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ABSTRACT 
 
This paper proposes a novel 3D piecewise planar 
reconstruction algorithm, to build a 3D scene representation 
that minimizes the intensity error between a particular frame 
and its prediction. 3D scene geometry is exploited to remove 
the visual redundancy between frame pairs for any 
predictive coding scheme. This approach associates the rate 
increase with the quality of representation, and is shown to 
be rate-distortion efficient by the experiments. 
 

Index Terms— Rate-distortion optimal 3D 
representation, piecewise planar 3D reconstruction. 
 

1. INTRODUCTION 
 
Dense 3D scene representations are essential in 3DTV 
applications, due to their potential to eliminate the visual 
redundancy between the sequences of a multi-view video 
and to improve the compression rate of a 3DTV bit-stream. 
Obviously, the realization of this goal requires an efficient 
and accurate representation of the 3D structure. Hence, this 
problem can be studied within the rate-distortion framework. 

Among the earliest attempts to fulfill the above 
requirement is [1], in which 3D scene structure is extracted 
in a rate-distortion optimal sense, by jointly optimizing the 
number of bits to encode the dense depth field and the 
quality of the reconstructed frame, via a Markov random 
field formulation. This method, while successful, still leaves 
room for further improvement in 3D scene representation. 

 
2. DENSE 3D SCENE REPRESENTATION 

 
A dense 3D reconstruction can be described either by a 
point-based representation, as a depth-map defined on the 
same lattice with the reference frame, or as a mesh-based 

piecewise planar surface, or by a volumetric representation, 
such as voxels [9]. However, planes offer distinct 
advantages, as basic representation elements. Man-made 
environments and even many natural scenes could be well-
approximated by polygonal patches. Besides, planes can be 
succinctly parameterized. Finally, they are algebraically easy 
to handle, providing significant computational savings. 

The considerable body of research on piecewise planar 
scene representations can be analyzed in two major classes. 
In the first approach, a planar surface is fit onto an irregular 
3D point cloud. A good example is presented in [3], in 
which the point cloud is divided into cells and a dominant 
plane is identified in each cell via RANSAC. An equivalent 
procedure is described in [2] to determine the homographies 
induced by scene planes from 2D correspondences. 

The use of triangular meshes, specifically Delaunay 
triangulation, due to its certain optimality properties [4], 
characterizes the second approach. There exist successful 
algorithms that can construct a triangular mesh from an 
irregular 3D point cloud [5]. However, image-based 
triangulation (IBT) techniques [6] are one step beyond, as 
they are also capable of incorporating the intensity 
information. The basic algorithm utilizes edge swaps on a 
triangular mesh, to minimize the intensity prediction error of 
an image of the scene, acquired by a known camera [6]. In 
[7], a simulated annealing procedure, equipped with a rich 
arsenal of tools in addition to edge swap, is employed. In the 
algorithm proposed in [8], a similar idea is used to represent 
a disparity map. However, it differs from the others by 
adding vertices to locations where the prediction error is 
largest, instead of simplifying a complex mesh. 

Since IBT methods construct the mesh using the 2D 
projection of the 3D point cloud, they are prone to erroneous 
connections. However, the vertices of the mesh alone are 
sufficient to represent a Delaunay triangulation, unlike 
irregular-shaped planes generated by the plane-fitting 
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 process. Moreover, rendering of triangular meshes are 
readily supported by hardware. These advantages justify the 
choice of triangular meshes in this study. 

In this paper, a coarse-to-fine, 3D piecewise planar 
reconstruction algorithm is proposed. The algorithm requires 
two images of the scene and the corresponding cameras as 
input, initially obtains a coarse mesh, and is guided by the 
prediction error to determine which parts of this mesh 
structure require a refinement. 

 
3. PIECEWISE PLANAR 3D RECONSTRUCTION IN 

RATE-DISTORTION SENSE 
 
3.1. Motivation 
 
In order to find a rate-distortion efficient representation, a 
sequential minimization algorithm can operate either in a 
fine-to-coarse or coarse-to-fine fashion. The former leads to 
a more complex error surface along with the 
computationally inefficient practice of extracting 
information only to discard later on. Therefore, a coarse-to-
fine approach is adopted as it not only avoids both of the 
above issues, but is also suitable for progressive coding and 
the construction of scalable bit streams. The rules that 
identify such an algorithm are those governing the location 
and the amount of refinement. The location is chosen to 
achieve maximal reduction in the distortion for the 
representation, while, in a compression scenario, the 
available number of bits, or rate, limit the amount of 
refinement. Figure 1 illustrates these ideas. 

In this study, rate is defined as the number of vertices in 
the mesh. As for distortion metric, the choice is not 
straightforward. PSNR is the most popular distortion metric 
in the literature, although, it is oversensitive to geometric 
errors. Moreover, minimization of such an image-based 
error, when coupled with erroneous camera estimates, causes 
a projective distortion in the structure estimate. The 
alternative is geometry-based error metrics, measuring the 
discrepancy between the point cloud and the scene 
representation. 

The minima of both of the above metrics should 
coincide when accurate camera matrices are available. In 
their absence, minimizing the image distortion transfers the 
error to the structure and vice versa. This observation 
explains the popularity of PSNR in novel view synthesis and 
image prediction problems [1]. 
 

3.2. Proposed Method 
 
The proposed algorithm aims to build a rate-distortion 
efficient and accurate 3D scene geometry representation. 
The distortion is measured as the prediction error of the 
intensity values of a target image from a reference image. 
The minimal input to the algorithm is two frames, from 
which the projective camera matrices, and an initial 4-8 
vertex mesh bounding the target image (required by the 
incremental Delaunay triangulation algorithm), can be 
estimated. However, the algorithm is capable of making use 
of any available projective camera matrices and mesh. 

A cycle in the algorithm starts by finding a patch that 
requires refinement. To this aim, a prediction of the target 
image is computed by transferring the pixels in the reference 
frame to the image plane of the camera corresponding to the 
target frame, via the homographies induced by the planar 
patches in the current representation. The patch, whose 
corresponding region in the target image has the largest 
error, is chosen for refinement. 

The local scene representation is refined by adding a 
vertex to the chosen patch. In order to determine the vertex 
position, the patch is projected to the target and the 
reference frames to define the region-of-interests (ROIs). In 
each ROI, a set of salient features are extracted by Harris 
corner detector. These features are matched by guided 
matching; a technique that uses the fact that the fundamental 
matrix, computed from the camera matrices, constrains the 
possible matches of a feature in an image to lie on a line in 
the other [11]. For each matching pair, there is a 
corresponding 3D vertex. Among these vertices, the one that 
has the largest discrepancy with the current scene geometry 
estimate is added to the representation. The discrepancy is 
measured by symmetric transfer error [11], a projective 
metric, as it dispels the need to use calibrated cameras. The 
metric is defined as 
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where x1 and x2 are the homogeneous coordinates of the 
matching pair and H is the homography induced by the 
planar patch, relating the ROIs. 

The new vertex is added to the representation, only if it 
improves the representation quality; otherwise, it is rejected. 
The procedure is repeated until either the intensity 
prediction error converges, or the available bit budget is 
completely used up.  

The sequential stage of the algorithm, described above, 
is followed by the non-linear refinement stage. The 
representation is parameterized by the cameras and vertices, 
and the prediction error is minimized using gradient-descent. 

The flow of the algorithm is presented below.  
 
 
 

Structure Extraction Representation Compression 
Point cloud Scene representation 

Regions requiring refinement 

Remaining bit budget 

Figure 1: 3D reconstruction in rate-distortion framework. 

V - 114



 
Algorithm: Piecewise-Planar Reconstruction 

 
Input: Reference and target images, initial mesh (optional), 
and the associated cameras (optional) 
1. Until the prediction error converges or the bit budget is 

depleted 
2. Transfer the 2D points in the reference frame to the 

target frame, and compute the intensity prediction error 
in the regions corresponding to each planar patch. 

3. Project the patch with the largest prediction error to the 
images to determine the ROIs. Extract new features and 
construct a correspondence set via guided matching. 

4. Compute symmetric transfer error for each feature pair 
in the set. Determine the pair with the largest transfer 
error, and add the corresponding 3D vertex to the mesh.  

5. Go to Step 1. 
6. Further refine the representation by non-linear 

optimization. 
 

4. EXPERIMENTAL RESULTS 
 
The algorithm is first tested on “Cube”, a synthetic scene 
with 9 surfaces and 12 vertices, and for which the ground-
truth for both the cameras and the geometry is available. In 
order to assess the effect of noise, the ground-truth values 
are perturbed randomly with a certain percentage of their 
original values. The reference, target and predicted images 
are presented in Figure 2, along with the error images at 
different stages of the procedure. As illustrated in Figure 4, 
errors, especially, in cameras, significantly deteriorate the 
results. Table 1 lends further support to this conclusion. 

Next, the algorithm is tested on “Venus” [10] (Figure 
3), a data for which only the uncalibrated cameras are 
known. The process, as depicted in Figure 5, starts with an 
8-point reconstruction, and the distortion converges at 30 
vertices. The errors due to the automatic localization of the 
corners and matching increase the residual error.  

A final experiment is conducted on “Cliff”, a real video 
sequence, acquired from broadcast TV content (Fig.6), thus 
neither the scene geometry, nor the cameras are known. The 
process, presented in Figure 7, starts with an 8-point mesh, 
and the distortion converges at 50 vertices. As expected, 
errors in the cameras and the geometry further degrade the 
results, when compared to “Cube” and “Venus”. The lack 
of features in some parts of the scene prevents their 

representation in the scene model and causes the black 
regions in Figure 6. 

The number of iterations required for the convergence 
of the non-linear refinement stage, presented in Table 1, 
decreases with the increasing complexity of the geometry. 
This is due to the fact the local minima generated in more 
complex cases cause early termination, and reduce the 
effectiveness of this stage. 

 
5. CONCLUSION 

 
In this paper, a piecewise planar 3D reconstruction 
algorithm is proposed. The algorithm seeks a favorable point 
on rate-distortion curve by refining an initial mesh through 
the addition of new vertices, whose locations are determined 
by the prediction error. The experiments indicate that the 
proposed algorithm can yield efficient representations, thus 
it is an important step towards rate-distortion optimal 3D 
reconstruction for multi-view compression. However, in 
applications in which camera, structure or both should be 
estimated from the sequence, the algorithm requires accurate 
estimates of these parameters, in order to achieve 
satisfactory results. 
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Table 1: Final distortion after non-linear optimization 
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Figure 2: “Cube”, 7.5% perturbation in geometry, 2.5% 
perturbation in cameras. Top row,left to right: Reference and 
target and predicted frames. Bottom row, left to right: Initial 
error, error before non-linear refinement, error after non-
linear refinement. Reference frame is overlayed with the 
projection of the initial mesh, and predicted frame, with the 
projection of the 12-vertex mesh 

Figure 6: “Cliff”. Top row,left to right: Reference and target 
and predicted frames. Bottom row, left to right: Initial error, 
error before non-linear refinement, error after non-linear 
refinement. Errors are scaled by 3 to enhance visibility. 
Reference frame is overlayed with the projection of the initial 
mesh, and predicted frame, with the projection of 50-vertex 
mesh 
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Figure 5:  Rate-distortion plot for “Venus”.  
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Figure 7:  Rate-distortion plot for “Cliff”.  
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Figure 4:  Rate-distortion plot for “Cube” at various noise levels.  

Figure 3: “Venus” Top row,left to right: Reference and 
target and predicted frames. Bottom row, left to right: Initial 
error, error before non-linear refinement, error after non-
linear refinement. Errors are scaled by 3 to enhance visibility. 
Reference frame is overlayed with the projection of the initial 
mesh, and predicted frame, with the projection of the 30-
vertex mesh 
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