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Refining 3D Human Texture Estimation From a
Single Image

Said Fahri Altindis
Ugur Giidiikbay

Abstract—Estimating 3D human texture from a single image is
essential in graphics and vision. It requires learning a mapping
function from input images of humans with diverse poses into the
parametric (uv) space and reasonably hallucinating invisible parts.
To achieve a high-quality 3D human texture estimation, we propose
a framework that adaptively samples the input by a deformable
convolution where offsets are learned via a deep neural network.
Additionally, we describe a novel cycle consistency loss that im-
proves view generalization. We further propose to train our frame-
work with an uncertainty-based pixel-level image reconstruction
loss, which enhances color fidelity. We compare our method against
the state-of-the-art approaches and show significant qualitative and
quantitative improvements.

Index Terms—Texture estimation, deformable convolution,
uncertainty estimation.

I. INTRODUCTION

STIMATING 3D human texture from a single image is
fundamental in many areas, such as virtual reality (VR),
augmented reality (AR), gaming, robotics, and cloth try-ons.
This problem is very challenging given the requirement for
predicting the textures of invisible human body parts and the
diversity of the pose and appearance of human bodies.
Predicting a three-dimensional (3D) human textured model
from a single image receives increasing attention from the re-
search community. Deep learning models are trained for this task
thanks to the differentiable renderers, sometimes called neural
renderers [31]. These renderers enable end-to-end training by
approximating rasterization gradients and allow the backprop-
agation of image-based reconstruction losses. However, many
of the proposed methods require labor-intensive, expensive data
for training, such as 3D scanning [24], [35], [43], [49] or dense
human pose estimation [35], [44]. In this work, we aim to learn
texture reconstruction from a single image without the expensive
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Fig. 1. Texture estimation is not aligned, unlike many tasks with input-output
alignment (e.g., part segmentation).

3D labels by relying on only multi-view images [28], [33], [62],
[63], [65]. Among existing approaches, Zhao et al. [65] propose
to use cross-view consistency to enforce the rendered image
to match the image from a different view. Wang et al. [56]
incorporate the re-identification loss to train the 3D human
texture estimation model. Xu and Loy [63] set an attention-based
architecture to allow information processing globally.

Even though significant progress has been achieved in this
domain, previous works still have limitations that hinder the
quality of 3D human texture estimation. First, texture estimation
from a single image has a set-up in which input and output
images are not spatially aligned and, therefore, unsuitable for
solving with Convolutional Neural Networks (CNNs) with local
receptive fields. For example, hands can appear anywhere in
input images, but they have a fixed corresponding location in
the parametric uv space (cf. Fig. 1). Previous works propose
an attention-based architecture to remedy this problem by ef-
fectively distributing input features into suitable locations in
the parametric uv space. Our work shows that we can further
improve texture estimation via a deformable convolution-based
module, which we refer to as the refinement module. The learn-
able offsets of the deformable convolution come from a deep
attention-based architecture; therefore, the refinement module
can adaptively sample input images to output high-fidelity tex-
ture predictions for visible and invisible pixels. Second, previous
approaches avoid using pixel-level reconstruction loss between
rendered and ground-truth images since it performs poorly in
generating details. The inaccurate human body pose and shape
estimations result in misalignments between the rendered and
input images, causing this performance degradation. We propose
using a confidence-based pixel-level reconstruction loss to han-
dle the misalignments, significantly improving results. Finally,
we enhance our texture estimation with a novel cycle consistency
loss. We apply cycle consistency by estimating texture from a

0162-8828 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on November 07,2024 at 06:33:28 UTC from |IEEE Xplore. Restrictions apply.


https://orcid.org/0009-0005-5527-4986
https://orcid.org/0000-0002-8402-8291
https://orcid.org/0000-0003-2462-6959
https://orcid.org/0000-0003-2014-6325
mailto:adundar@cs.bilkent.edu.tr
https://github.com/saidaltindis/RefineTex

ALTINDIS et al.: REFINING 3D HUMAN TEXTURE ESTIMATION FROM A SINGLE IMAGE

single image, rendering it from a novel view, and encoding the
texture again, making the model generalizable to different views.

We evaluate our method against the current state-of-the-art

methods by using metrics, such as Structural Similarity In-
dex Measure (SSIM) [59], Learned Perceptual Image Patch
Similarity (LPIPS) [64], and Cosine Similarity (CosSim) [52],
by comparing the input and rendered images from the same
viewpoint, which provides a comparison for the original view.
However, when used solely, this evaluation misses the essence
of 3D models. A good model must generate appearance from
novel viewpoints by predicting invisible regions successfully.
Our work also evaluates the methods from novel views and aims
to improve the results for the same and other novel viewpoints.

Our contributions are as follows:

1) We introduce a deformable convolution-based framework
to handle the challenges of mapping unaligned spatially
diverse input images into fixed parametric uv maps.

2) We adapt the confidence-based pixel-level reconstruction
loss to handle the misalignments in the ground truth. We
enable training with pixel-level reconstruction loss and
facilitate a closer color appearance to the input image.

3) We introduce the cycle consistency loss to the task of
texture estimation that improves the texture estimation
quality.

We perform extensive evaluations with an array of quantitative

metrics that show the effectiveness of our scheme compared to
the several state-of-the-art approaches.

II. RELATED WORK

3D texture estimation from images can enable various VR/AR
applications and attracts much interest from the research com-
munity [6], [8], [11], [12], [16], [29], [36], especially the 3D
human texture estimation [1], [2], [3], [S], [24], [35], [42], [49],
[56], [63], [65], [68]. Many methods have been proposed for 3D
human reconstruction that take multi-view images and optimize
them [27], [47], [S1]. Especially videos have been explored with
implicit representations for modeling scenes [40], [41] as well as
for human activity and performance reconstruction such as the
recently proposed approaches, Vid2Avatar [21] and [45]. While
achieving impressive results, these models are overfitting to a
sequence and cannot be used for single-image inference.

In this work, we are also interested in 3D human reconstruc-
tion but inferring them from single-images [4], [19], [63], [65],
[67], [68] since it is more applicable to real-world use cases.
Even though many works aim to infer texture from single-view
images, they may require significantly expensive labor-intensive
data during training. For example, most of the methods require
3D scanning [24], [35], [43], [49], [53] such as the recently
popularized implicit function-based methods [7], [22], [49], [50]
and few others require dense human pose estimation [35], [44]
or depth data [45]. In our work, we aim at learning texture
prediction without expensive 3D labels but by relying on image
datasets [56], [63], [65].

For 3D human texture estimation task, previous methods pro-
pose to train networks on image collections in a self-supervised
manner to reconstruct the input image with a differentiable
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renderer [28], [31], [33], [62]. 3D body and pose models are
predicted with state-of-the-art 3D human mesh reconstruction
methods, and a human texture estimation network is trained to
map images into the UV space. Mapping human images into
UV-space is also used for dense human pose estimation [20],
mesh recovery [58], garment prediction [26] as well as for
texture estimations [56], [63], [65]. For texture estimation,
training data is augmented with part segmentation models for
superior performance [63], [65]. While promising progress has
been achieved, there are still issues that need to be handled by
previous works. One crucial challenge of texture prediction is
strict input and output alignments. The prediction of textures
needs to be sampled from a different location for each example.
Some methods [29], [65] learn texture flows to sample pixels
from the input image, while some others directly learn the texture
maps in RGB values [56], and others use a combination [63].
Learning texture flows can transfer fine details directly from
input to texture, whereas predicting RGB texture can more
pleasantly visually synthesize invisible regions. The method of
Xu and Loy [63] combines the benefits of these two by learning
a fusion strategy. Our work combines the two approaches with
a deformable convolution [10]. In this way, the prediction of the
texture maps becomes easier for the network, which can operate
on adaptive offsets. Deformable convolution is successfully inte-
grated into many computer vision tasks such as object detection,
instance segmentation [10], [70], and texture synthesis [39]. This
task is also suitable for deformable convolution, and significant
improvements can be achieved with a unique deformable-based
design.

Another challenge of 3D texture estimation is to improve the
texture predictions for invisible regions. For this problem, to
output a complete texture, generative models are proposed that
are referred to as neural rendering methods [14], [18], [34]. The
most related to our work is StylePeople [18], which proposes to
train a generative model of full-body human avatars. Via a Style-
GAN [30] architecture, the model can sample a random code
and synthesize novel humans. An encoder is trained to estimate
the latent codes of StyleGAN to convert it to a reconstruction
framework that outputs neural textures for a given input image.
Because it is difficult to invert an image with an encoder alone,
the framework also requires a computationally costly optimiza-
tion step. Other reconstruction-based works utilize multi-view
images for cross-view consistency learning to improve texture
estimation for the invisible regions [65]. We further improve the
results with a novel cycle consistency loss. Last but not least,
previous works avoid using reconstruction losses between the
input and output due to its degradation in performance [56],
[63]. We propose to use a confidence-based reconstruction loss
to improve the results further.

III. METHOD
A. Architecture

We work on a set-up where a 3D human texture estimation
network is expected to map spatially variant input into the
predefined uv space coordinates. For example, hands can be any-
where in input images but are registered to a fixed coordinate in
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The overall framework. We introduce a deformable convolution-based refinement module that learns offsets via an attention-based deep network [63].

This framework can handle the challenges of mapping unaligned spatially diverse input images into fixed parametric uv coordinates. We supervise the network
with a branch depicted for additional supervision. In this way, offsets receive additional direct supervision as well. Mask prediction for the mask-fusion step is

omitted from the figure for brevity.

parametric uv space. Since inputs and outputs are not aligned as
in most computer vision tasks, the network architecture for this
task requires special care. The relevant pixels for synthesizing
a coordinate in the parametric uv space may be far away in the
input space. While we can directly copy visible pixels from the
input image to uv maps after the locations of corresponding
pixels are detected, the network needs to synthesize invisible
pixels by conditioning on the visible parts. Therefore, we can
summarize the goal of the network into two: 1) finding correct
offsets for the visible regions so that RGB values from input im-
ages can be directly copied, and 2) hallucinating RGB values for
invisible pixels in the input image by processing what is visible.

We designed our framework to have the ability to adapt to
the geometric variations in the input image. Our initial goal
is to find the offsets of the associated pixels for each pixel in
the parametric uv map. Our second goal is to process these
associated pixels to output texture predictions with the offsets.
The process of finding offsets is similar to flow predictions.
However, instead of only sampling the input image with offsets
to the output, we want a robust architecture that can adaptively
sample input images to process further for better fidelity. With
this motivation, we employ deformable convolutions. Unlike
previous architectures that use deformable convolution, the path-
way for predicting offsets includes a deep convolutional neural
network, as given in Fig. 2. Previous architectures proposed for
texture estimation can be used here as the deep network to output
flow predictions. We use an attention-based architecture [63]
as shown in Fig. 2. This architecture uses a color-encoding of
the output UV space as query, 2D part-segmentation of input
together with the inputimage as the key, and input image together

with flow field of the image, i.e., 2D coordinates for each pixel
as value. Multi-scale features are encoded from these inputs
with separate encoder-decoder networks. The encoded value,
key, and query features are input into the attention blocks [55].
The key correlates with the query elements to obtain the attention
map for the input. Attention maps provide global information
to distribute input features to output features. The outputs of
attention blocks go through a Unet-like architecture, as shown
in Fig. 2 to output flow and RGB predictions.

We refer to the module that contains deformable convolutions
as the refinement module, as shown in Fig. 2. We calculate the
offsets from flow predictions since flow predictions are trained
to learn the mapping of the input image to the output. The flow
predictions learn the absolute values of input coordinates. We
transform them into offsets of pixel coordinates and apply a
convolutional layer to them. With the offsets, the deformable
convolution operation can sample the input image from far away
pixel coordinates and process them to output texture maps. The
refinement module takes the input image with the size of 128 x
64 and outputs features with the dimension of 128 x 128 based
on the offsets in 128 x 128 spatial size. Deformable convolution
operation, by default, expects offsets and input features to be in
the same dimension. We modify the deformable convolution
implementation to take an arbitrary input size concerning the
offsets. The offset size indicates the output dimension, which
provides an intuitive flow from input to output. This way, we
can deform from 128 x 64 images to 128 x 128 texture maps.

We use the mask-fusion method to combine the advantages
of RGB texture prediction and texture flow [63]. Our network’s
output consists of the RGB texture map Tr¢ g, the texture flow
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F, and a fusion mask M. M is not included in Fig. 2 for brevity.
The mask-fusion process is as follows:

T:MQfsample(F,I)+(17M)®TRGB, (1)

where fgsampie refers to the bilinear sampling function that
samples textures from the input image, I, by the flow predictions,
F, and M is a binary mask. In this way, visible pixels can be
taken by the more accurate fsqmpie(F, ), and invisible pixels
can be taken from Trap.

We supervise the framework by rendering the intermediate
results from the deep network and backpropagating the losses,
as shown in Fig. 2. In this way, offsets receive more direct super-
vision as well. We progressively rely more on the supervision
the refinement module receives from the final output by turning
off the additional supervision.

B. Loss Functions

The loss functions are calculated between the input and ren-
dered images in a self-supervised manner and are explained in
this section. Given an input image, I, our model outputs human
texture, T'(I). This texture, together with mesh, M, and camera,
C, predictions from state-of-the-art RSC-Net model [62] which
is built on SMPL model [38] are rendered with a differentiable
renderer [31] which outputs an image, I”. We use the same loss
functions between I and I” as in previous works [63] and an
uncertainty-based reconstruction loss function and cycle con-
sistency loss, significantly improving the results. This section
first reviews the losses we used from previous works. The first
loss function is the re-identification loss [56], which minimizes
the distance from pedestrian re-identification network (®) [52]
at different feature layers (j):

Lreia = 11@;(1) — @;(I")][3. @)

Another previously proposed loss objective for this task is the
part-style loss function [63]. This loss enforces the similarity
between each body part of the rendered human and the input
image as measured by Gram-matrix [15].

Latyie = ||G(M, © ®1(1)) — G (M, © &1(I") |3, (3)

where M, and M;, are the human part segmentation masks
from the 2D human parsing model [23] and 3D mesh, respec-
tively, p indicates the body part, and this loss is calculated for
each body part separately and summed together. GG stands for
Gram-matrix, features are again encoded by the same pedestrian
re-identification network (®), and only the first layer is used.
Anotherloss function we use is the face structure loss [63], which
can be used in our framework to generate accurate and realistic
face images. Since all human faces follow the same structure,
face structure loss ensures the similarity between estimated
textures and synthetically generated textures. Each region of the
parametric uv map is predetermined; hence, the location of the
face in the texture is constant. This loss only checks similarities
between faces by applying a fixed mask:

N
1 .
Lface - *N § S (Mface © T(I); Mface © E:yn) 5 (4)
1=1
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where {ngn}f\’: 1 is a set of synthetically generated human
textures obtained from the synthetic human dataset [54], Myqce
is a predefined binary mask that indicates the face region on
the texture map, and s is a structure-similarity function [59] that
calculates face similarities. The loss function in (4) optimizes the
network to output face texture predictions with similar structures
as Fy,,. This results in the generation of plausible face textures
while retaining the colors of the input human. The losses we
use from previous works are our base losses, and (5) gives the
overall base loss.

Ebase = )‘-1 X Ereid + )\2 X Estyle + )\3 X ‘Cfacea (5)

where A; = 5000, Ao = 0.4, and A3 = 0.01. We take these pa-
rameters from previous work and do not tune them.

1) Uncertainty-Based Reconstruction Loss: Previous ap-
proaches avoid using pixel-level reconstruction loss between
rendered and input images since it performs poorly in generating
details. The inaccurate estimation of human body poses and
shapes may result in misalignments between the rendered and
input images. Due to this problem, 3D human texture estima-
tion models are trained only with re-identification losses that
compare features at a high level and style losses that do not
use spatial correspondence. On the other hand, it is shown
that pixel-level reconstruction losses improve results when the
generated and output images are aligned [13], [25], [46], [57]. To
take advantage of pixel-level reconstruction loss and be robust
to misalignments, we propose to estimate a confidence map,
o, to adjust the reconstruction loss objective. The ground-truth
output image, I, and the rendered image, ", are compared via
the loss given in (6) as was also defined in [60].

1 —
Loyr = — Zln - exp — . . (6)
Ty A /20I7y T,y

In this loss objective, the role of the confidence map, o, is
to estimate the aleatoric uncertainty of the model [32]. This
uncertainty is the noise associated with the data collection that
cannot be reduced with more data. In our setting, it is the
noise caused by the misalignment of our data. (x,y) are the
spatial pixel coordinates of I. The objective is the negative
log-likelihood of a factorized Laplacian distribution with the
mean predicted by the model and o predicted by the confidence
model. This way, the model calibrates itself and minimizes the
reconstruction loss by optimizing the confidence map [32], [60].
The confidence map estimates which pixels from the rendered
image will not be aligned with the ground truth. The confidence
model has the Unet architecture [48], which takes the input
image, I, and outputs the ¢. This model is only used during
training and is not needed during inference.

2) Cycle Consistency Loss: We also propose a cycle loss to
enforce consistency between the textures estimated by the model
from input images and the model’s renderings for different
views. In the cycle process, the model generates the initial
texture map, uv,,qp, from the given input image as I by the
texture estimation network, 7'. We render a new image using the
estimated textures for a different view obtained from another
image of the same person with a renderer, R, Body Mesh
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Fig. 3. We predict a texture from an input image and render it for both the same and novel views. From the image rendered with a novel view, we estimate the

texture again. We expect the estimated texture to match the texture predicted from the input image.

Parameters, m, and camera parameters, c. From the rendered
image, the network estimates the texture again. We expect these
two estimated textures to be as close as possible; hence, we
calculate a pixel-wise L2 loss between two estimated textures,
as given in (7).

Leye = [[T(I) = T(R(T(I), m, c))]|2- @)

Fig. 3 explains the detailed structure of the cycle consistency.
In previous methods, the texture map is estimated from the input
image, and it is rendered for the same and novel views to enforce
multi-view consistency and minimize base losses, as described
in the previous subsection. We also estimate the texture from
the novel view rendering to obtain additional guidance for the
texture estimation network. This additional loss also helps us to
achieve our second objective, where we can compare images at
the pixel level.

3) Total Loss: The baseline loss Ly, . defined at (5) is calcu-
lated twice for two different rendered images. The first baseline
loss, Lygse—sv» 1S calculated between the input image and the
image rendered with the input image’s generated texture and
camera parameters. Moreover, to improve texture estimation of
unseen parts, the second baseline loss, Lpgse—ny, 18 calculated
between the ground-truth image from a different view and the
image rendered with the generated texture of the input image
and camera parameters of the novel-view ground-truth image.
Lygse—ny provides the multi-view consistency. Additionally, we
have two new losses. The overall loss function to train our
framework is as follows:

Etotal = Ebasefsv + ﬁbasefnv + )‘4 * Ecyc + )"5 * Eurl, (8)
where A, = 0.1, and A5 = 1073,

IV. EXPERIMENTS

Dataset, Architecture, and Training Details: We use the
Market-1501 dataset [66] in our experiments. Among the human
images of 1501 person identities, we use the same training-
testing split as in other works [56], [63]. We additionally run
experiments on the DeepFashion dataset [37]. The DeepFashion
dataset includes in-shop clothes images. These images show

large pose and view variations. We follow the same train/test
split from previous work [65]. We estimate the mesh and camera
parameters with HMR2.0 [17]. Previous work [65] removes the
images that only contain a small human body part and ends up
with 20,185 training and 6,639 testing images. We use their split.

The overall architecture includes deformable and traditional
convolution layers. A deformable convolution receives initial
offsets from a deep attention-based network, starting with the re-
finement module. This attention-based network has an encoder-
decoder architecture where, at each scale, there is an attention
block as introduced in [63]. The network has 6 convolution
layers, each with a filter size of 3 x 3 and 128 channel size.
There are downsamplings after the second and third convolution
layers and upsamplings after the fourth and fifth convolution
layers. The first three convolution layers correspond to the
encoder, and the other three belong to the decoder. There are
skip connections between the encoder and the decoder at each
scale, which employs an attention block, and the output of the
attention blocks is summed up with the decoded features.

The initial offsets coming from the deep network go through
a convolution layer to output 18 channels (2 x 3 x 3) to be used
as the offsets to the deformable convolution layer with filters
3 x 3 width and height and 128 output channels. 18 channel
corresponds to the z, y offsets for each pixel in a kernel (3 x 3).
The offsets have a dimension of b x 18 x 128 x 128, and input
has a dimension of b x 4 x 128 x 64 where channel size of 4
refers to the RGB image with part segmentation concatenated,
and b is batch size. We modify the deformable convolution im-
plementation to take an arbitrary input size for the offsets. Offset
size indicates what the output dimension will be. Therefore,
from the input image with a spatial dimension of 128 x 64,
we output feature maps with a spatial dimension of 128 x 128.
The output here is processed with additional deformable and
convolutional layers. We use kernel size 3, stride 1, and padding
1 for each convolution layer. The channels change as {4, 128,
128, 128, 6}. Additionally, we have a skip connection from the
deep attention network’s predictions to the refinement module.
We concatenate the predictions from the deep network with
the deformable convolution’s output. The final channel size of
6 corresponds to the RGB predictions (3 channels), UV flow

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on November 07,2024 at 06:33:28 UTC from |IEEE Xplore. Restrictions apply.



ALTINDIS et al.: REFINING 3D HUMAN TEXTURE ESTIMATION FROM A SINGLE IMAGE

11469

TABLE I
COMPARISONS OF MODELS TRAINED WITH MULTI-VIEW CONSISTENCY AND WITHOUT MULTI-VIEW CONSISTENCY (SINGLE-VIEW IMAGES)

SSIM ¢ LPIPS | CosSim ¢ CosSim-R 1
SV NV SV NV SV NV SV NV
Trained with Multi-view 0.7422 0.6535 0.1154 0.2040 0.5747 0.4943 0.5422 0.4736
Trained with Single-view 0.7706 0.6494 0.0963 0.2150 0.5823 0.4809 0.5496 0.4585

Results in bold indicate the best in each column.

predictions (2 channels), and fusion mask prediction (1 channel).
The RGB and UV flow predictions go through Tanh activation,
and mask predictions go through sigmoid activation layers. Each
convolution layer in the overall architecture is followed by batch
normalization and ReLU layers. We use the same architecture
for our experiments on both datasets.

The confidence model has 6 convolution layers, each with a
filter size of 3 x 3 and 128 channel size. Again, each convolution
layer is followed by batch normalization and ReL U layers. There
are downsamplings after the second and third convolution layers
and upsamplings after the fourth and fifth convolution layers.
The first three convolution layers correspond to the encoder, and
the other three belong to the decoder. There are skip connections
between the encoder and decoder at each scale. Encoded features
and decoded features are summed up via skip connections. The
last convolutional layer reduces the channel size to 1, followed
by the softplus activation function. This network is only used
during training.

We use the Adam optimizer and train our framework with
a batch size of 16 and a learning rate of 1 x 1072 and betas
= (0.9,0.999) for 200 epochs. We do not use a learning rate
scheduling and keep the learning rate the same for 200 epochs.

Evaluation Metrics: Following the previous works, we use
various metrics for evaluation. SSIM [59] and LPIPS [64] find
pixel- and feature-level similarities between the output and
ground-truth images. Additionally, cosine similarities of per-
son RelD features [52] are computed to evaluate a high-level
semantic similarity, e.g., how likely the rendered human is the
same person from the ground-truth image. Following previous
work [61], we calculate this metric with two different networks,
PCB [52] and TorchReid [69], resulting in CosSim and CosSim-
R metrics, respectively.

Whenever a metric is used to evaluate the input and rendered
images from the same view, only the visible texture estimates are
considered since that evaluation protocol measures the estimated
texture from the same view. We also use the metrics to evaluate
arendered image for a novel view for which we have the ground
truth to overcome this limitation. Given an input image from
one view, we render the estimated 3D human texture based on
a camera view and pose estimate from another. We evaluate the
results for all the other available views for each person. We refer
to the same view evaluation as SV and the novel view as NV in
the tables.

We experiment with the reliability of novel view results by
comparing baseline methods trained with and without multi-
view consistency. Multi-view consistency is broadly used on
datasets that contain multiple images taken from different views
of the same object [63], [65]. One view is input in these settings,
and loss functions are calculated on the same input view and

a novel view. The multi-view consistency improves texture
estimation quality for the invisible regions because networks
receive gradients from the novel image target for invisible parts
in the input image.

Table I compares our baseline models, trained with multi-view
and single-view data, which refers to using multi-view consis-
tency and not, respectively. The traditional evaluation results
on the same view show that the single-view baseline model
achieves significantly better scores. This is because it is tuned to
estimate the visible areas perfectly, producing better results on
the same but worse on a novel view, as seen in Fig. 4. The quality
of renderings in novel views is usually more valuable and the
primary purpose of 3D models. Table I shows the evaluation of
the quality of novel view renderings. This setup indicates the
limitation of previously used evaluation protocol by 3D human
texture estimation models. In this work, we are interested in
improving the quality of both the same and novel views, and we
keep track of both of these metrics.

A. Comparison With the State-of-the-Art

We compare our method against the state-of-the-art 3D human
texture estimation methods: HPBTT [65], RSTG [56], Tex-
Glo [61], and Texformer [63]. Quantitative results for Same-
view (SV) and Novel-view (NV) are presented in Table II.
We calculate the results of NV of the methods with released
models of RSTG and Texformer. First, we compare the methods
on the Market-1501 dataset. Since HPBTT uses a different
data split, we train it with our split with their released code.
HPBTT [65] outputs texture flow with a regular convolutional
neural network that takes body segmentation and pose as input.
Since the method outputs texture flow, the colors match the input
image, which results in a relatively good performance on SSIM
and LPIPS metrics for the same view. On LPIPS, HPBTT even
achieves the second-best result. However, its results are poor
when measured with CosSim and CosSim-R metrics due to the
artifacts in the final renderings. RSTG [56] and TexGlo [61]
generate results in fewer artifacts, which leads to relatively better
performance on CosSim and CosSim-R metrics. On the other
hand, their results do not match the input images in colors and
fine details, which causes significantly worse SSIM and LPIPS
scores. Texformer [63] is closest to our work with good metrics
overall. In our work, we significantly improve their results. Our
proposed method achieves consistently better results than the
competing methods on all metrics for both same and novel view
evaluations with slightly more parameters than Texformer and
significantly fewer parameters than the others.

Fig. 5 presents the qualitative results of our method and
competing methods. The HPBTT model generates results with
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Trained with single-view

Input/same view and novel view ground-truth images are provided in the first two columns. Other columns show the baseline-trained results with multi-view

consistency and trained without multi-view consistency (with single-view images). Blue arrows show that models trained with single-view images better reconstruct
the same view but not the novel one. Therefore, instead of only evaluating the models based on the reconstruction of the same view, which misses the point of 3D

models, we additionally evaluate the models from a novel view.

TABLE I
EVALUATION RESULTS OF OUR METHOD AND STATE-OF-THE-ART COMPETING METHODS
SSIM 1 LPIPS | CosSim ¢ CosSim-R 1 Params. (M)

Dataset Method SV NV SV NV SV NV SV NV

HPBTT [65] 0.7380 0.6496 0.1148 0.2156 0.5336 0.4697 0.5077 0.4508 42.3

RSTG [56] 0.6735 0.6283 0.1778 0.2421 0.5282 04717 0.4924 0.4454 134
Market-1501 TexGlo [61] 0.6658 - 0.1776 - 0.5408 - 0.5048 - 16.1

Texformer [63] 0.7422 0.6535 0.1154 0.2040 0.5747 0.4943 0.5422 0.4736 7.6

Ours 0.7611 0.6544 0.1003 0.2040 0.5858 0.4963 0.5538 0.4758 8.2

HPBTT [65] 0.7610 0.7364 0.2433 0.2637 0.6066 0.5792 0.5939 0.5639 42.3
DeepFashion Texformer [63] 0.6932 0.5465 0.2189 0.3595 0.7724 0.6248 0.7244 0.5961 7.6

Ours 0.7512 0.5557 0.1938 0.3579 0.7929 0.6254 0.7417 0.5983 8.2

Results in bold indicate the best in each column, and underscored results indicate the second.

many artifacts, especially in the invisible regions. RSTG does not
suffer from these severe artifacts; however, the method outputs
blurry predictions lacking fine details. Texformer achieves better
results than HPBTT and RSTG but still does not achieve high fi-
delity to the input images, especially on the challenging patterns,
e.g., check shirts. Finally, our method achieves high-quality
results with fine details, high-fidelity colors, and texture patterns.

We also conduct a user study on the Market-1501 dataset with
30 samples among 20 users. We set an A/B test and provide
users with input images, and predictions rotated in 360°, along
the azimuth, in GIF format so they can see the inconsistencies
in the texture easily. We limit our user study to our method
versus Texformer since they significantly outperform the pre-
vious works, as shown in Table II and Fig. 5. The left-right
order is randomized to ensure fair comparisons. We ask users
to select the best result according to fidelity to the input image
and whether the output looks realistic and high-quality overall.
Users select ours instead of Texformer 71% of the time (50%
is a tie). These results are consistent with reported metrics and
qualitative results.

Next, we compare methods on the DeepFashion dataset in
Table II. We train HPBTT [65], Texformer [63], and our method
on this dataset since they are the top-3 methods from the Market-
1501 dataset. As shown in Table II, our method achieves an even
more significant improvement on this dataset. HPBTT achieves

better SSIM scores. HPBTT’s SSIM scores are also high on the
Market-1501 dataset. However, it is also shown that the SSIM
score sometimes prefers blurred images. However, all the other
metrics are poor due to the artifacts in the final renderings.
As shown in Fig. 6, the same behavior is observed there as
HPBTT outputs blurred images for novel views. Our method
achieves significantly better CoSim and CoSim-R scores. Our
method also shows significant improvements over Texformer
and achieves better color consistency between the visible and
invisible pixels. It may be because the dataset has more vari-
ations in the poses, and our contributions achieve significant
improvements on this challenging dataset.

We also compare with coordinate-based texture inpainting
for pose-guided human image generation [19]. CoordInpaint has
two pipelines. First, dense poses are estimated by the Dense Pose
method [20], and then they are converted to SMPL coordinates
using a predefined mapping (provided with the DensePose).
The first pipeline obtains a complete body texture through an
inpainting network. The output of the first pipeline is a texture
map that can be used to render humans with different poses.
In the second pipeline, images are rendered for a target pose
and further processed in the image space. The second pipeline,
therefore, does not output a 3D model but refines the results in
image space. Hence, our method is comparable with the output of
the first pipeline. We provide the comparison results in Figs. 6
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Input

Qualitative results of our method and Coordinate-based texture inpainting [19] on the Market-1501 dataset.

TABLE III
ABLATION STUDY ON THE MARKET-1501 DATASET

SSIM 1t LPIPS | CosSim  {¢ CosSim-R 1t
SV NV SV NV SV NV SV NV

BL (Baseline) 0.7422 0.6535 0.1154 0.2040 0.5747 0.4943 0.5422 0.4736
BL + Conv Refine 0.7196 0.6520 0.1293 0.2052 05701 04976 05343 04758
BL + Deformable Refine 0.7490 0.6511 0.1038 0.2046 0.5887 0.4976 0.5568 0.4775
BL + Deformable Refine only RGB 0.7413 0.6500 0.1087 0.2039 0.5847 0.4957 0.5530 0.4746
BL + URL 0.7560 0.6540 0.1053 0.2020 0.5813 0.4802 0.5481 0.4767
BL + Cycle 0.7448 0.6503 0.1107 0.2027 0.5837 0.4968 0.5502 0.4761

and 7 forDeepFashion and the Market-1501 datasets, respec- 'Y

tively. CoordInpaint’s first stage, where texture is estimated, fails

to output realistic invisible parts. Since the CoordInpaint model

has two pipelines and achieves good results after its second

pipeline, we do not include their work in our main comparisons.

B. Ablation Study BL BL+Refine

We conduct an ablation study to show the improvements

of each proposed contribution as provided in Table III and

Fig. 8. Our baseline model (BL) only includes the deep network

from Fig. 2 without the final branch, which is the deformable

convolution-based module. BL is only trained with base losses

described in Section III-B. We then test each proposed change

separately. First, we add a deformation-based refinement module BL+URL

to the architecture (BL+Deformable Refine). Next, we exper-

iment with proposed loss objectives by adding uncertainty-

based reconstruction loss (BL+URL) and cycle consistency loss

(BL+Cycle).

Adding a deformable convolution-based refinement module
improves all metrics. To measure the effectiveness of the pro-
posed refinement module, we experiment with the improve- Input BL+Cycle

ments that come from the increased capacity (additional learn-
ing parameters). To test that, we experiment with a shallow
UNET architecture, which is convolution-based, as the refine-
ment module. As shown in Table III (BL+Conv Refine), the
additional layers do not improve the results. As shown in Fig. 8,
the refinement module improves challenging scenarios where
the shirt stripes have superior quality. In Fig. 9, we visualize
the corresponding offsets of deformable convolution for marked

Fig. 8. Qualitative results of Ablation Study.

points from the UV map. We mark the same coordinates for
the two examples in each row. As shown in the input image,
the offsets are in different locations in the input based on the
content. The texture estimation task fits well with deformable
convolution. We also test if RGB texture estimations alone
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UV map

Input UV map Input

Fig. 9. Visualization of offsets in input images.

without the flow estimation are enough to achieve good results
in Table III. When we compare Deformable Refine versus De-
formable Refine only RGB, we observe that additional flow
estimation slightly improves the results so we decide to keep
it. URL significantly improves the SSIM and LPIPS metrics by
providing pixel-level reconstruction loss. The second example
in Fig. 8 has superior color fidelity to the input image. The third
row of Fig. 8 shows that the cycle consistency loss significantly
improves the prediction of invisible regions. As can be seen, a
more realistic backpack is predicted by only seeing its straps
with the cycle consistency loss.

V. CONCLUSION

We propose a framework to refine 3D human texture esti-
mation from a single image. We use a deformable convolution-
based refinement module to adaptively sample an input image
for better quality. We also introduce an uncertainty-based re-
construction and novel cycle consistency losses responsible for
our high-fidelity texture estimation. We show several qualitative
and quantitative improvements compared to the state-of-the-art
methods. We hope our work will inspire future research to test
their texture inferences for view generalization by evaluating
novel inferences.

Limitations: Regarding limitations, following the previous
works, our framework uses the human body model from
SMPL [38], which is unsuitable for loose-fitting clothes, e.g.,
long loose skirts. To overcome this limitation, the proposed con-
tributions can be combined with more advanced body models,
such as TightCap [9], a data-driven approach to capture both the
human shape and dressed garments.
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