new elevation and azimuth angles.

5 Evaluation and results

To the best of our knowledge, this is the first approach
that aims to estimate the Sun position in each frame and
to insert a virtual object into a time-lapse video. We present
still images from the time-lapse videos with virtual objects
placed seamlessly to show the qualitative results. We com-
pare the estimated elevation and azimuth angles of the Sun
with ground truth values for quantitative evaluation.We used
a notebook computer with Intel i7-4700MQ (2.4GHz Clock)
processor, 6Gb RAM, AMD Radeon HD 8750M GPU for
the experiments. We implemented the initial Sun position
estimation on the Unity game engine [26] and the shadow-
tracking-basedSunposition estimation usingMATLAB[27].
We use Levenberg–Marquardt minimization algorithm to
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Fig. 10 Still frames from the time-lapse videos. The illumination of
the virtual object changes synchronously with the Sun position. a fire
hydrant, b flower, and c trash bin

(a)

(b)

(c)

Fig. 11 Comparison of the elevation (left) and azimuth angles (right)
of the Sun with ground truth values for the time-lapse videos. a Sun
dial, b chair, and c fast food

estimate the initial Sun position using the first video frame,
which takes around 10 seconds for a video frame of 480×640
resolution. We then identify hard ground shadows and select
the one to be used for shadow tracking on subsequent video
frames, which takes around approximately 1–2min. After
this preprocessing stage, subsequent frames can be processed
in real time by smoothing estimated elevation and azimuth

Table 1 Error rates of the elevation and azimuth angles

Sun dial Chair Fast food

Elevation min error 4.38◦ 2.01◦ 1.04◦

Elevation max error 6.54◦ 2.55◦ 4.17◦

Elevation mean error 5.46◦ 2.28◦ 2.60◦

Azimuth min error 3.7◦ 3.73◦ 3.05◦

Azimuth max error 5.02◦ 5.81◦ 3.16◦

Azimuth mean error 4.38◦ 4.77◦ 3.10◦

angle values. In this way, the algorithm can also tolerate if
hard shadow disappears in a few frames. We obtain frame
rates of more than 30 frames per second (fps).

Figure 10 presents the visual results of the application
of the method on three time-lapse videos [28–30]. The still
frames show that the virtual objects are properly illuminated
and seamlessly integrated into the real scenes (please con-
firm the accompanying video). Figure 11 depicts graphs that
compare the estimated elevation and azimuth angles with
the ground truth values. The initial differences between our
results and the ground truth values show that the errors are
caused from the first stage that estimates the initial Sun
position. Starting with these initial error values, our shadow
tracking approach calculates the Sun position in subsequent
frames with reasonable error.

Table 1 shows the error rates of the elevation and azimuth
angles. The mean error rates on both elevation and azimuth
angles (in bold) are less than 6◦. According to our observa-
tions, Sun position estimation is easier for the scenes with
more light-shadow content. These scenes also include more
alternatives to choose the shadow to be used for tracking.
Please see the electronic appendix for further results.

6 Conclusions and future work

We propose a new method for illumination estimation in
time-lapse videos.Wemainly target videos of indoor and out-
door environments where the only light source is the Sun.We
estimate the Sun position during a time-lapse video and cal-
culate the illumination of the virtual objects placed in the real
video accordingly. Ourmethod first estimates the initial posi-
tion of the Sun from the first frame of the video bymodifying
an existing illumination estimation method. Then by track-
ing a hard ground shadow in the scene with an energy-based
pixel-wise method for the rest of the frames, it estimates the
changes in the Sun position. The proposed method gives suc-
cessful results on videos found on the Internet.

The proposedmethod has some drawbacks such as prepar-
ing a coarse 3D model of the environment requires manual
processing during the preprocessing stage. Automatic or
semi-automatic approaches requiring minimal user interac-
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tion for scene reconstruction, such as cuboid-proxies [31],
could be exploited to generate the coarse model of the
environment. We also assume that there exists at least one
appropriate hard ground shadow during the time-lapse video.
Soft ground shadowsmaybe used in order to track someother
light sources that may have effect on the environment. More-
over, the shadows other than the ones on the ground may be
used additionally to increase the accuracy.

Another future extension would be to evaluate the energy
changes on the pixels that belong to the tracked shadow in
the time-lapse video. This evaluation gives the opportunity to
track the changes on the light intensity of the Sun as well as
its position. We could exploit graphics processor unit (GPU)
to speed up the processing of video frames.
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