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Abstract. Real-time flame detection is crucial in video-based surveil-
lance systems. We propose a vision-based method to detect flames
using Deep Convolutional Generative Adversarial Neural Networks
(DCGANs). Many existing supervised learning approaches using convo-
lutional neural networks do not take temporal information into account
and require a substantial amount of labeled data. To have a robust rep-
resentation of sequences with and without flame, we propose a two-stage
training of a DCGAN exploiting spatio-temporal flame evolution. Our
training framework includes the regular training of a DCGAN with real
spatio-temporal images, namely, temporal slice images, and noise vec-
tors, and training the discriminator separately using the temporal flame
images without the generator. Experimental results show that the pro-
posed method effectively detects flame in video with negligible false-
positive rates in real-time.

Keywords: Fire detection · Flame detection · Deep Convolutional
Generative Adversarial Neural Network

1 Introduction

Fires pose a great danger in open and large spaces. Flames may spread fast and
cause substantial damages to properties and human life. Hence, immediate and
accurate flame detection plays an instrumental role in fighting fires.
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Among different approaches, the use of the visible-range video captured by
surveillance cameras is particularly convenient for fire detection, as they can be
deployed and operated in a cost-effective manner [3]. One of the main challenges
is to provide a robust vision-based detection system with negligible false positive
rates while securing rapid response. If the flames are visible, this may be achieved
by analyzing the motion and color clues of a video in the wavelet domain [5,
21]. Similarly, wavelet-based contour analysis [20] can be used for the detection
of possible smoke regions. Modeling various spatio-temporal features such as
color and flickering, and dynamic texture analysis [6] can detect fire, as well.
In the literature, there are several computer vision algorithms for smoke and
flame detection using wavelets, support vector machines, Markov models, region
covariance, and co-difference matrices [4]. An important number of fire detection
algorithms in the literature not only employ spatial information, but also use
the temporal information [4,11,19].

Deep convolutional neural networks (DCNN) achieve successful recognition
results on a wide range of computer vision problems [8,15]. Deep neural network-
based fire detection algorithms using regular cameras have been developed by
many researchers in recent years [9,10,22]. As opposed to earlier computer vision-
based fire detection algorithms, in all of the existing DCNN-based methods, the
temporal nature of flames is not utilized. Instead, flames are recognized from
image frames. In this paper, we utilize the temporal behavior of flames to recog-
nize uncontrolled fires. Uncontrolled flames flicker randomly. The bandwidth of
the spectrum of flame flicker can be as high as 10 Hz [7]. To detect such behav-
ior, we group the video frames and obtain temporal slice images. We process the
temporal slices using deep convolutional networks.

Radford et al. [17] demonstrate that a class of convolutional neural networks,
namely, Deep Convolutional Generative Adversarial Networks (DCGANs), can
learn general image representations on various image datasets. In our earlier
work, we utilize DCGANs for detecting wildfire smoke based on motion-based
geometric image transformation [2]. We utilize a two-stage training approach to
have a robust representation of sequences with and without smoke. We first train
the network with real images and noise vectors and then train the discriminator
using the smoke images without the generator. In a pre-processing stage before
training, we integrate the temporal evolution of smoke with a motion-based
transformation of images.

We propose utilizing the discriminator of a DCGAN to effectively distinguish
ordinary image sequences without flame from those with flame. Additionally, we
define a two-stage training approach for the DCGAN such that the discrimi-
nator is trained adversarially and to detect flame at the same time. Our main
contribution is training the discriminator in such a way that the discriminator
acts as a classifier that identifies the images with flame. We develop a DCGAN
to utilize adversarial learning in a classification task.

The rest of the paper is organized as follows. Section 2 describes the proposed
method that effectively detects flame. Section 3 presents the experimental results
of the approach. Finally, Sect. 4 concludes the paper.
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2 Method

We describe the proposed flame detection method in this section. In our method,
we group the video frames in order to obtain temporal slice images. Then, we
process the temporal slices using a DCGAN structure accepting input with size
64 × 128 × 384 pixels. The generator network consists of a fully-connected layer
followed by five transposed convolutional layers and the discriminator network
consists of five convolutional layers with a fully-connected layer. Figure 1 depicts
the neural network architectures and the training framework of the DCGAN.

Fig. 1. The block diagram of the DCGAN: (a) the generator of DCGAN, (b) the
discriminator of DCGAN, (c) the adversarial learning stage of training, and (d) the
second stage of training

We first train the neural networks using a noise distribution z and images
that contain flame. The discriminator of the DCGAN is trained to learn a rep-
resentation of the temporal nature of flames and distinguishes non-flame videos
because of the adversarial training. Then, we improve the classification perfor-
mance by refining and retraining the discriminator network without a generator,
where actual non-flame video images constitute the “generated” training data
and regular flame images correspond to “real” data as usual. Compared to a
generic CNN structure, adversarial training of the DCGAN using the noise vec-
tor z and flame data, in addition to the training with the actual non-flame data
makes the recognition system more robust.

In our model, we use batch normalization [13] layers and Rectified Linear Unit
(ReLU) activation function [16] after each transposed convolutional layer in the
generator network, except the last layer, which has a hyperbolic tangent (tanh)
activation. Similarly, for the discriminator network, we use batch normalization
layers and Leaky ReLU activation function after each convolutional layer, except
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the last layer, which has a sigmoid activation. During training, we randomly
drop out [18] the outputs of the layers in the discriminator network to prevent
overfitting and add Gaussian noise to the inputs to increase the generalization
capabilities of the network. We initialize the weights of the convolutional and
transposed convolutional layers according to the “MSRA” initialization [12].
Finally, we use Adam optimizer for the stochastic optimization [14]. We use the
TensorFlow machine learning framework to train the discriminator and generator
networks [1].

2.1 Temporal Slice Images

Exploiting the evolution of flames in time, we obtain slice images from video
frames. We first split the videos into blocks containing 64 consecutive frames
with size 128 × 128 pixels. Then, for each column, we extract the pixels along
the time dimension, resulting in 128 different 128 × 64 pixel images (see Fig. 2).

Fig. 2. (a) An example frame from the input video. (b) Temporal slice image of column
corresponding to the green line in (a), where the leftmost column contains pixels from
the initial frame, namely, the frame at time index t = 1, and the rightmost column
contains pixels from the final frame, namely, the frame at time index t = 64 of the
block. (c) Visualization of all 128 slice images. (Color figure online)

To feed the slice image data to the DCGAN model, we stack all 128 slices on
top of each other. Thus, we obtain an RGB image cube of size 64×128×384 pixels
because the slice images have three channels each. Figure 3 shows an example of
an image cube.
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Fig. 3. An example image cube obtained from the input video.

2.2 Proposed GAN-type Discriminator Network

Flame, by its nature, have no particular shape or specific feature as some other
objects such as faces, buildings, or cars. Hence, we focus on the temporal behavior
of flame instead of spatial information. We utilize the discriminator network of
the GAN to distinguish regular camera views from flame videos. This DCGAN
structure produces above 0.5 probability value for real temporal flame slices and
below 0.5 for slices that do not contain flame, because non-flame slices are not
in the initial training set.

In the standard GAN training, the discriminator network that outputs a
probability value, D, is updated using the stochastic gradient (Eq. 1)

SG1 = ∇θd

1
M

M∑

i=1

(log D(xi) + log(1 − D(G(zi)))), (1)

where zi and xi are the input noise vector and ith temporal slice, respectively,
and G represents the generator network of the GAN which outputs a “fake slice”
based on the noise vector zi; the vector θd includes the parameters of D. In this
stage, we train the generator network adversarially as in [8]. During this first
stage of training, we do not take slices from flame-less videos into account. This
GAN can detect flame because discriminator is trained to distinguish flame from
any other input. To improve the detection performance, we perform a second
stage of training by fine-tuning the discriminator using the stochastic gradient
given in Eq. 2.

SG2 = ∇θd

1
L

L∑

i=1

(log D(xi) + log(1 − D(yi)), (2)

yi represents the ith slice obtained from regular camera views. The number of
non-flame slices, L, is smaller than the size of the slice samples of flame videos
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that form the initial training set, M . We do not need to generate any artificial
slices during the refinement stage, hence, we do not update the generator network
at this stage of training.

3 Experimental Results

In this section, we present the experiments that we carry out for the proposed
method. We use 112 video clips containing flame frames and 72 video clips
without any flame frames in our experiments.

Throughout the experiments, we first obtain the temporal slice images for
both flame and non-flame videos. To this end, we sample 10 frames every second,
to be included in a block, i.e., a temporal slice. Because blocks contain 64 frames,
they capture the motion for almost six and a half seconds. We partition the video
clips into non-overlapping temporal slices. Each video clip has a duration of one
minute. Consequently, the dataset is composed of over 210 thousand slices from
over 1600 blocks in total.

After this procedure, we split the data into training, validation, and test sets.
The training set consists of 60% of the videos and the validation and test sets
consist of 20% of videos each. We fine-tune the hyperparameters of the neural
networks based on the classification performance on the validation set, then
report the final results achieved on the test set.

We evaluate the proposed method, namely, DCGAN with Temporal Slices,
in terms of frame-based results. Because all the other deep learning methods are
essentially based on CNNs, we compare CNN with Temporal Slices, DCGAN
with Video Frames (no temporal information), and DCGAN without refinement
stage-based approaches to our CNN implementation. It should be also noted
that researchers use different fire datasets, therefore the recognition results are
not comparable.

In our approach, we aim to reduce the false positive rate while keeping the
hit-rate as high as possible. Experimental results show that the proposed method
achieves the best results on the test set (cf. Table 1), where a false-positive rate
of 3.91% is obtained corresponding to a hit-rate of 92.19%. We show that the
adversarial training in DCGAN structure yields more robust results when com-
pared to a CNN (same architecture as the discriminator). As for the utilization
of temporal slices to exploit flame evolution, it can be seen that utilizing the tem-
poral information of flames results in much lower false-positive rates. Figure 4
shows some examples of false negative and false positive temporal slices.
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Table 1. The true negative rate (TNR) and true positive rate (TPR) values obtained
on the test set for frame-based evaluation.

Method TNR (%) TPR (%)

DCGAN with Temporal Slices (Our method) 96.09 92.19

CNN with Temporal Slices 87.39 93.23

DCGAN with Video Frames (no temporal information) 92.55 92.39

DCGAN without refinement stage 86.61 90.10

Fig. 4. Examples of false negative temporal slices on the left and false positive temporal
slices on the right.

4 Conclusion

We propose a DCGAN-based flame detection method in video exploiting the
spatio-temporal evolution of fires and employing an unsupervised pre-training
stage. We develop a two-stage DCGAN training approach to represent and clas-
sify image sequences with and without flames. To reveal the spatio-temporal
dynamics of flame regions, we acquire temporal slice images obtained from con-
secutive frames.

The main contribution of the proposed method is to utilize not only spatial
information but also temporal characteristics of flame regions and the unsuper-
vised representation learning capabilities of the DCGAN-based approach. The
results indicate that the proposed method achieves significantly lower false alarm
rates, compared to CNNs with temporal slices, while keeping the detection rates
high.
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