
Improvements for Mesh Optimization Algorithm

Muhammet Mustafa Özdal and Uğur Güdükbay

Bilkent University,
Department of Computer Engineering,

06533 Bilkent, Ankara Turkey
{ozdal, gudukbay}@cs.bilkent.edu.tr

Abstract. To reduce the complexity of polygonal models used in computer
graphics, simplification techniques are applied on these models. Mesh
Optimization is one of these techniques that requires a high running time, but
gives good results. This paper proposes some modifications on this method to
improve the performance and presents the results of performance experiments
on different meshes.

1 Introduction
The current technology in computer graphics allows the generation of complex
models with millions of faces. However, the improvements in hardware performance
usually can not compete with the increase in data complexity. So it is required to
reduce the complexity of models by using efficient simplification methods. For this
aim, data is represented with meshes and simplification techniques are applied on
them.
There are different strategies used for this aim. A survey of the different techniques
used for simplification of triangular meshes can be found in [1]. The analysis of these
techniques show that they effectively differ in two criteria: running times and data
fidelity. It is generally the case that, if the resulting simplified mesh of a method is of
higher quality, this method requires more running time, and vice versa.
Mesh Optimization [2] is one of the techniques that requires a high running time, but
gives good results. This paper proposes some improvements for this method and
shows their effects on different meshes in terms of quality and performance.
The rest of the paper is organized as follows: First, Mesh Optimization algorithm is
explained. Next, the implementation details used in the algorithm to make the
program run faster are discussed. Then, some modifications to improve the
performance are proposed. Then, the results obtained using the improved version and
some statistics for the execution times are presented. Finally, conclusions are given.

2 Polygonal Model Simplification Using Energy Optimization
In their original article, Hoppe et al. give a method to solve the following problem [2]:

“Given a set of data points scattered in three dimensions and an initial
triangular mesh M0, produce a mesh M, of the same topological type as M0,
that fits the data well and has a small number of vertices.”

The approach used to solve this problem is to minimize an energy function such that
the number of edges is minimized and proximity of the simplified mesh to the
original data points is maximized.

2.1 Mesh Representation
A mesh is formally represented with a pair: (K,V). K is called simplicial complex and
represents the connectivity of the vertices, edges and faces; V is called the vertex set
and represents the vertex positions in the set.
The simplicial complex determines the topological type of the mesh. It consists of a
set of vertices and their subsets (edges and faces). To form the topological realization
of a mesh, first the vertices {1,…, m} are identified as the basis vectors {e1,…, em} of
Rm. Then according to the edges and faces in the simplicial complex, vectors called
the barycentric coordinate vectors are formed by using these basis vectors. So the
topological realization of the mesh (denoted as |K|) is obtained.
To obtain the geometric realization, the set of vertex positions V = {v1,…, vm} is used
to form a linear map Φ, such that the i-th standard basis vector ei ∈ Rm is sent to
vi ∈ R3. By using this map, the geometric realization (denoted as Φ(|K|) of the given
mesh is obtained from its topological realization.

2.2 Energy Function
The mesh optimization is realized by minimizing the following energy function:
E K V E K V E K E K Vdist rep spring(,) (,) () (,)= + +

where:

E K V d x Kdist i V
i

n

(,) (, ())=
=
∑ 2

1

Φ

E c mrep rep=

E K V v vspring j k
j k K

(,)
{ , }

= −
∈
∑κ

2

Edist is the distance energy defined as the sum of squared distances from each data
point to the nearest face of the mesh. The aim for using this term is to penalise the
deviation of the mesh from the original data points. Erep is simply the number of
vertices multiplied by a parameter. This term incorporates the aim of minimizing the
number of vertices while trying to minimize the energy function.
Note that the terms Edist and Erep compete with each other. If the number of vertices is
decreased, Erep decreases and Edist increases, and vice versa. The user-specifiable
parameter crep is used to control the trade-off between the degree of mesh
simplification and the mesh quality (i.e., if crep is small, the aim of having a mesh of
high quality dominates the aim of having a mesh with a small number of vertices).
To define Espring, a spring of rest length zero and spring constant κ is placed on each
edge of the mesh. Espring is the sum of the energies of each such spring. The aim is to
regularize the optimization process. Note that κ is not a user-specifiable parameter. As
will be discussed later, the value of κ is decreased during the optimization process.

2.3 An Overview of the Algorithm
The pseudocode for the algorithm used is given in Fig. 1. The problem of mesh
optimization is divided into two subproblems: inner minimization that minimizes the

energy function for a fixed simplicial complex and an outer minimization that changes
the simplicial complex while minimizing the energy function.

OptimizeMesh (K
0
, V

0
)

{
 K = K

0

 V = OptimizeVertexPositions(K
0
, V

0
)

 // the outer minimization problem
 repeat
 {
 (K', V') = GenerateLegalMove(K, V)
 V' = OptimizeVertexPositions(K', V')
 if E(K',V') < E(K,V) then
 (K,V) = (K', V')
 endif
 }
 until convergence
 return (K,V)
}

// inner minimization problem
OptimizeVertexPositions(K,V)
{
 repeat
 {
 B = ProjectPoints(K,V)
 V = ImproveVertexPositions(K,B)
 }
 until convergence
 return V
}

GenerateLegalMove(K,V)
{
 Select a legal move K K'
 Locally modify V to obtain V' appropriate for K'
 return (K', V')
}

Fig. 1. Mesh Optimization Algorithm based on energy minimization [2]

2.3.1 The Inner Minimization Problem
The inner minimization is performed by the OptimizeVertexPositions(K,V)
procedure. This procedure takes the simplicial complex and the initial vertex positions
as input and optimizes the energy function by changing the vertex positions V.
Since Erep depends only on the number of vertices, the problem is to minimize Edist +
Espring. Calculating Espring is trivial, since it uses the vertex positions and the constant
κ:

E K V v vspring j k
j k K

(,)
{ , }

= −
∈
∑κ

2

However, calculating the distance energy Edist is not so trivial. As described before,
the distance energy is the sum of all the distances of the original data points to the
nearest face of the mesh. To calculate Edist, it is required to find the nearest face for

each data point and calculate the distance between them. The sum of the distances for
all data points gives Edist.
To perform the minimization, two subprocedures are used in the pseudocode:
ProjectPoints(K,V) and ImproveVertexPositions(K,B). The first one
finds the nearest points to each point and the corresponding barycentric vectors and
the second one optimizes the positions of the vertices by using the barycentric vectors.

2.3.2 The Outer Minimization Problem
The outer minimization is performed iteratively. First, the simplicial complex is
changed a little by generating a random legal move. Then, inner minimization process
is performed for this new simplicial complex. After this, it is checked whether the
energy of this new simplicial complex is less than the initial simplicial complex before
the legal move. If it is, then the change in the simplicial complex is accepted,
otherwise the change is cancelled. Afterwards, another legal move is generated and
the above process is repeated. This goes on until the energy function does not
decrease with any legal move.
A legal move is defined as one of the transformations: edge collapse, edge split, and
edge swap on K that leaves the topological type of K unchanged. Fig. 2 illustrates
these transformations on an example mesh. Here, the edge between i and j is the edge
on which the transformations are applied. The edge collapse operation removes the
vertices i and j and creates another vertex. Edge split operation puts another vertex
between i and j. Edge swap operation removes the edge between i and j and creates an
edge between another pair of vertices.

Fig. 2. Legal Transformations

In the beginning of an execution of the program, a candidate set of edges that includes
all the edges of the mesh is created. Then, an edge is randomly removed from the
candidate set. It is checked whether collapsing this edge would be legal and would
decrease the energy. If not, edge swap and edge split operations are checked in this
order. If one of these operations is legal and decreases the total energy, this operation
is accepted and the candidate set is updated by adding all the neighboring edges. If
none of them is accepted, another edge from the candidate set is selected and the same
operations will follow. Note that these operations go on until some convergence
criterion (i.e. the candidate set is empty) is satisfied.
It was mentioned that while considering a legal move, the inner minimization process
(i.e. holding the simplicial complex fixed and changing the vertex positions) is
applied for the new simplicial complex. To make the execution faster, the inner
optimization is performed not for all the vertices of the mesh, but only for those

effected by the edge operation (i.e. the new vertex in the edge collapse and edge split
operations; and the vertices of the new edge in the edge swap operation).

2.4 Setting the Spring Constant
In the beginning of the program, the spring constant κ is assigned a large value. Then,
the operations in the algorithm described before are performed and a simplified mesh
is obtained. Then, the spring constant is decreased and the same operations are
performed for the simplified mesh. This is repeated for a small number of times and
the final simplified mesh is obtained.

3 The Improvements
In the experiments that were performed by using the program, we observed that there
are too many unsuccessful operations occurring. Reducing these unsuccessful
operations seems to be a good improvement. The following subsections describe the
methods proposed for this aim.

3.1 Limiting the Transformations to Edge Collapse Operations
The first improvement can be achieved by limiting the edge operations to edge
collapse only. As stated in [3], the other two operations (edge split and edge swap)
may be useful for surface reconstruction, but they are not essential for mesh
simplification. The improvements in mesh quality by using these operations usually
do not compensate the increase in run time.

3.2 Reducing the Number of Unsuccessful Operations in the Later Stages
Performance can be improved by reducing the number of unsuccessful operations in
the later stages. For this, an array of size equal to the number of initial edges and that
has two fields is used. The array index determines the edge; one field holds the
change in Edist (∆Edist) and the other holds the change in Edist / κ if this edge is
collapsed.
Initially, the array is empty. In the first iteration, that is for the first spring constant,
while the unsuccessful edge operations cause the edges be removed from the
candidate set, the fields of this array are filled. Most of the unsuccessful operations
are due to positive energy. This means that before removing an edge from the
candidate set, the energy change it would cause is calculated for almost all the edges.
So filling this array brings almost no additional workload to the program.
In the later iterations for different spring constants, this array is used to determine the
initial candidate set. For each edge, the following operation is performed: the first
field of the array is added to the second field times the new spring constant κ. If the
result of this operation is greater than zero, then this edge is added to the candidate
set. In this way, most of the unsuccessful operations in the later iterations are avoided.
We do not need to update our array at each successful edge collapse because the
edges that need to be updated in such an operation will be added into the candidate
set. The operations for a fixed spring constant will continue until the candidate set
becomes empty. So the edges that need to be updated will definitely be updated before
the next iteration for which this array will be used.

3.3 Choosing the Better Edge Collapse Operations
The original algorithm uses random descent as the selection strategy. That is, an edge
is selected randomly from the candidate set. If collapsing this edge is legal and
decreases the total energy, then it is collapsed immediately. Instead of using this
method, it is possible to use steepest descent strategy for selection. Lindstrom and
Turk have used this strategy for selection in [4]. They define a cost function and
calculate the cost of each edge collapse operation. They use a priority queue and
always select the operation that has the minimum cost. Although this strategy is
expected to give better results, the usage of a priority queue increases the execution
time considerably. So, we use another technique for this aim. It is to use multiple
iterations for a spring constant instead of one iteration and not to add the neighboring
edges into the candidate set when an edge collapse occurs in the current iteration.
In the original algorithm, when an edge is collapsed, the neighboring edges are added
into the candidate set and the iteration continues until the candidate set is empty.
Assume that an edge collapse is tried and it is unsuccessful. Assume further that an
edge collapse is performed in the neighborhood and this edge is to be added to the
candidate set again. By intuition, we can say that the probability that the collapse of
this edge will decrease the energy function is less than that of other edges that have
not been tried yet. So it is logical to try those other edges before this edge. This can be
achieved by not adding this edge into the candidate set in the current iteration. The
technique used is as follows:
• After an edge collapse, mark the edges that would be added to the candidate set.
• Then in the next iteration (for the same spring constant) add the marked edges into

the initial candidate set and perform the same operations.
• Perform new iterations until there is no marked edge.
This technique resembles the steepest descent technique a bit. However, instead of
choosing the “best” edge, it helps choosing a “better” edge.

4 Experimental Results
The three improvements explained were implemented and the results were observed.
The first improvement (removing edge split and edge swap operations) degraded the
mesh quality by a very small factor, but improved the performance. The second and
third techniques improved performance without degrading the mesh quality.
The results obtained by using the original program and the improved version are
given in Tables 1 and 2 respectively. Here Edist represents the distance energy term.
Note that, a small value of Edist indicates that the quality of the simplified mesh is
high. Etotal represents the total energy that the program tries to minimize. The original
program and the improved version have been executed for different models by using
the same parameter values. A Sun Ultra Enterprise 4000 computer with eight 256MHz
processors and 1Gbyte memory has been used. The qualities of the simplified models
for the two versions of the program are very close to each other. However, the
improved version performs about twice faster compared to the original program.
Simplification examples obtained by using the original program and the improved
version are given in Figs. 3 and 4.

Table 1. Experimental results obtained by using the original code
Original Model Simplified Model Model

No.
vertices

No.
faces

Edist Etotal No.
vertices

No.
faces

Edist Etotal
Proc.
Time
(secs)

Hypersheet 2032 3832 0.0 0.2999 288 531 0.0119 0.0513 224
Teapot 7704 15382 0.0 0.8124 245 487 0.0100 0.0355 470
Mannequin 7834 15543 0.0 0.0636 1532 3018 0.0007 0.0023 433
Oilpump 22741 45478 0.0 2.3526 505 1006 0.0257 0.0762 1107
Budha 543652 1087716 0.0 54.4111 2560 5532 0.1026 0.3586 25125

Table 2. Experimental results obtained by using the optimized code
Original Model Simplified Model Model

No.
vertices

No.
faces

Edist Etotal No.
vertices

No.
faces

Edist Etotal
Proc.
Time
(secs)

Hypersheet 2032 3832 0.0 0.2999 279 513 0.0134 0.0519 103
Teapot 7704 15382 0.0 0.8124 227 452 0.0121 0.0356 235
Mannequin 7834 15543 0.0 0.0636 1518 2991 0.0008 0.0024 253
Oilpump 22741 45478 0.0 2.3526 508 1012 0.0281 0.0789 530
Budha 543652 1087716 0.0 54.4111 2810 6032 0.1186 0.3996 13509

(a) (b) (c)

Fig. 3. Simplification of Mannequin Model. (a) Original (b) Simplified with original
algorithm (c) Simplified with optimized algorithm

(a) (b) (c)

Fig. 4. Simplification of Happy Budha Model. (a) Original (b) Simplified with
original algorithm (c) Simplified with optimized algorithm

5 Conclusions
This paper proposes some improvements to Mesh Optimization algorithm [2]. The
method used is simply trying to minimize an energy function so that the number of
vertices are reduced while providing fidelity to the original data as much as possible.
The problem of mesh minimization is divided into two subproblems: inner
minimization and outer minimization. In this paper, we have proposed improvements
for the outer minimization subproblem.
The first improvement proposed is to eliminate the edge operations: edge swap and
edge split. As indicated in [3], these two operations are especially useful for surface
reconstruction applications, but have small effects on mesh simplification.
The second improvement is to decrease the size of candidate set in the beginning of
later iterations. The idea is to store the calculated value of energy function for each
edge and use this information to eliminate some elements of the candidate set for the
next spring constant iteration.
The third improvement we proposed is to use multiple iterations for a spring constant,
and to add the edges in the neighborhood of a collapsed edge to the candidate set of
the next iteration instead of current one. This technique resembles the steepest descent
technique, but it chooses better edges instead of the best edge.
After implementing these improvements, the new version of the program was tested
on several models. The results of the experiments show that these improvements make
the program run about twice faster without degrading the mesh quality.

Acknowledgments

This project is supported by an equipment grant from Turkish Scientific and
Technical Research Council (TÜBİTAK) with grant no. EEEAG 198E018. Happy
Budha model is obtained from Stanford University, Computer Graphics Laboratory.
Other models and the original simplification software are obtained from Hugues
Hoppe.

References

1. P. Cignoni, C. Montani, and R. Scopigno, “A Comparison of Mesh Simplification
Algorithms”, Computers & Graphics, Vol. 22, No.1, pp. 37-54, 1998.

2. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald and W. Stuetzle, “Mesh Optimization”,
Proc. of SIGGRAPH’93, pp. 19-26, 1993.

3. Hoppe, H., “Progressive Meshes”, Proc. of SIGGRAPH’96, pp. 99-108, August 1996.
4. P. Lindstrom and G. Turk, “Fast and Memory Efficient Polygonal Simplification”, Proc.

of IEEE Visualization’98, pp. 279-286, October 1998.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

