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Abstract—Indoor positioning is one of the difficult problems
in current navigation systems. There is an increasing demand
for detecting the locations of objects and humans inside closed
environments in various fields including surveillance, robotics,
and entertainment. Recent works focus on indoor navigation
systems using different technologies including Wireless Local
Area Network (WLAN), Radio Frequency Identification (RFID),
Inertial Measurement Unit (IMU), and Simultaneous Localization
and Mapping (SLAM). Research reveals using these technologies
alone is inefficient in terms of accuracy and cost. To address
this issue, we propose a marker-based Augmented Reality (AR)
indoor navigation system with integrated SLAM and IMU. We
use Unity’s AR Foundation Framework for highly accurate
results with minimum hardware requirements.

Index Terms—Augmented Reality, Simultaneous Localization
and Mapping, Inertial Measurement Unit, Indoor Navigation

I. INTRODUCTION

There is an increasing demand for indoor navigation in

many fields, including surveillance, robotics, and entertain-

ment. Positioning in indoor locations is a challenging task as

buildings disallow techniques that function well for outdoors.

Recently, a large amount of research has been conducted on

indoor navigation systems using different technologies such

as Wireless Local Area Network (WLAN), Radio Frequency

Identification (RFID), Inertial Measurement Unit (IMU), and

Simultaneous Localization and Mapping (SLAM) [12].

We propose an indoor positioning system that enables 2D

environment mapping and navigation, with minimum hardware

requirements. We make use of SLAM, IMU and marker-based

Augmented Reality (AR) technologies together to map the

indoor location. We use Unity’s [21] AR Foundation Frame-

work [18] that utilizes ARKit [6] for IOS support. ARKit

enables utilizing IMU and SLAM together, which results in

better accuracy. Additionally, we include 3D humanoid agents

inside the AR environment to assist navigation.

Indoor navigation requires recording the room borders and

the obstacles, based on a reference image that provides a

specific pose for each room. We save predefined locations

to use in navigation and generate their visibility graphs.

When the user requests navigation for a specific location,

the room recordings are fetched for the reference image, to

convert the new AR space into the recorded one. Then the

pathfinding algorithm uses the generated visibility graph of

the corresponding location, to calculate a path from the current

position of the user to the desired destination. A 3D humanoid

agent directs the user by walking along the calculated path.

In this application we aim for high measurement accuracy

with minimum hardware requirements. The accuracy of the

approaches that use WLAN and RFID is highly correlated

with the capabilities of the special hardware in use [10], [16].

Our goal is to eliminate the requirement for special hardware,

while achieving high accuracy; thus we also minimize the cost.

The resulting system is able to run on low-end AR supported

smartphones.

The organization of this paper is as follows: Section II

discusses the related work. Sections III, IV, and V discuss

indoor environment mapping, indoor positioning, and indoor

navigation, respectively. Section VI includes experimental

results, and Section VII includes visual results. Finally, Section

VIII concludes with an overall analysis of the resulting system,

and discusses possible future extensions.

II. RELATED WORK

Neges et al. [12] compare the technologies that are available

for indoor scene navigation, and provide the advantages and

limitations of each approach. Wireless Local Area Network

(WLAN), Radio Frequency Identification (RFID), and Indoor-

Global Positioning System (GPS) require specific infrastruc-

ture installation.

WLAN and RFID technologies require signal measure-

ment at reference points, and their successes depend on

the signal coverage of the device for accurate continuous

positioning [17]. Although indoor GPS does not require data
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preparation, its success depends on signal coverage for ac-

curate continuous positioning. Additionally, the accuracy of

WLAN, RFID, and Indoor-GPS heavily depend on building-

specific disruptive factors, such as the material and thickness

of walls [13]. Even with good signal coverage, there are Radio

Frequency (RF) issues, such as interference with other radio

sources, that influence the positioning accuracy [9]. This is

because RF-based positioning systems (except for GPS) use

the Received Signal Strength Index (RSSI) as an input to

calculate the distance between the user and the reference

points. In addition to these, RF-based positioning requires

special hardware that increases the cost. WLAN and RFID

based solutions do not require signal sources since WLAN

access points or Bluetooth Low Energy (BLE) beacons use

them as reference points for trilateration techniques.

WLAN based solutions use RSSI measurements of WiFi

access points and their fixed locations for positioning. With

these measurements, it is possible to calculate the distances

between each access point and the user, because of the correla-

tion between the measured signal power and the distance [14].

When distances to at least four different fixed locations are

known, it is possible to calculate the user’s position in relation

to these fixed locations using trilateration techniques. Various

products, such as Anyplace [1], use WLAN-based positioning;

however, the accuracy of this approach is not at the desired

level, and it requires post-processing, such as a Gaussian pro-

cess, to increase the accuracy of RSSI readings [4]. Techniques

such as Kalman Filtering [3] could be combined with this post-

processing phase as well.

Using BLE beacons for indoor positioning is a new RFID

based approach. Energy consumption of the BLE devices is

low, thus it is possible to create a grid network of BLE beacons

and use them for positioning with trilateration techniques [5].

Despite the low energy consumption of the BLE devices, the

accuracy of the positioning system depends on the number of

devices [7], which results in high deployment costs.

For indoor GPS, special hardware such as GPS antennas

and repeaters are required, as GPS cannot be used for indoor

locations directly. This special hardware should be installed in

places to provide indoor positioning for the users [23].

Inertial Measurement Unit (IMU) technology is integrated

into most of the consumer devices, including cellular phones;

and it provides real-time position data using accelerometer,

gyroscope, and magnetometer sensors. However, the generated

data is relative to the previous position, and errors accumulate

and propagate at a high rate. As a result, relying on this

technology alone would create erroneous outcomes. In order to

reduce the error rate, filtering (such as Kalman Filtering [22])

is required.

Various studies aim to estimate and analyze the steering

directions of people navigating in indoor regions. For example,

Azizi et al. [2] propose a floor-plan embedding that extracts

and utilizes important low-level space semantics and structural

information with encoding space utilization, by detecting peo-

ple’s movement and activities inside the space. This method

could be useful for showing the crowded areas by generating

heat maps that provide density information. This could be

used for commercial purposes such as focusing advertisements

in crowded areas. However, this method increases the need

for computational power since it processes a lot of graph

operations and requires deep learning.

Yang et al. [24] propose a pedestrian trajectory extraction

method based on one fish-eye camera that functions inside

interior spaces, which would be useful for avoiding collision

between humans and virtual agents. Polvi et al. [15] introduce

a 3D positioning approach for SLAM based handheld AR

systems, which utilizes 3D ray-casting and epipolar geometry

for virtual object positioning. The approach does not require

perfect 3D reconstruction of the environment and virtual

depth cues, thus it better handles the hardware limitations of

handheld devices and possible restrictions in the environment.
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Fig. 1. Indoor environment mapping flow diagram.

III. INDOOR ENVIRONMENT MAPPING

Indoor environment mapping consists of three main stages:

(i) projecting 3D AR Session space to a 2D plane by affixing

y coordinates of the objects in the space to y coordinates of

the reference image on the ground, (ii) identifying the pose

of the reference image, and (iii) specifying the borders of the

area, the corners of the obstacles, and the locations of specific

objects. Figure 1 depicts the indoor environment mapping

process.

A. Projecting the AR Session Space to the Ground Plane

We project 3D AR Session space to the ground plane, where

the static reference image is placed since indoor navigation

does not require 3D mapping. This also helps to keep the

accuracy of the system high by limiting the mapping area.

However, this could be problematic with multi-floor buildings,

and in such cases, using multiple reference poses on each

floor separately would be the solution. We detect the ground
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plane as AR Foundation’s Plane Within Polygon type, which

is a plane within a polygon by ray casting with AR Raycast
Manager [19]. Detecting the planes in polygons is a slow

process; as a result, once we detect the floor, we use the plane’s

y coordinate to place all 3D objects including the reference

image in the AR Session space on this ground plane.

B. Detecting the Reference Image

A reference pose is required for fetching the saved mappings

of a place. We use a static physical image on the ground

to serve as a reference pose. The relative pose according to

the AR Session of the reference image is gathered from AR

Foundation’s Tracked Image Manager. We discuss the reason

for this requirement in Section IV.

C. Identifying Objects on The Ground Plane

We record the poses of objects such as room borders,

obstacles, and specific target points (placeholders) to be used

in indoor positioning and navigation. We use ray casting to

identify their relative poses in the AR Session space to save

the objects. We use the first hit of AR Raycast Manager [19] to

detect the pose of the desired object. We repeat this procedure

for each object in the place.

IV. INDOOR POSITIONING

In this section, we discuss the details of the indoor position-

ing system in two parts: Fetching the Place Data and Detecting
the User Pose. The flow diagram of the indoor positioning

framework is visible in Figure 2.
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Fig. 2. Flow diagram of the indoor positioning framework.

A. Fetching the Place Data

We use Quick Response (QR) codes for determining the

visited places. The data of the currently visited place needs

to be fetched to enable user interaction. After fetching the

place data, we project the positions of the objects in the place

to the ground plane, as discussed in Section III. AR Session

spaces formed by AR Foundation use the current pose of

the smartphone as the origin when the camera is launched.

Because the initial pose at camera launch is not predetermined,

a reference pose is required to transform the new space into

the fetched one.

We use a predefined image in the physical space to obtain

the reference pose so that we can calculate the required

transformation operations to convert the new space into the

fetched one. We are able to position the fetched objects

to the new space since the location of the reference image

is fixed inside the physical world. We use Make Content
Appear At [20] method of AR Foundation to perform these

transformations.

Make Content Appear At translates all objects, including

the camera, in the new detected space, so that the position of

the reference pose becomes the position of reference pose in

the stored space. The relative positions of the objects in the

new detected space to the reference pose should be preserved;

therefore, all transformations applied to the reference pose

is also applied to other objects. First, the reference pose is

translated to the origin, and then it is translated to the position

of the reference pose in the stored space. Additionally, the

rotation of the reference pose in the new detected space is

transformed into the rotation of the reference pose in the stored

space. To achieve this, we first apply the inverse of its rotation

and then apply the rotation of the reference pose in the stored

space. All these rotation transformations are also applied to the

other objects including the camera in the new detected space

to keep their relative rotations to the reference pose. After

all these transformations, the new detected space becomes the

stored space as it can be seen in Figure 3 and Algorithm 1.

Fig. 3. Space Transformation with a Static Reference Pose

Algorithm 1: Space Transformation with a Static

Reference Pose

normpos ← −(Reference ∈ SpaceNew Detected)pos;

normrot ← (Reference ∈ SpaceNew Detected)
−1
rot ;

disppos ← (Reference ∈ SpaceStored)pos;

disprot ← (Reference ∈ SpaceStored)rot;

foreach object ∈ SpaceNew Detected do
objectpos ← objectpos + normpos + disppos;

objectrot ← normrot × disprot × objectrot;

end
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B. Detecting the User Pose

The position of the user is required to interact with the

AR objects in the place. The position of the camera in the

AR Session space changes when the user moves within the

place. Since the camera is also in the AR Session space, the

transformations applied by Make Content Appear At [20] also

transform its position. In addition to these transformations, we

also project the position of the camera to the ground plane by

the affixed y coordinate. As a result, we can get the camera

position relative to the objects around it on the ground. To

determine the looking direction of the user, we use ray casting.

The first ray hit of AR Foundation’s Make Content Appear At
on the ground is used to get the position of a point in front

of the camera. The looking direction vector of the user can be

calculated from the position of this point and the position of

the camera (see Figure 4).

V. INDOOR NAVIGATION

The indoor navigation system creates a dynamic path, start-

ing from the user position to the position of the desired place-

holders. We utilize Extremity Pathfinder Python library [11]

to create visibility graphs of the places for indoor navigation.

We generate visibility graphs using the saved place border and

obstacle polygons. Extremity Pathfinder makes use of Lee’s

Visibility Graph Algorithm [8]. The purpose of this algorithm

is to detect the visible corners of a polygon from different

corners of other polygons; thus, we obtain the line segments

that connect the corners of different polygons without crossing

any obstacles. We store the endpoint vertices in the visibility

graph. The edges of the visibility graph carry the Euclidean

distances of the points. Therefore, we can run a shortest-path

algorithm on this graph to find a suitable path for navigation.

We use A* search algorithm with Euclidean distance between

the current position and the destination as the heuristic. The

total time complexity of this procedure is O(n log n) [8].

VI. EXPERIMENTAL RESULTS

We conduct two different experiments to analyze the accu-

racy of our approach. The first experiment is on 1D measure-

ments, and the second one focuses on 2D measurements.

TABLE I
1D MEASUREMENT EXPERIMENT RESULTS. THE FIRST COLUMN IS THE

LENGTH IN THE ACTUAL PHYSICAL WORLD AND THE SECOND COLUMN IS

THE LENGTH MEASURED BY OUR APPLICATION. THE ERROR RATE IS THE

PERCENTAGE ERROR BETWEEN THE MEASURED AND ACTUAL LENGTHS.

Line Length (cm) Measured Length (cm) Error rate (%)
20 20.3 1.5
40 40.3 0.75
60 59.7 0.5
80 79.4 0.75
100 99.1 0.9
200 203.2 1.6
500 495.3 0.94

In the first experiment, where we focus on 1D measurement,

we compare the actual length of objects to the measured AR

length. The aim of this experiment is to find out the 1D

measurement accuracy of the approach since the positioning

system of our solution is based on such measurements. We

list actual lengths and corresponding measured AR lengths of

different samples in Table I. We calculate the error rate of

each sample using the following equation:

Error Rate =
|l1 − l2|

l1
× 100,

Where l1 is the actual length, and l2 is the measured AR length

of the corresponding sample.

The average measurement error rate is 0.99%. We did not

encounter any correlation between the measured lengths and

the corresponding error rates, we believe the error is mainly

user-dependent. Based on this experiment, our approach is

99.01% accurate with 1D measurements.

TABLE II
2D MEASUREMENT EXPERIMENT RESULTS. THE FIRST COLUMN IS THE

ACTUAL (X, Z) COORDINATE IN THE PHYSICAL WORLD. THE SECOND

COLUMN IS THE (X, Z) COORDINATE IN AR SESSION WORLD. WE

CALCULATE THE ERROR ACCORDING TO THE EUCLIDEAN DISTANCE

BETWEEN THE PHYSICAL AND AR COORDINATES.

Physical Coordinate (cm) AR Coordinate (cm) Error rate (%)
(20, 20) (20.2, 19.9) 0.79
(40, 40) (40.3, 40.2) 0.64
(60, 60) (59.5, 61) 1.32
(80, 80) (79.4, 79.5) 0.69

(100, 100) (99.2, 100.4) 0.63
(200, 200) (202, 199.9) 0.71
(500, 500) (495.4, 501.7) 0.69

In the second experiment, we focus on 2D measurements to

detect the error rate for positioning. For this purpose, we scan

the same rectangular place with the same camera positioned

at different physical coordinates of the place. We compare

the physical coordinates to the measured AR coordinates for

different samples in Table II.

We calculate the error rates based on the differences be-

tween the actual and measured distances, using the following

equation:

√
(x1 − x2)2 + (y1 − y2)2√

x2
1 + y21

× 100,

Where (x1, y1) is the 2D coordinates of the physical location,

and (x2, y2) is the corresponding AR coordinates.

We find no correlation between the physical coordinates and

the corresponding error rate. We believe the error is mainly

user-dependent, and also caused by the sensor calibration

errors. We conclude that the proposed indoor positioning

system has an average error rate of 0.78% and the accuracy

of the system is 99.2%.

VII. VISUAL RESULTS

In this section, we provide visual results from our applica-

tion that uses the discussed approach and provide details about

our implementation.
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(a) Real-time rotation tracking. (b) Real-time position tracking. (c) Object augmentation.

Fig. 4. Visuals from the application: (a) On left, the administrator portal visualizes the user direction using a red arrow towards the fridge. On right, the
application screen shows that the camera is directed towards the fridge. (b) On left, the administrator portal visualizes the user’s current location within the
environment in real-time. On right, the application screen shows a 3D humanoid walking towards the desired destination “brown sofa”, starting from the user’s
current position. (c) Scanning for indoor mapping: synthetic objects for place boundaries and placeholders are augmented into the live feed.

We test our proposed solution by developing a mobile

application with the name Guido, and an accompanying web-

based administration portal. In the application screen, the user

sees the environment through the camera, with a 3D humanoid

that moves towards the desired destination (see Figure 4). On

the administration portal, the position and the direction of the

camera (the user) are visualized with a red arrow in real-

time, while the user is moving inside the scanned environment

(see Figure 4).

Figure 5 shows the measurements of the scanned place,

including the measurements of the place edges, obstacles, and

points of interest.

Fig. 5. The measurements of the scanned environment.

In our AR-based indoor mapping system, we augment

synthetic objects on top of the live camera feed for the user

to see the points of interest, as well as the boundaries of the

augmented world. An example of these synthetic objects is

shown in Figure 4 (c).

VIII. CONCLUSION AND FUTURE WORK

In our proposed solution, we make use of Augmented Real-

ity (AR) Technology, which has the capability of producing 2D

plans of indoor environments. Our indoor positioning system

utilizes the produced 2D plans. We also provide 3D humanoid

agents for realistic navigation scenarios within the generated

AR environment. We utilize Unity’s AR Foundation frame-

work to create precise 2D plans and localization for indoor

places. To create 2D mappings of indoor places, our approach

divides the place into sub-elements: the place borders as a

polygon, static obstacles as a polygon list, and placeholders

as a point list.
For dynamic pathfinding, we create unique visibility graphs

of the places using the idea of the polygon with holes. For

indoor localization, we fetch the saved 2D plan of places

and complete the positioning of AR space using the reference

image pose. We construct the dynamic shortest path between

the user position and the selected placeholder using the A*

algorithm, which utilizes the place visibility graph. We use a

3D humanoid agent to guide the user along the desired path

for a better user experience.
With this approach, our goal is to implement an accurate

indoor mapping and navigation system with minimum hard-

ware requirements. The precision of early indoor positioning

systems, such as WLAN and RFID, heavily depend on the

hardware quality and quantity. Our approach facilitates indoor

positioning and mapping with minimal hardware requirements,

and without compromising precision. Our solution requires an

AR supported smartphone on the user’s side, and the quality

of the camera and the sensors could have a potential influence

on the precision and performance of the application.
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We believe that augmented reality will become an insepara-

ble part of our daily lives, and indoor mapping and navigation

will become essential for collaborative works, multiplayer AR

games, and interactive experiences.
This work could be enhanced by utilizing a multi-room

based setup using a connected graph for modular rooms. The

3D plan of places could be mapped by utilizing the floor

height and additional elements such as windows. To avoid

collision with dynamic objects in the environment, moving

objects could be detected and their trajectories could be used

to improve pathfinding [8].
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