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It is now possible to install cameras monitoring sensitive areas but it may not
be possible to assign a security guard to each camera or a set of cameras. In ad-
dition, security guards may get tired and watch the monitor in a blank manner
without noticing important events taking place in front of their eyes. Current
CCTV surveillance systems are mostly based on video and recently intelligent
video analysis systems capable of detecting humans and cars were developed
for surveillance applications. Such systems mostly use Hidden Markov Models
(HMM) or Support Vector Machines (SVM) to reach decisions. They detect
important events but they also produce false alarms. It is possible to take
advantage of other low cost sensors including audio to reduce the number of
false alarms. Most video recording systems have the capability of recording
audio as well. Analysis of audio for intelligent information extraction is a rela-
tively new area. Automatic detection of broken glass sounds, car crash sounds,
screams, increasing sound level at the background are indicators of important
events. By combining the information coming from the audio channel with
the information from the video channels, reliable surveillance systems can be
built. In this chapter, current state of the art is reviewed and an intelligent
surveillance system analyzing both audio and video channels is described.

6.1 Multimodal Methods for Surveillance

Multimodal methods have been successfully utilized in the literature to im-
prove the accuracy of automatic speech recognition, human activity recog-
nition and tracking systems [355, 595]. Multimodal surveillance techniques
are discussed in a recent edited book by Zhu and Huang [595]. In [597], sig-
nals from an array of microphones and a video camera installed in a room
are analyzed using a Bayesian based approach for human tracking. A speech
recognition system comprising of a visual as well as a audio processing unit is
proposed in [147]. A recent patent proposes a coupled hidden Markov model
based method for audiovisual speech recognition [361].
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Other abnormal human activities including falling down can also be de-
tected using multimodal analysis. In [525], an audiovisual system is proposed
for fall detection. They use wavelet based features for the analysis of audio-
visual content of video. Detection of the falling people is achieved by HMM
based classification. An alternative method using several other sensor types
is described in [526]. Audio, Passive Infrared (PIR) and vibration sensors in-
stalled in a room are used to detect falling people in [526].

Similar to background/foreground segmentation in video applications,
Cristani et al. propose an adaptive method to build background and fore-
ground models for audio signals [115]. The method is based on the probabilistic
modeling of audio channel with adaptive Gaussian mixture models. In another
work, authors extend their unimodal audio based background/foreground
analysis and event detection system to an audiovisual (AV) based one [116].
They propose a method to detect and segment AV events based on the com-
putation of the so-called “audio-video concurrence matrix”.

Zhang et al. propose an approach to automatic segmentation and classi-
fication of audiovisual data based only on audio content analysis [591]. They
use simple audio features like the energy function, the average zero-crossing
rate, the fundamental frequency, and the spectral peak tracks for real-time
processing. A heuristic rule-based procedure is proposed to segment and clas-
sify audio signals and built upon morphological and statistical analysis of the
time-varying functions of these audio features.

Nam et al. present a technique to characterize and index violent scenes in
general TV drama and movies by identifying violent signatures and localize
violent events within a movie [354]. Their method detects abrupt changes in
audio and video signals by computing energy entropies over time frames.

6.2 Multimodal Method for Detecting Fight among
People in Unattended Places

Detecting fighting people in unattended places is an important task to save
lives and protect properties. Today most of the public places are under contin-
uous surveillance with cameras. However, the recordings are generally saved
to tapes for later use only after a forensic event. With the help of low cost
digital signal processing systems surveillance video can be processed online to
trigger alarms in case of violent behavior and unusual events. This will help to
reduce the time it takes to respond to such events that threaten public safety
and will prevent casualties. Performances of the video processing algorithms
generally degrade due to the inherent noise in the video data and/or camera
motion due to wind etc. Hence, it is desirable to support the decision systems
with other sensors such as audio to increase the success rate.

In this chapter, we present a system using both video and audio providing
information about violent behavior in a scene monitored by a camera and
a microphone. Both of the sensor channels are processed in real-time and
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Fig. 6.1. Overview of multimodal fight detection system.

their output are fused together to give the final decision. The overview of
our method is shown in Fig. 6.1. In this multimedia system video and audio
is processed independently and their decision results of individual processing
systems are fused to reach a final decision. In the next subsections we discuss
the video processing part of the proposed system.

6.2.1 Video Analysis

Video processing unit of the system analyzes the motion characteristics of
humans present in the monitored area in real-time to detect a fight event. In
order to accomplish this we need fast and reliable algorithms to detect humans
and analyze their actions. In our method, first, moving objects are segmented
from the scene background by using an adaptive background subtraction al-
gorithm and then segmented objects are classified into groups like vehicle,
human and human group using a silhouette based feature and SVM classifi-
cation method. After distinguishing humans from other objects, we analyze
the motion of the human groups. In case of a fight or a violence, the limbs
of the people involved in the violent action generate high frequency motion
characteristic. We decide on a fight if the motion characteristic of a human
group matches that of a fight action.

Learning Scene Background for Segmentation

There are various methods for segmenting moving objects in video. Back-
ground subtraction, statistical methods, temporal differencing and optical flow
techniques are commonly used ones. For a discussion on the details of these
methods, the reader is referred to [126]. One of the statistical methods ex-
tensively used due to its ability to robustly deal with lighting changes, repet-
itive motions, clutter, introducing or removing objects from the scene and
slowly moving objects is presented by Stauffer et al. [505]. It uses a mixture
of Gaussian models to represent each pixel on the video stream. Although
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this method gives good results, it is computationally more demanding than
an adaptive background subtraction method. Hence, we use a combination of
a background model and low-level image post-processing methods to create a
foreground pixel map and extract object features at every video frame. Our
implementation of adaptive background subtraction algorithm is partially in-
spired by the study presented in [103] and works on grayscale video imagery
from a static camera. Background subtraction method initializes a reference
background with the first few frames of video input. Then it subtracts the
intensity value of each pixel in the current image from the corresponding
value in the reference background image. The difference is filtered with an
adaptive threshold per pixel to account for frequently changing noisy pixels.
The reference background image and the threshold values are updated with
an Infinite Impulse Response (IIR) filter to adapt to dynamic scene changes.
Let In(x) represent the gray-level intensity value at pixel position (x) and
at time instance n of video image sequence I which is in the range [0, 255].
Let Bn(x) be the corresponding background intensity value for pixel position
(x) estimated over time from video images I0 through In−1. As the generic
background subtraction scheme suggests, a pixel at position (x) in the current
video image belongs to foreground if it satisfies:

|In(x) − Bn(x)| > Tn(x) (6.1)

where Tn(x) is an adaptive threshold value estimated using the image
sequence I0 through In−1. The above equation is used to generate the fore-
ground pixel map which represents the foreground regions as a binary array
where a 1 corresponds to a foreground pixel and a 0 stands for a background
pixel. The reference background Bn(x) is initialized with the first video image
I0, B0 = I0, and the threshold image is initialized with some predetermined
value (e.g., 15).

Since this system will be used in outdoor environments as well as indoor
environments, the background model needs to adapt itself to the dynamic
changes such as global illumination change (day night transition) and long
term background update (parking a car in front of a building). Therefore
the reference background and threshold images are dynamically updated with
incoming images. The update scheme is different for pixel positions which are
detected as belonging to foreground (x ∈ FG) and which are detected as part
of the background (x ∈ BG):

Bn+1(x) =

{
αBn(x) + (1 − α)In(x), x ∈ BG
βBn(x) + (1 − β)In(x), x ∈ FG

(6.2)

Tn+1(x) =

{
αTn(x) + (1 − α)(γ × |In(x) − Bn(x)|), x ∈ BG
Tn(x), x ∈ FG

(6.3)
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Fig. 6.2. Detected regions and silhouettes. Left : Detected and labeled object re-
gions. Right : Extracted object silhouettes.

where α, β (∈ [0.0, 1.0]) are learning constants which specify how much
information from the incoming image is put to the background and threshold
images.

The output of foreground region detection algorithm generally contains
noise and therefore is not appropriate for further processing without special
post-processing. Morphological operations, erosion and dilation [203], are ap-
plied to the foreground pixel map in order to remove noise that is caused by
the first three of the items listed above. Our aim in applying these operations
is to remove noisy foreground pixels that do not correspond to actual fore-
ground regions and to remove the noisy background pixels near and inside
object regions that are actually foreground pixels.

Calculating Object Features

After detecting foreground regions and applying post-processing operations to
remove noise and shadow regions, the filtered foreground pixels are grouped
into connected regions (blobs) and labeled by using a two-level connected com-
ponent labeling algorithm presented in [203]. After finding individual blobs
that correspond to objects, spatial features like bounding box, size, center of
mass and silhouettes of these regions are calculated. In order to calculate the
center of mass point, cm = (xcm

, ycm
), of an object O, we use the following

formula [463]:

xcm
=

∑n
i xi

n
, ycm

=

∑n
i yi

n
(6.4)

where n is the number of pixels in O. Both in offline and online steps of
the classification algorithm, the silhouettes of the detected object regions are
extracted from the foreground pixel map by using a contour tracing algorithm
presented in [203]. Fig. 6.2 shows sample detected foreground object regions
and the extracted silhouettes. Another feature extracted from the object is
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the silhouette distance signal. Let S = {p1, p2, . . . , pn} be the silhouette of an
object O consisting of n points ordered from top center point of the detected
region in clockwise direction and cm be the center of mass point of O. The
distance signal DS = {d1, d2, . . . , dn} is generated by calculating the distance
between cm and each pi starting from 1 through n as follows:

di = Dist(cm, pi), ∀ i ∈ [1 . . . n] (6.5)

where the Dist function is the Euclidean distance between two points a and
b.

Different objects have different shapes in video and therefore have silhou-
ettes of varying sizes. Even the same object has altering contour size from
frame to frame. In order to compare signals corresponding to different sized
objects accurately and to make the comparison metric scale-invariant we fix
the size of the distance signal. Let N be the size of a distance signal DS and
let C be the constant for fixed signal length. The fix-sized distance signal D̂S
is then calculated by sub-sampling or super-sampling the original signal DS
as follows:

D̂S[i] = DS[i ∗
N

C
], ∀ i ∈ [1 . . . C] (6.6)

In the next step, the scaled distance signal D̂S is normalized to have
integral unit area. The normalized distance signal DS is calculated with the
following equation:

DS[i] =
D̂S[i]

∑n
1 D̂S[i]

(6.7)

Fig. 6.3 shows a sample silhouette and its original and scaled distance sig-
nals. Before using Support Vector Machine algorithm, we transformed contour
signals to frequency domain in order to both reduce the amount of data for
representation of objects and gaining robustness against rotation. The char-
acteristic features of most objects are hidden in the lower frequency bands
of contour signals. We used three different transformations, Discrete Cosine
Transform (DCT), Fast Fourier Transform (FFT) and block wavelet. From
FFT, DCT and wavelet transformations, we take the first 3-15 coefficients ex-
cept the first coefficient and use these coefficients as the feature vector while
training and testing an SVM.

Classifying Objects

In order to detect fight among people, we need to identify humans in a scene
and especially we need to detect the formation of human groups. Categorizing
the type of a detected video object is a crucial step in achieving this goal. The
process of object classification method consists of two steps:



6 Surveillance Using Both Video and Audio 149

Fig. 6.3. Feature extraction from object silhouette. Left : Silhouette extraction.
Upper-Right : Calculated distance signal, DS. Lower-Right : Scaled distance signal,
dDS.

• Offline step: A template database of sample object silhouettes is created
by manually labeling object types (one from human, human group and
vehicle) and an SVM model is created using the features obtained from
the sample objects as explained in previous section.

• Online step: The silhouette of each detected object in each frame is ex-
tracted and its type is recognized by using the SVM trained using the
sample objects in offline step.

Detecting Fight

During a fight and especially when a person is hitting another person, whole-
body displacement is relatively small whereas motion of the limbs of the people
is high. Hence, we analyze the motion track of a human group and the motion
inside the moving region of the human group. Sample silhouettes of people
during a fight are shown in Fig. 6.4.

For each object region R we calculate the number of moving pixels ∈ R by
using frame differencing method to approximate the motion inside the region.
The pixels which satisfy the following condition are considered as moving:

|In(x) − In−1(x)| > Tn(x) (6.8)
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Fig. 6.4. Silhouettes of people during a fight.

where In and Tn correspond to image frame and adaptive threshold at
time n respectively as explained in Section 6.2.1. Let αR be the ratio of the
number of moving pixels to the total number of pixels inside the region R.
Then for object regions where αR ≥ γ a violent action is possible, where γ is
a threshold constant obtained by tests.

6.2.2 Audio Analysis

In a typical surveillance environment, microphones can be placed near the
cameras. Audio signals captured by sound sensors can be used to detect
screams in audio stream as a possible indication of violent actions. Shouting
has a high amplitude, non-stationary characteristic sound, whereas talking
has relatively lower amplitude peakiness. Typical shouting and talking audio
recording samples are shown in Fig. 6.5. In this case, the two sound waveforms
are clearly different from each other. However, these waveforms may “look”
similar as the distance from the sensor increases. For some other cases such
as when there is background noise it may become even harder to distinguish
different sound activities. In addition, the difference between these two types
of signals becomes obvious after wavelet domain signal processing.

Typically audio recordings are due to regular chatting between people
and background noise. When there is shouting or broken glass sounds etc
this indicates an unusual event. Significantly loud voice or sound activity is
detected using the Teager Energy operator based speech features originally
developed by Jabloun and Cetin [229]. The sound data is divided into frames
as in any speech processing method and the Teager energy based cepstral
(TEOCEP) [229] feature parameters are obtained using wavelet domain signal
analysis. The sound signal is divided into 21 non uniformly divided subbands
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Fig. 6.5. Sample audio signals. Left : Shouting signal. Right : Talking signal.

similar to the Bark scale (or mel-scale) giving more emphasis to low-frequency
regions of the sound.

To calculate the TEOCEP feature parameters, a two-channel wavelet filter
bank is used in a tree structure to divide the audio signal s(n) according to
the mel-scale as shown in Fig. 6.6, and 21 wavelet domain sub-signals s1(n),
l = 1, . . . , L = 21, are obtained [152]. The filter bank of a biorthogonal
wavelet transform is used in the analysis [259]. The lowpass filter has the
transfer function

Fig. 6.6. The subband frequency decomposition of the sound signal.

Hl(z) =
1

2
+

9

32
(z−1 + z1) −

1

32
(z−3 + z3) (6.9)

and the corresponding high-pass filter has the transfer function

Hh(z) =
1

2
−

9

32
(z−1 + z1) +

1

32
(z−3 + z3) (6.10)

For every subsignal, the average Teager energy el is estimated as follows:

el =
1

Nl

Nl∑

n=1

|Ψ [sl(n)]| ; l = 1, . . . , L (6.11)

where Nl is the number of samples in the lth band, and the Teager energy
operator (TEO) is defined as follows:
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Ψ [s(n) = s2(n) − s(n + 1)s(n − 1) (6.12)

The TEO-based cepstrum coefficients are obtained after log-compression
and inverse DCT computation as follows:

TC(k) =
L∑

l=1

log el cos

[
k(l − 0.5)π

L

]
; k = 1, . . . , N (6.13)

The first 12 TC(k) coefficients are used in the feature vector. The TEO-
CEP parameters are fed to the sound activity detector algorithm described in
[525] to detect significant sound activity in the environment.

When there is significant sound activity in the room, another feature pa-
rameter based on variance of wavelet coefficients and zero crossings is com-
puted in each window. The wavelet signal corresponding to the [2.5 kHz, 5.0
kHz] frequency band is obtained after a single stage wavelet filterbank. The
variance, σ2

i of the wavelet signal and the number of zero crossings, Zi, in
each window i is computed.

Broken glass and similar sounds are not quasi-periodic in nature. As talk-
ing is mostly quasi-periodic because of voiced sounds the zero crossing value,
Zi, is small compared to noise like sounds. When a person shouts the vari-
ance of the wavelet signal σ2

i increases compared to the background noise and
regular chatting. So we define a feature parameter κi in each window i as

κi =
σ2

i

Zi
, where the index i indicates the window number. The parameter κi

takes non-negative values.

Fig. 6.7. Three state Markov model. Three Markov models are used to represent
speech, walking, and fall sounds.

Activity classification based on sound information is carried out using
HMMs. Three three-state Markov models are used to represent shout and
talking sounds as shown in Fig. 6.7. In Markov models, S1 corresponds to the
background noise or no activity. If sound activity detector (SAD) indicates
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that there is no significant activity, S1 is selected. If SAD detects sound ac-
tivity in a sound frame, then either S2 or S3 is chosen as the current state
according to the value of κ.

A non-negative threshold value, T , that is small enough to reflect the peri-
odicity in step sounds is introduced in the κ-domain. If |κ| < T , S2; otherwise,
S3 is attained as the current state. The classification performance of HMMs is
based on the number of state transitions, rather than specific κ values. Hence,
choice of T does not affect the values of the transition probabilities in different
models.

In order to train HMMs, the state transition probabilities are estimated
from 20 consecutive κi values corresponding to 20 consecutive 500-sample-long
wavelet windows covering 125 msec of audio data.

During the classification phase a state history signal consisting of 20 κi

values are estimated from the sound signal acquired from the audio sensor.
This state sequence is fed to Markov models corresponding to shouting and
talking cases in running windows. The model yielding the highest probability
is determined as the result of the analysis of the sound sensor signal.

Feature parameter κ takes high values for a regular speech sound. Conse-
quently, the value of a33 is higher than any other transition probabilities in
the talking model. For the shout case, a relatively long noise period is followed
by a sudden increase and then a sudden decrease in κ values. This results in
higher a11 value than any other transition probabilities. In addition to that,
the number of transitions within, to and from S2 are notably fewer than those
of S1 and S3. The state S2 in the Markov models provides hysteresis and it
prevents sudden transitions from S1 to S3 or vice versa, which is especially
the case for talking.

6.2.3 Deciding on a Fight or Violent Behavior

Audio and video analysis results are combined at each frame of the video
sequence in the proposed system. In order to accomplish this audio sample
frames are matched to video frames by combining the video frame rate and
audio signal sampling rate.

For each time frame, video processing results and audio processing results
are combined with the simple AND operator and the final decision is given on
the result of this operator. In other words, we require both of the processing
channels to decide on fight action to raise an alarm.

6.2.4 Experimental Results

Experimental results on sample video sequences containing violent action sce-
narios are presented in this section. All of the tests are performed by using
a video player application, vPlayer, on Microsoft Windows XP Professional
operating system on a computer with an Intel Pentium dual core 3.2GHz CPU
and 1 GB of RAM.
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Human Human Group Vehicle Success Rate

Human 20 0 0 100 %

Human Group 1 18 1 90 %

Vehicle 0 2 18 90 %

Table 6.1. Confusion matrix for object classification.

We tested our object classification algorithm on sample video clips. After
collecting sample silhouettes and applying transformations to create feature
vectors, we obtained an SVM model. In support vector machine training al-
gorithm, we used Radial Basis Function (RBF) kernel with gamma=1, and
tested the performance of SVM algorithm with different types transforma-
tions (FFT, DCT and wavelet) and different coefficient numbers. In our tests,
feature vectors obtained by wavelet transform slightly outperformed other
transformation methods. We used three object classes in our tests: human,
human group and vehicle. We used 248 random objects for training the SVM
model (93 human, 102 human group and 53 vehicle pictures) and 60 different
objects (20 from each group) for testing the algorithm. The confusion matrix
is shown in Table 6.1.

We also tested our multi-model fight detection algorithm on sample video
clips with audio. The results are shown in Tables 6.2, 6.3 and 6.4 as confusion
matrices. In both audio-only and video-only processing, the success rate for
detecting fight is high. However, the false alarm rate which is calling a normal
action as fight is high in both cases. When we fuse the results of these two
channels together we get a lower false alarm rate and thus a higher average
success rate.

Fight Normal Success Rate

Fight 13 2 86.7 %

Normal 8 13 61.9 %

Average 74.3 %

Table 6.2. Confusion matrix for multimodal fight detection using both Audio &
Video.

6.3 Conclusion

In this chapter, we proposed a novel multimodal system for real-time violence
detection. Video data and audio signals are analyzed independently with the
proposed algorithms and the analysis results from these two signals are fused
together to reach a final decision. The test results show that the presented
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Fight Normal Success Rate

Fight 14 1 93.3 %

Normal 10 11 52.3 %

Average 72.9 %

Table 6.3. Confusion matrix for multimodal fight detection using only Audio.

Fight Normal Success Rate

Fight 13 2 86.7 %

Normal 9 12 57.1 %

Average 71.2 %

Table 6.4. Confusion matrix for multimodal fight detection using only Video.

method is promising and can be improved with some further work to reduce
false alarms. The use of audio signals in parallel with video analysis helps us
to detect violent behavior with less false alarms.

A weakness of the proposed video analysis algorithm is that it is view
dependent. If the camera setup is different in training and testing, the success
rate will be lower. Automating video object classification method with online
learning would help to create an adaptive algorithm.




