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Human body modeling and animation has long been an important and
challenging area in computer graphics. The reason for this is two-fold. First,
the human body is so complex that no current model comes even close to
its true nature. The second reason is that our eyes are so sensitive to human
figures that we can easily identify unrealistic body shapes (or body motions).

Today many fields use 3D virtual humans in action: video games, films,
television, virtual reality, ergonomics, medicine, biomechanics, etc. We can
classify all these applications into three categories: film production for arts
and entertainment, real-time applications, such as robotics, video games and
virtual environments, and simulations, such as computer-aided ergonomics
for the automotive industry, virtual actors, biomedical research, and military
simulations. The type of application determines the complexity of the models.
For example video games or virtual reality applications require the lowest
possible ratio between the computation cost and capabilities of the model.
However, for biomedical research, realism is essential and the animated model
should obey physical laws. Hence, the models are designed and animated
according to the specific area in which they are applied.

Humans are an indispensable part of dynamic 3D scenes. Therefore, hu-
man face and body specific representations and animation techniques should
be heavily used in a 3DTV framework to achieve the goals of real-time im-
plementation and realism. Techniques of 3D motion data collection, such as
motion capture, can be incorporated in human model animation. Continuous
video and motion recording at high sampling rates produce huge amounts of
data. Keyframe transmission that can be regenerated into continuous motion
using interpolation techniques will reduce the size of the transmitted data
significantly.

To study human modeling and animation, many techniques based on
kinematics, dynamics, biomechanics, and robotics have been developed by
researchers. In order to produce realistic animations, rendering is also an in-
separable part. Furthermore, hair, garment, interaction of multiple avatars,
expression of feelings, behavior under extreme conditions (such as accidents,
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deep sea diving, etc.) and many more real life experiences make the problem
as complicated as one’s imagination.

The human body has a rigid skeleton. This is not the case with some other
living, artificial or imaginary objects. If the animation aims at a particular
instance of bone fracture, maybe for an orthopedical simulation, then the rules
all of a sudden change. As long as the subject excludes these non-articulated
body behaviors, there is a reasonable starting point, a skeleton that is an
articulated object with joints and rigid elements. It is natural, then, to assume
that if a proper motion is given to the skeleton, one can build up the rest of
the body on top of this. Layers include muscles, skin, hair and garments that
can somehow be realistically rendered based on skeleton motion, plus some
external forces, such as wind and gravity, to add more realism, at least to
hair and garment. This obviously is a reverse way of looking at things; it
is the muscles that expand or contract to give motion to the skeleton, but
if the ultimate aim is to generate a realistic animation visually, and if the
muscles can be accurately modeled, the order in which the forces are originated
can be reversed. This makes the skeletal motion to be the starting source of
animation.

It is very difficult to fit all the aspects of human modeling and animation
into a limited scope of a book chapter. Thus, this chapter discusses some
aspects of human modeling, animation, and rendering, with an emphasis on
multi-layered human body models and motion control techniques for walking
behavior.

7.1 Articulated Body Models

Since the 1970s, researchers have proposed several different approaches for
the realistic modeling of the human body and its movements. Human body
modeling first consists of the basic structural modeling. This includes the
definition of joints and segments, their positions and orientations, and the
hierarchy between these components. It also includes defining the volume of
the body which is composed of muscles, fat, and skin. The second part of the
problem, simulating human motion, is a complex task. It is very difficult to
take into account all the interactions with the environment involved in a simple
movement. A realistic human model should provide accurate positioning of the
limbs during motion, realistic skin deformations based on muscles and other
tissues, realistic facial expressions, realistic hair modeling, etc.

In the early stages, humans were represented as stick figures, simple ar-
ticulated bodies made of segments and joints. These articulated bodies were
simulated using methods based on kinematics. More recently, dynamic meth-
ods have been used to improve the realism of the movement. However, since the
human body is a collection of rigid and non-rigid components that are very
difficult to model, dynamic and kinematics models did not meet the need.
Consequently, researchers began to use human anatomy to produce human
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models with more realistic behaviors. The models proposed can be divided
into four categories: stick figure models, surface models, volume models, and
multi-layered models (see Fig. 7.1).

7.1.1 Stick Figure Models

Early studies on human body modeling and animation date back to the sev-
enties. Badler and Smoliar [1] and Herbison-Evans [2] proposed 3D human
models based on volumetric primitives, such as spheres, prisms, or ellipsoids.
The technological limitations allowed stick figures with only a few joints and
segments and simple geometric primitives. These models are built by using a
hierarchical set of rigid segments connected at joints. The complexity of these
articulated figures depends on the number of joints and segments used. The
motions were usually specified as a set of hierarchical transformations, con-
trolled by the joint constraints so that the members will not break from each
other. Studies on directed motions of articulated figures by Korein [3] and the
stick figure model by Thalmanns [4] are representative of this category.

7.1.2 Surface Models

Surface models were proposed as an improvement on the stick models. A new
layer, representing human skin, was introduced in addition to the skeleton
layer [5]. Therefore, this model is based on two layers: a skeleton, which is
the backbone of the character animation and a skin, which is a geometric
envelop of the skeleton layer. Deformations in the skin layer are governed by
the motion of the skeleton layer. The skin layer can be modeled by using
points and lines, polygons (used in Rendezvous a Montreal [6]), and curved
surface patches (e.g., Bézier, Hermite, and B-splines).

In the case of polygons, the skin layer is deformed by attaching each mesh
vertex to a specific joint. In this way, the motion of the skin layer follows the
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Fig. 7.1. Taxonomy of articulated body models
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motion of the articulated structure. However muscle behavior is not modeled
in this approach and body parts may disconnect from each other during some
motions. In spite of these deficiencies, these models are still very common in
Web applications.

A solution to the skin deformation problem is to use a continuous deforma-
tion function based on joints angles. This method is first used by Komatsu [7]
to deform the control points of biquartic Bézier patches. Thalmanns intro-
duced the concept of Joint-dependent Local Deformation (JLD) [8]. In both
approaches, the skin is deformed algorithmically. First, the skin vertices are
mapped to the corresponding skeleton segments in order to limit the influence
of the joint connecting the segments. Next, a function of the joint angles is used
to deform the vertices. These studies showed that specialized algorithms may
help to achieve more realistic skin deformations but there are two limitations.
First, an algorithmic deformation is basically a mathematical approximation,
mostly far away from the physical behavior of a model under various forces;
thus algorithmic deformations cannot always accurately describe complex
skin deformations of a real human body. Second, a graphic designer cannot
easily direct the deformations because they are specified via an algorithm.

Stitching is the process of attaching a continuous mesh to a bone structure.
In rigid body animation, polygons are attached to the bones. The polygons
are transformed by changing the matrix representing the corresponding bone.
In stitching, each vertex of a polygon can be attached to a different bone.
Therefore, each vertex can be transformed by a different matrix representing
the bone to which the vertex is attached. Breaking up skin in this way so
that the vertices are in the local space of the bone to which they are attached
simplifies the process of stitching. This type of attachment enables us to create
a single polygon that “stitches” multiple bones by simultaneously attaching
different vertices to different bones. A polygon must fill the gap formed as a
result of a manipulation of the bones [9].

Although stitching is a useful technique, it has some problems. Unnatural
geometries appear during extreme joint rotations. For example, rotating a
forearm by 120 degrees using the stitching technique results in a shear effect
at the elbow. A solution is to allow a vertex to be affected by more than one
bone. This is called full skinning and is compatible with the behavior of the
human body. In a real human, the skin on the elbow is not affected by a single
bone but by both the upper and lower arms. In order to implement this, we
must know the bones effecting each skin vertex and the weight for each bone
specifying the amount of the effect. The position of each vertex is calculated
using (7.1) [9].

new vertex position =
N−1∑

i=0

weighti ×matrixi × vertex position, (7.1)
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where weighti is the weight for bone i and matrixi is the matrix used to
transform the vertices attached to bone i. In the case of linear skinning, the
sum of all weights is 1.0.

Skinning is a simple technique that has a very low computational cost. For
this reason, it is used in video games. Current research focuses on improving
the skinning procedure by increasing the speed of computations. Sun et al. [10]
use the concept of normal-volume, i.e., they reduce the computational cost
by mapping a high-resolution mesh onto a lower-resolution control mesh. In
this way, the high-resolution object can be deformed by skinning the low-
resolution surface control structure. Singh and Kokkevis choose surface-based
Free-Form Deformations (FFDs) to deform skin [11]. A very useful property
of the surface-oriented control structures is that they bear a strong resem-
blance to the geometry they deform. In addition, they can be automatically
constructed from deformable objects.

Assigning weights is a semi-automatic process that requires a huge amount
of human intervention; this significantly limits the skinning technique. In ad-
dition, a combination of weights for highly mobile portions of the skeleton
may be very appropriate for one position of the skeleton but the same weights
may not be acceptable for another position. Therefore, there is no single com-
bination of weights that provides an acceptable result for all parts of the body.
In spite of these deficiencies, the skinning method remains one of the most
popular techniques for skin deformation because of its simplicity.

Using predefined keyshapes is another approach for skin deformation
[12, 13]. Keyshapes are triangular meshes in some skeletal positions. They
are obtained via a digitization procedure [14]. The idea behind this tech-
nique is that new shapes are created by interpolation or extrapolation. The
deformation-by-keyshapes technique differs from 3D morphing algorithms in
that it is limited to smooth interpolation problems. However this approach
does not have the deficiencies of the skinning techniques and it performs bet-
ter than multi-layer deformation models. There is no limitation on the number
of keyshapes, making the technique quite flexible.

7.1.3 Volumetric Models

Controlling the surface deformation across joints is the major problem of sur-
face models. In volume models, simple volumetric primitives like ellipsoids,
spheres and cylinders are used to construct the body shape. A good exam-
ple of volume models is metaballs. Metaballs are volumes that can join each
other based on a function of nearness. They can do a better job than surface
models but it is really hard to control a large number of primitives during
animation. In the very early stages of computer graphics, volumetric models
were built from geometric primitives such as ellipsoids and spheres to approx-
imate the body shape. These models were constrained by the limited com-
puter hardware available at the time. Along with the advances in computer
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hardware technology, implicit surfaces are used as an improvement on these
early models. Today, volumetric models are often able to handle collisions.

An implicit surface is also known as an iso-surface. It is defined by a func-
tion that assigns a scalar value to each 3D point in space. Then an iso-surface
is extracted from the level set of points that are mapped to the same scalar
value. Skeletons, which are constructed from points and lines, are the source
of the scalar field. Each skeleton produces a potential field whose distribution
is determined by the field function. For the field function it is common to use
a high-order polynomial of distance to the skeleton (generally higher than 4th

order). This approach is known as metaball formulation.
Because they are naturally smooth, implicit surfaces are often used in the

representation of organic forms. One of the first examples of this method is a
“blobby man” created by Blinn [15]. It is generated from an implicit surface
that is constructed using an exponentially decreasing field function. In one of
the later studies, Yoshomito shows that a complete, realistic-looking, virtual
human body can be created with metaballs at a low storage cost [16]. A more
complicated implicit formulation is introduced by Bloomenthal [17].

Implicit surfaces have many properties that promote successful body mod-
eling. Their most useful property is continuity, which is the main requirement
for obtaining realistic shapes. There are two more advantages worth mention-
ing: first, due to the compact formulation of the field functions, little memory
is required and second, they are simple to edit since they are defined by point
or polygon skeletons. However, undesired blending may be observed during an-
imations. Hybrid techniques that are mixtures of surface deformation models
and implicit surfaces are proposed as a solution to this problem [18, 19].

Some volumetric models are adept at handling collisions between differ-
ent models or different parts of the same model and at generating deformed
surfaces in parallel. Elastic properties are included in the formulation of
distance-based implicit surfaces by Cani-Gascuel [20]. In this work, a cor-
respondence between radial deformation and the reaction force is established.
A non-linear finite element model of a human leg derived from the Visible Hu-
man Database [21] is recently proposed by Hirota et al. [22]. It also achieves
a high level of realism in the deformation.

7.1.4 Multi-layered Models

Lasseter emphasized that computers provide the advantage of building up an
animation in layers to create complex movements [23]. The animator specifies
different kinds of constraint relationships between different layers. Then, s/he
can control the global motion from a higher level.

The most common approach is to start with the skeleton and then add the
muscles, skin, hair and other components. A skeleton layer, a muscle layer, and
a skin layer are the most common. This layered modeling technique is heavily
used in human modeling [24]. In this approach, motion control techniques are
applied to the skeleton layer and the other layers move accordingly.
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The layered approach has been accepted both in the construction and
animation of computer generated characters. There are two types of models.
The first relies on a combination of ordinary computer-graphics techniques
like skinning and implicit surfaces, and tends to produce a single layer from
several anatomical layers [24]. The other group, inspired by the actual biology
of the human body, tries to represent and deform every major anatomical
layer and model their dynamic interplay [25, 26].

The skeleton layer is an articulated structure that provides the foundation
for controlling movement [19]. Sometimes, the articulated structure is covered
by material bones approximated by simple geometric primitives [22, 27, 28].
Studies on the skeleton layer focus on the accurate characterization of the
range of motion of specific joints. Different models of joint limits have been
suggested in the literature: Korein uses spherical polygons as boundaries for
the spherical joints like the shoulder [3] whereas Maurel and Thalmann use
joint sinus cones for the shoulder and scapula joints [29].

In the early muscle models, the foundations for the muscles and deforma-
tions used in a muscle layer are based on free form deformations (FFD) [30].
Muscles construct a relationship between the control points of the FFDs and
the joint angles. This method has two limitations: the possibility that the
FFD box does not closely approximate the muscle shape and the fact that
FFD control points have no physical meaning.

Moccozet models the behavior of the hand muscles using Dirichlet free
form deformation; this is a generalization of FFD that provides a more local
control of the deformation and removes the strong limitation imposed on
the shape of the control box [31]. Since implicit surfaces provide the most
appropriate method for modeling organic forms, they are widely used to model
the muscle layer. In [32], implicit primitives like spheres and super-quadrics are
used to approximate muscles. On the other hand, in [19], the gross behavior
of bones, muscles, and fat are approximated by grouped ellipsoidal metaballs
with a simplified quadratic field function. This technique does not produce
realistic results for the highly mobile parts of the human body, in which each
ellipsoidal primitive is simultaneously influenced by several joints.

The muscles that significantly effect the appearance of the human models
are the fusiform muscles in the upper and lower parts of the legs and arms.
These muscles have a fleshy belly, tapering at both extremities. Since an el-
lipsoid gives a good approximation of the appearance of a fusiform muscle,
muscle models tend to use the ellipsoid as the basic building block when the
deformation is purely geometric. Moreover, the analytic formulation of an el-
lipsoid provides scalability. When the primitive is scaled along one of its axes,
the volume of the primitive can easily be preserved by adjusting the scal-
ing parameters of the two remaining axes. Following a similar approach, the
height-to-width ratio can be kept constant. This is the reason why a volume-
preserving ellipsoid for representing a fusiform muscle is used in [25, 26].

A polyline called an “action line” is introduced by Nedel and Thalmann [33].
The action line is used for abstracting muscles. It represents the force produced
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by the muscle on the bones, and on a surface mesh deformed by an equivalent
mass-spring network. A noteworthy feature of this mass-spring system is the
introduction of angular springs that smooth out the surface and control the
volume variation of the muscle.

B-spline solids can also be used for modeling muscles, as described by Ng-
Thow-Hing and Fiume [34]. These have the ability to capture multiple muscle
shapes (fusiform, triangular, etc.). They use three curves to characterize the
attachment of musculotendon onto a skeleton: origin, insertion, and axial. The
origin and insertion curves represent the attachment areas of the tendons to
the bones. The axial curve represents the line of action of the muscle.

Polygonal [22, 24, 25], parametric [19, 26, 35], subdivision [18, 36], and
implicit [17, 37] surfaces have been used for modeling the skin. Polygonal
surfaces are processed by the graphics unit and are the best choice when
speed and/or interactivity are needed. However, some surface discontinuities,
which need to be smoothed out, may arise when polygonal surfaces are used.

Parametric surfaces yield very smooth shapes. This makes them very at-
tractive for modeling the skin. Shen and Thalmann [19] derive a lower de-
gree polynomial field function for the inner layers. Implicit surfaces are very
good at representing organic forms. The main limitation of implicit surfaces is
that it is difficult or impossible to apply texture maps for realistic rendering.
Therefore, they are very seldom used to directly extract a skin but are used
frequently for invisible anatomical layers.

Subdivision surfaces best represent the skin layer. They have several ad-
vantages: i) smoothness can be guaranteed by recursively subdividing the
surface, ii) a polygonal version suitable for rendering is automatically derived
without further computations, and iii) interpolating schemes can be used [36].

There are three ways of deforming the skin in multi-layered models [38]:

• First, surface deformation models are applied to the skin. Then, the skin
is projected back onto the inner anatomical layers.

• A mechanical model is used to deform the skin while keeping the skin a
certain distance away from the material beneath.

• The skin is defined as the surface of a volume-finite element (mass-spring
model of the body).

7.2 Exchangeable Articulated Models

Although modeling the basic structure of the articulated figure is a trivial part
of human modeling, it becomes a challenging task when there is no standard
for it. The H-Anim 1.1 Specification is the usual standard for human body
modeling; it defines the geometry and the hierarchical structure of the human
body [39]. The Humanoid Animation (H-Anim) standard was developed by
the Humanoid Animation Working Group of Web3D Consortium to define
interchangeable human models. The H-Anim standard specifies how to define
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humanoid forms and behaviors in standard Extensible 3D Graphics/Virtual
Reality Modeling Language (X3D/VRML). This group had flexibility as a
goal so no assumptions are made about the types of applications that will
use humanoids. They also had a goal of simplicity which led them to focus
specifically on humanoids, instead of trying to deal with arbitrary articulated
figures.

In the H-Anim 1.1 Specification, the human body is represented by a num-
ber of segments (such as forearm, hand, foot) that are connected to each other
by joints (such as the elbow, wrist and ankle). The H-Anim structure contains
a set of nodes to represent the human body. The nodes are Joint, Segment,
Site, Displacer, and Humanoid. Joint nodes represent the joints of the
body and they are arranged in a strictly defined hierarchy. They may con-
tain other Joint and Segment nodes. Segment nodes represent a portion of
the body connected to a joint. They may contain Site and Displacer nodes.
Site nodes are placements for cloth and jewelry; they can also be used as end-
effectors for inverse kinematics applications (see Subsection 7.3.1). Displacer
nodes are simply grouping nodes, allowing the programmer to identify a col-
lection of vertices as belonging to a functional group for ease of manipulation.
The Humanoid node stores information about the model. It acts as a root node
for the body hierarchy and stores all the references to Joint, Segment, and
Site nodes. An H-Anim compliant human body is in the “at rest” position;
all the joint angles are zero and the humanoid faces the +z direction, with +y
being up and +x to the left of the humanoid according to the right-handed
coordinate system.

A simple XML data format to represent the human skeleton can be defined
by conforming to the hierarchy of joints and segments of the body as named
in the H-Anim 1.1 Specification. XML’s structured and self-descriptive format
provides an excellent method for describing the skeleton. Front and side views
of the skeleton are given in Fig. 7.2(a) and a portion of the XML representation
for the skeleton is given in Fig. 7.2(b).

Although the data format can be used for representing the full skeleton
specified in the H-Anim standard, the complete hierarchy is too complex for
most applications. In real-time applications such as games, a simplified hier-
archy will be more suitable. H-Anim 1.1 Specification proposes four “Levels of
Articulation” that contain the subsets of the joints. The body dimensions and
levels of articulation are suggested for information only and are not specified
by the H-Anim standard. Levels of articulation are suggested both for simplic-
ity and compatibility. Animators can share their animations and humanoids
if they conform to the same level of articulation. “Level of Articulation Zero”
has just a root joint. “Level of Articulation One” represents a typical low-end
real-time 3D hierarchy that does not contain information about the spine and
has a shoulder complex with insufficient detail. “Level of Articulation Two”
contains a lot of necessary information about spine, skull and hands. “Level
of Articulation Three” represents the full H-Anim hierarchy.
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(a) (b)

Fig. 7.2. (a) Front and side views of the skeleton and (b) a portion of the XML
representation for the skeleton

7.3 Motion Control Techniques

The different approaches of biomechanics, robotics, animation, ergonomics,
and psychology are integrated to produce realistic motion-control techniques.
Motion control techniques can be classified into two groups according to level
of abstraction that specifies the motion; low-level and high-level. In low-level
motion control, the user manually specifies the motion parameters such as
position, angles, forces, and torques. In high-level motion control, the mo-
tion is specified in abstract terms such as “walk”, “run”, “grab that object”,
“walk happily”, etc. [40]. In animation systems using high-level motion con-
trol, the low-level motion-planning and control tasks are performed by the
machine. The animator simply changes some parameters to obtain different
kinds of solutions. To generate realistic animations, both kinds of motion
control techniques should be used in an integrated manner [41]. Human mo-
tion control techniques can be classified as kinematics, dynamics, and motion
capture.

7.3.1 Kinematics

Kinematics, which originates from the field of robotics, is one of the approaches
used in motion specification and control. Kinematics is the study of motion by
considering position, velocity, and acceleration. It does not consider the under-
lying forces that produce the motion. Kinematics-based techniques animate
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the articulated structures by changing the orientations of joints over time.
Motion is controlled by the management of joint transformations over time.

In forward kinematics, the global position and orientation of the root of
the hierarchy and the joint angles are directly specified to obtain different
postures of an articulated body. The motion of the end-effector (e.g., the hand
in the case of the arm) is determined by the joint transformations from the
root of the skeleton to the end-effector. Mathematically, forward kinematics
is expressed as

x = f(Θ), (7.2)

where Θ is the set of joint angles in the chain and x is the end-effector position.
After the joint transformations are calculated, the final position of the end-
effector is found by multiplying the transformation matrices in the hierarchy.
For example, in the case of the leg, the position of the foot is calculated by
using the joint angles of hip and knee.

In order to work on articulated figures, Denavit and Hartenberg devel-
oped a matrix notation, called DH notation, to represent the kinematics of
articulated chains [42]. DH notation is a link-based notation where each link is
represented by four parameters; Θ, d, a, and α. For a link, Θ is the joint angle,
d is the distance from the origin, a is the offset distance, and α is the offset
angle. The relations between the links are represented by 4×4 matrices. Sims
and Zeltzer [43] proposed a more intuitive method, called axis-position (AP)
representation. In this approach, the position and orientation of the joint and
the pointers to the joint’s child nodes are used to represent the articulated
figure.

Inverse kinematics is a higher-level approach. It is sometimes called “goal-
directed motion.” Given the positions of end-effectors only, inverse kinematics
solves the position and orientation of all the joints in the hierarchy. Mathe-
matically, it is expressed as

Θ = f−1(x). (7.3)

Figure 7.3(a) shows the joint orientations for the end-effector positioning
of the right arm and Fig. 7.3(b) shows goal-directed motion of the arm.

Inverse kinematics is mostly used in robotics. Contrary to forward kine-
matics, inverse kinematics provides direct control over the movement of the
end-effector. On the other hand, inverse kinematics problems are difficult to
solve as compared to forward kinematics where the solution is found easily
by multiplying the local transformation matrices of joints in a hierarchical
manner. Inverse kinematics problems are non-linear and for a given position
x there may be more than one solution for Θ. There are two approaches to
solve inverse kinematics problem: numerical and analytical.
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(a) (b)

Fig. 7.3. (a) The joint orientations for the end-effector positioning of the right arm;
(b) goal directed motion of the arm

The most common solution method for the non-linear problem stated in
(7.3) is to linearize it [44]. When the problem is linearized, the joint velocities
and the end-effector velocity will be related by:

ẋ = J(Θ)Θ̇, (7.4)

where

Jij =
δfi

δxj
. (7.5)

The Jacobian J relates the changes in the joint variables to the changes in
the position of the end-effector. Jacobian J is an m×n matrix where m is the
number of joint variables and n is the dimensions of the end-effector vector.
If we invert (7.4), we obtain the equation:

Θ̇ = J−1(Θ)ẋ. (7.6)

Given the inverse of the Jacobian, computing the changes in the joint vari-
ables due to changes in the end-effector position can be achieved by using
an iterative algorithm. Each iteration computes the ẋ value by using the ac-
tual and goal positions of the end-effector. The iterations continue until the
end-effector reaches the goal. To compute the joint velocities (Θ̇), we must
find the J(Θ) value for each iteration. Each column of the Jacobian matrix



7 Modeling, Animation, and Rendering of Human Figures 213

corresponds to a single joint. The changes in the end-effector position (P(Θ))
and orientation (O(Θ)) determine the Jacobian column entry for the ith joint
according to

Ji =

⎡

⎢⎢⎢⎢⎢⎢⎣

δPx/δΘi

δPy/δΘi

δPz/δΘi

δOx/δΘi

δOy/δΘi

δOz/δΘi

⎤

⎥⎥⎥⎥⎥⎥⎦
. (7.7)

These entries can be calculated as follows: every joint i in the system
translates along or rotates around a local axis ui. If we denote the transforma-
tion matrix between local frames and the world frame as Mi, the normalized
transformation of the local joint axis will be:

axisi = uiMi. (7.8)

We can calculate the Jacobian entry for a translating joint using (7.8):

Ji =

⎡

⎢⎢⎣

[axisi]T

0
0
0

⎤

⎥⎥⎦ , (7.9)

and for a rotating joint by:

Ji =
[

[(p− ji) × axisi]T

(axisi)T

]
. (7.10)

The linearization approach makes an assumption that the Jacobian matrix
is invertible (both square and non-singular), but this is not generally so. In
the case of redundancy and singularities of the manipulator, the problem is
more difficult to solve and new approaches are needed.

Unlike the numerical methods, analytical methods in most cases find so-
lutions. We can classify the analytical methods into two groups; closed-form
and algebraic elimination methods [45]. Closed-form methods specify the joint
variables by a set of closed-form equations; they are usually applied to six
degrees-of-freedom (DOF) systems with a specific kinematic structure. On
the other hand, in the algebraic elimination methods, the joint variables are
denoted by a system of multivariable polynomial equations. Generally, the
degrees of these polynomials are greater than four. That is why algebraic
elimination methods still require numerical solutions. In general, analytical
methods are more common than numerical ones because analytical methods
find all solutions and are faster and more reliable.
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The main advantages of kinematics-based approaches are as follows: first,
the motion quality is based on the model and the animator’s capability;
second, the cost of computations is low. However, the animator must still
spend a lot of time producing the animations. These approaches cannot pro-
duce physically-realistic animations since the dynamics of the movements are
not considered and the interpolation process leads to loss of realism.

When we review the literature we observe that Chadwick et al. use in-
verse kinematics in creating keyframes [24]. Badler et al. also propose an
inverse kinematics algorithm to constrain the positions of the body parts
during animation [46]. In addition, Girard and Maciejewski [47] and Sims
and Zeltzer [43] generate leg motion by means of inverse kinematics. Their
systems are composed of two stages: in the first stage, foot trajectories are
specified; in the second stage, the inverse kinematic algorithm computes the
leg-joint angles during movement of the feet. Welman investigates the inverse
kinematics in detail and describes the constrained inverse kinematic figure
manipulation techniques [48]. Baerlocher investigates inverse kinematics tech-
niques for the interactive posture control of articulated figures [49]. Greeff et
al. propose constraints to fix and pin the position and orientation of joints for
inverse kinematics [50].

7.3.2 Dynamics

Since physical laws heavily affect the realism of a motion, dynamics approaches
can be used for animation. However, these approaches require more physical
parameters such as center of mass, total mass and inertia. The dynamics
techniques can be classified as forward dynamics and inverse dynamics.

Forward dynamics considers applying forces on the objects. These forces
can be applied automatically or by the animator. The motion of the object
is then computed by solving the equations of the motion for the object as a
result of these forces. Wilhelm gives a survey of rigid-body animation tech-
niques by using forward dynamics [51]. Although the method works well with
a rigid body, the simulation of articulated figures by forward dynamics is more
complicated because the equations of motion for articulated bodies must also
handle the interaction between the body parts. This extension of the equa-
tion makes control difficult. In addition, forward dynamics does not provide
an accurate control mechanism. This makes the method useful for the tasks
in which initial values are known. Nevertheless, there are some examples of
articulated-figure animation using forward dynamics [52, 53].

Inverse dynamics however is a goal-oriented method in which the forces
needed for a motion are computed automatically. Although the inverse dynam-
ics applications are rarely used in computer animation, Barzel and Barr [54]
are the first users of the method. They generate a model composed of ob-
jects that are geometrically related. These relationships are represented by
constraints that are used to denote forces on an object. These forces animate
the figure in such a way that all the constraints are satisfied. The Manikin
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system proposed by Forsey and Wilhelm [55] also animates articulated models
by means of inverse dynamics. The system computes the forces needed when a
new goal position for the figure is specified. Another system, called Dynamo,
is introduced by Isaac and Cohen [56]; it is based on keyframed kinematics
and inverse dynamics. Their approach is an example of combining dynamic
simulation and kinematic control. Ko also developed a real-time algorithm for
animating human locomotion using inverse dynamics, balance and comfort
control [57].

All the studies outlined above describe the motion of a figure by consider-
ing geometric constraints. On the other hand, some researchers develop some
inverse dynamics solutions based on non-geometric constraints. Brotman and
Netravali [58], Girard [59] and Lee et al. [60] are examples.

The combination of anatomical knowledge with the inverse dynamics ap-
proach generates more realistic motion. This composite system can also handle
the interaction of the model with the environment. That is why this method is
useful for virtual reality applications. However, dynamic techniques are com-
putationally more costly than kinematic techniques and are rarely used as
interactive animation tools.

There are difficulties in using a purely forward dynamics system or an
inverse dynamics system. To produce the desired movement with high level
of control requires hybrid solutions. The need to combine forward and inverse
dynamics is discussed in [61].

7.3.3 Motion Capture

Since dynamics simulation could not solve all animation problems, new ap-
proaches were introduced. One of these methods animates virtual models by
using human motion data generated by motion capture techniques. The 3D
positions and orientations of the points located on the human body are cap-
tured and this data is then used to animate 3D human models. It is mainly
used in the film and computer games industries.

Human motion capture systems can be classified as non-vision based,
vision-based with markers, and vision-based without markers [62]. In non-vision
based systems, the movement of a real actor can be captured by using mag-
netic or optical markers attached to the human body. In vision-based systems,
the motion of the human body is tracked with the help of cameras either with
markers attached to the human body [63] or without markers [64, 65]. The
main advantage of motion capture techniques is their realistic generation of
motion quickly and with a high level of detail. Moreover, with additional com-
putations, the 3D motion data can be adapted to new morphology. Motion
blending and motion warping are the two techniques for obtaining different
kind of motions. There are also studies to generate smooth human motions in-
teractively by combining a set of clips obtained from motion capture data [66].

Motion blending needs motions with different characteristics. It inter-
polates between the parameters of motions and has the advantage of low
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computation cost. Motion warping techniques change the motion by modifying
the motion trajectories of different limbs interactively. But this method suffers
from the same problem as kinematic or procedural animation techniques; since
they cannot handle dynamic effects, it is impossible to ensure that resulting
motions are realistic.

In their studies, Bruderlin and Williams [67] work on signal processing
techniques to alter existing motions. Unuma et al. [68] generate human figure
animations by using Fourier expansions on the available motions. In contrast
with the procedural and kinematic techniques, motion modification techniques
provide for using real-life motion data to animate the figures. This has the
advantage of producing natural and realistic looking motion at an enhanced
speed. On the other hand, this method is not a convenient method to modify
the movement captured in the data. Realism can be lost while applying large
changes to the captured data.

With the advance of motion capture techniques, vast amount of of motion
capture data is produced. Since the storage and processing of this data be-
comes very difficult, keyframe extraction from motion capture data [69] and
compression techniques [70] become more and more important.

7.3.4 Interpolation Techniques for Motion Control

The parameters of body parts (limbs and joints) should be determined at each
frame when a character is animated using kinematic methods. However, deter-
mining the parameters explicitly at each frame, even for a simple motion, is not
trivial. The solution is to specify a series of keyframe poses at different frames.
Following this approach, an animator needs only specify the parameters at the
keyframes. Parameter values for the intermediate frames, called in-betweens,
are obtained by interpolating the parameters between these keyframes.

Another problem arises in searching for a suitable interpolation method.
Linear interpolation is the simplest method to generate intermediate poses,
but it gives unsatisfactory motion. Due to the discontinuities in the first
derivatives of interpolated joint angles, this method generates a robotic mo-
tion. Obtaining more continuous velocity and acceleration requires higher or-
der interpolation methods like piecewise splines.

Intermediate values produced by interpolation generally do not satisfy the
animator. Therefore, the interpolation process should be kept under control.
For just a single DOF, the intermediate values constitute a trajectory curve
that passes through the keyframe values. Interpolating a spline along with
the keyframe values at both ends determines the shape of the trajectory. An
interactive tool that shows the shape of a trajectory and enables an animator
to change the shape could be useful. After a trajectory is defined, traversing
it at a varying rate can improve the quality of the movement. Parameterized
interpolation methods control the shape of a trajectory and the rate at which
the trajectory is traversed.
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Kochanek and Bartels describe an interpolation technique that relies on
a generalized form of piecewise cubic Hermite splines [71]. At the keyframes,
the magnitude and direction of tangent vectors (tangent to the trajectory) are
controlled by adjusting continuity, tension and bias. Changing the direction
of the tangent vectors locally controls the shape of the curve when it passes
through a keyframe. On the other hand, the rate of change of the interpolated
value around the keyframe is controlled by changing the magnitude of the
tangent vector. Some animation effects such as action follow-through and
exaggeration [23] can be obtained by setting the parameters. This method
does not have the ability to adjust the speed along the trajectory without
changing the trajectory itself because the three parameters used in the spline
formulation influence the shape of the curve.

Steketee and Badler [72] offered a double interpolant method in which
timing control is separated from the trajectory itself. Similar to the previ-
ous method, a trajectory is a piecewise cubic spline that passes through the
keyframed values. In addition, the trajectory curve is sampled by a second
spline curve. This controls the parametric speed at which the trajectory curve
is traversed. Unfortunately, there is no one-to-one relation between actual
speed in the geometric sense and the parametric speed. Therefore, the desired
velocity characteristic is obtained by a trial-and-error process.

A way to obtain more intuitive control over the speed is to reparameterize
the trajectory curve by arc length. This approach provides a direct relation
between parametric speed and geometric speed. An animator can be provided
with an intuitive mechanism to vary speed along the trajectory by allowing
him to sketch a curve that represents distance over time [73].

In the traditional animation, keyframes are drawn by experienced anima-
tors and intermediate frames are completed by less experienced animators.
In this manner, the keyframe-based approach and traditional animation are
analogous. The problem with keyframe-based animation is that it is not good
at skeleton animation. The number of DOF is one of the main problems.
When the number of DOF is high, an animator has to specify too many
parameters for even a single key pose. Obviously controlling the motion by
changing lots of trajectory curves is a difficult process. The intervention of
the animator should ideally happen at low levels, perhaps at the level of joint
control.

Another problem arises from the hierarchical structure of the skeleton.
Since the positions of all other components depend on the position of the root
joint, the animator cannot easily determine the positional constraints in each
keyframe pose creation. The problem can be solved by specifying a new root
joint and reorganizing the hierarchy but this is rarely useful. The interpola-
tion process also suffers from the hierarchical structure of the skeleton. It is
impossible to calculate the correct foot positions in the intermediate frames
by only interpolating joint rotations.
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7.4 Simulating Walking Behavior

Most of the work in motion control has been aimed at producing complex
motions like walking. Kinematics and dynamic approaches for human loco-
motion have been described by many researchers [59, 74, 75, 76, 77, 78, 79].
A survey of human walking animation techniques is given in [80].

7.4.1 Low-level Motion Control

Spline-driven techniques are very popular as the low-level control mechanism
to specify the characteristics of the movements. In spline-driven motion con-
trol, the trajectories of limbs, e.g., the paths of pelvis and ankles, are specified
using spline curves. Using a conventional keyframing technique, the joint an-
gles over time are determined by splines. Since splines are smooth curves, they
can be used for the interpolation of motion parameters.

Cubic splines are easy to implement, computationally efficient, and their
memory requirement is low. Local control over the shape of the curve, inter-
polation of the control points, and continuity control are desirable properties
of cubic curves. Another advantage is that they are more flexible than lower-
order polynomials in modeling arbitrary curved shapes [81].

A class of cubic splines, Cardinal splines, can be used to generate the
position curves because Cardinal splines require less calculation and memory,
yet can exert local control over shape. In addition, there is a velocity curve
or distance curve for these body parts enabling us to change the nature of
the movement. For a set of control points, a piecewise-continuous curve that
interpolates these control points can be generated. If the set of control points
is given by:

pk = (xk, yk, zk), k = 0, 1, 2, . . . , n. (7.11)

The piecewise-continuous curve generated from these control points is given in
Fig. 7.4(a). The parametric cubic polynomials to generate the curves between
each pair of control points is represented by the following equations:
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Fig. 7.4. Cubic splines: (a) a piecewise-continuous cubic-spline interpolation of n+1
control points; (b) parametric point function P (u) for a Cardinal spline section
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Cardinal splines interpolate piecewise cubics with specified endpoint tan-
gents at the boundary of each curve section but they do not require the values
for the endpoint tangents. Instead, the value of the slope of a control point is
calculated from the coordinates of the two adjacent points. A Cardinal spline
section is specified by four consecutive control points. The middle two points
are the endpoints and the other two are used to calculate the slope of the end-
points. If P (u) represents the parametric cubic curve function for the section
between control points Pk and Pk+1 (Fig. 7.4(b)), the boundary conditions
for the Cardinal spline section are formulated by the following equations:

P (0) = pk,
P (1) = pk+1,
P ′(0) = 1

2 (1 − t)(pk+1 − pk−1),
P ′(1) = 1

2 (1 − t)(pk+2 − pk),

(7.13)

where the tension parameter, t, controls how loosely or tightly the Cardinal
spline fits the control points. We can generate the boundary conditions as:

Pu =
[
u3 u2 u 1

]
·MC ·
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where the Cardinal basis matrix is:
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2
. (7.15)

The paths for pelvis, ankle and wrist motions are specified using Cardinal
spline curves. These are position curves. Another curve for velocity is specified
independently for each body part. Thus, by making changes in the velocity
curve, the characteristics of the motion can be changed. Steketee and Badler
are the first to recognize this powerful method [72]. They call this velocity
curve the “kinetic spline”. The method is called “double interpolant” method.
Kinetic spline may also be interpreted as a distance curve. Distance or velocity
curves can be easily calculated from each other.

This application makes use of the “double interpolant” by enabling the user
to specify a position spline and a kinetic spline. The kinetic spline, V (t), is
commonly used as the motion curve. However, V (t) can be integrated to deter-
mine the distance curve, S(t). These curves are represented in two-dimensional
space for easy manipulation. The position curve is a three-dimensional curve
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Fig. 7.5. The articulated figure and the Cardinal spline curves

in space, through which the object moves. Control of the motion involves
editing the position and kinetic splines. In this application, velocity curves
are straight lines and position curves are Cardinal splines. Figure 7.5 shows
the position curves for a human figure.

However moving an object along a given position spline presents a problem
because of the parametric nature of the cubic splines. Suppose we have a
velocity curve and a position curve to control the motion. We can find the
distance traveled at a given time by taking the integral of the velocity curve
with respect to time. Now we must find a point along the position spline,
where the computed distance is mapped.

Assume that we have a path specified by a spline Q(u), (0 ≤ u ≤ 1) and we
are looking for a set of points along the spline such that the distance traveled
along the curve between consecutive frames is constant. Basically, these points
can be computed by evaluating Q(u) at equal values of u. But this requires
the parameter u to be proportional to the arclength, the distance traveled
along the curve. Unfortunately, this is not usually the case. In the special
cases where the parameter is proportional to arclength, the spline is said to
be parameterized by arclength. An object can hardly move with a uniform
speed along a spline without arclength parameterization [82].

The animator interactively shapes the curves and views the resulting ani-
mation in real time. The double interpolant method enables the animator to
change the characteristics of the motion independently. This can be done by
independently editing different curves that correspond to the position in 3D
space, distance, and velocity. However, to produce the desired movement, the
change in the kinetic spline curve should be reflected to the position curve.
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After constructing the position curves for end-effectors, such as wrists and
ankles, a goal-directed motion control technique is used to determine, over
time, the joint angles of shoulder, hip, elbow and knee. The animator only
moves the end-effector and the orientations of other links in the hierarchy
are computed by inverse kinematics. This system also enables the user to
define the joint angles that are not computed by inverse kinematics. Using a
conventional keyframing technique, the joint angles over time can be specified
by the user. Cubic splines are then used to interpolate joint angles.

7.4.2 High-level Motion Control

Walking motion can be controlled by using high-level kinematic approaches
that allow the user to specify the locomotion parameters. Specifying a straight
traveling path on a flat ground without any obstacles and the speed of loco-
motion, walking can be generated automatically by computing the 3D path
information and the low-level kinematics parameters. The user can adjusts
such parameters as the size of step, the time elapsed during double-support,
rotation, tilt, and lateral displacement of the pelvis to produce different walk-
ing motions.

Walking is a smooth, symmetric motion in which the body, feet, and hands
move rhythmically in the required direction at a given speed. Basically, it can
be characterized as a succession of phases separated by different states of the
feet because the feet drive the main part of the animation. During walking,
the foot has contact with the ground (footstrikes) and lifts off the ground
(takeoffs). A stride is defined as the walking cycle in which four footstrikes
and takeoffs occur. The part of this cycle, which is between the takeoffs of
the two feet, is called a step. The phases for each leg can be classified into
two: the stance and the swing phase. The stance phase is the period of sup-
port. The swing phase is the non-support phase. In the locomotion cycle,
each leg passes through both the stance and the swing phases. In the cycle,
there is also a period of time when both of the legs are in contact with the
ground; this phase is called double-support. The phases of the walking cycle are
shown in Fig. 7.6.

During the cyclic stepping motion, one foot is in contact with the ground
at all times and for a period both of the feet are in contact with the ground.
These characteristics of walking really simplify the control mechanism. The
kinematics nature of walking must be dissected further to produce a realistic
walking motion. For this purpose, Saunders et al. defined a set of gait deter-
minants, which mainly describe pelvis motion [83]. These determinants are
compass gait, pelvic rotation, pelvic tilt, stance leg flexion, planar flexion of
the stance angle, and lateral pelvic displacement.

In pelvic rotation, the pelvis rotates to the left and right, relative to
the walking direction. Saunders et al. quote 3 degrees as the amplitude of
pelvic rotation in a normal walking gait. In normal walking, the hip of the
swing leg falls slightly below the hip of the stance leg. For the side of swing
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leg, this happens after the end of the double support phase. The amplitude
of pelvic tilt is considered to be 5 degrees. In lateral pelvic displacement, the
pelvis moves from side to side. Immediately after double support, the weight is
transferred from the center to the stance leg; thus the pelvis moves alternately
during normal walking. Moreover, individual gait variations can be achieved
by modifying these pelvic parameters.

The main parameters of walking behavior are velocity and step length.
However, experimental results show that these parameters are related. Saun-
ders et al. [83] relate the walking speed to walking cycle time and Bruderlin
and Calvert [76] state the correct time durations for a locomotion cycle. Based
on the results of experiments, the typical walking parameters can be stated
as follows:

velocity = step length× step frequency, (7.16)
step length = 0.004 × step frequency × body height. (7.17)

Experimental data shows that maximum value of step frequency is 182 steps
per minute. The time for a cycle (tcycle) can be calculated from the step
frequency:

tcycle = 2 × tstep =
2

step frequency
. (7.18)

Time for double support (tds) and tstep are related according to the following
equations:

tstep = tstance − tds, (7.19)
tstep = tswing + tds. (7.20)
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(a) (b)

Fig. 7.7. Velocity curve of (a) left ankle and (b) right ankle

Based on the experimental results, tds is calculated as:

tds = (−0.0016× step frequency + 0.2908)× tcycle. (7.21)

Although tds can be calculated automatically if step frequency is given, it is
sometimes convenient to redefine tds to have walking animations with vari-
ous characteristics. By utilizing these equations that define the kinematics of
walking, a velocity curve is constructed for the left and right ankles. Figure 7.7
illustrates the velocity curves of the left and right ankles. The distance curves
shown in Fig. 7.8 are automatically generated using the velocity curves. The
ease-in, ease-out effect, which is generated by speed up and slow down of the
ankles, can be seen on distance curves.

(a) (b)

Fig. 7.8. Distance curve of (a) left ankle and (b) right ankle

7.5 Motion Control for a Multi-layered Human Model

In a multi-layered human model, the skin is deformed based on the transfor-
mation of the inner layers, namely the skeleton and muscle layers.
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7.5.1 Skeleton Layer

The skeleton layer is composed of joints and bones and controls the motion
of the body by manipulating the angles of the joints. To solve the inverse
kinematics problem, there are software packages, such as Inverse Kinemat-
ics using Analytical Methods (IKAN). IKAN has the functionality to control
the movement of body parts [45]. It is a complete set of inverse kinematics
algorithms for an anthropomorphic arm or leg. It uses a combination of ana-
lytic and numerical methods to solve generalized inverse kinematics problems
including position, orientation, and aiming constraints [45].

For the arm, IKAN computes the joint angles at the shoulder and elbow to
put the wrist in the desired location. In the case of the leg, the rotation angles
for the hip and knee are calculated. IKAN’s methodology is constructed on a 7
DOF fully revolute open kinematic chain with two spherical joints connected
by a single revolute joint. Although the primary work is on the arm, the
methods are suitable for the leg since the kinematic chain of the leg is similar
to the kinematic chain of the arm. In the arm model, the spherical joints
with 3 DOFs are the shoulder and wrist; the revolute joint with 1 DOF is
the elbow. In the leg model, the spherical joints with 3 DOFs are the hip and
ankle; the revolute joint with 1 DOF is the knee.

Since leg and arm are similar to human arm-like (HAL) chains, only the
details for the arm are explained here. The elbow is considered to be parallel
to the length of the body at rest. The z-axis is from elbow to wrist. The
y-axis is perpendicular to z-axis and is the axis of rotation for the elbow. The
x-axis is pointing away from the body along the frontal plane of the body.
A right-handed coordinate system is assumed.

Similar coordinate systems are assumed at the shoulder and at the wrist.
The projection axis is always along the limb and the positive axis points away
from the body perpendicular to the frontal plane of the body. The projection
axis differs for left and right arm. Wrist to elbow and elbow to shoulder trans-
formations are calculated since they are needed to initialize the inverse kine-
matics solver in IKAN. The arm is initialized with a Humanoid object and the
shoulder, elbow and wrist joints are named. During initialization, the transfor-
mation matrices are computed and the inverse kinematics solver is initialized.

The orientations of joints for the positioning of the right arm are seen
in Fig. 7.3(a). The joint angles are found automatically according to the
end-effector positions. Figure 7.9 illustrates different motions of the skeleton
(walking, jumping, squatting, running, and forearm motion).

7.5.2 Muscle Layer

While the skeleton creates the general structure of the body, muscles deter-
mine the general shape of the surface mesh. Human muscles account for nearly
half of the total mass of the body and fill the gap between the skeleton and
the skin [84].
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(a)

(b)

(c)

(d)

(e)

Fig. 7.9. Different motions of the skeleton: (a) walking; (b) running; (c) jumping;
(d) squatting; (e) forearm motion
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Human movements require the muscles to perform different tasks; thus the
human body includes three types of muscle: cardiac, smooth and skeletal [85].
Cardiac muscles, found only in the heart, perform the pumping of the blood
throughout the body. Smooth muscles are part of the internal organs and are
found in the stomach, bladder, and blood vessels. Both of these muscle types
are involuntary muscles because they cannot be consciously controlled. On the
other hand, skeletal muscles control conscious movements. They are attached
to bones by tendons and perform various actions by simply contracting and
pulling the bones they are attached to towards each other. If only the external
appearance of the human body is important, modeling the skeletal muscles
serves the purpose.

Skeletal muscles are located on top of the bones and other muscles, and
they are structured side by side and in layers. There are approximately 600
skeletal muscles and they make up 40% to 45% of the total body weight.
Skeletal muscle is an elastic, contractile material that originates at fixed ori-
gin locations on one or more bones and inserts on fixed insertion locations
on one or more other bones [84]. The relative positions of these origins and
insertions determine the diameter and shape of the muscle. In real life, muscle
contraction causes joint motion but in many articulated body models, mus-
cles deform due to joint motion in order to produce realistic skin deformations
during animation.

There are two types of contraction: isometric (same length) and isotonic
(same tonicity). In isotonic contraction, when the muscle belly changes shape,
the total length of the muscle shortens. As a result, the bones to which the
muscle is attached are pulled towards each other. Figure 7.10 illustrates the
isotonic contraction. In isometric contraction, the changes in the shape of
the muscle belly due to the tension in the muscle do not change the length
of the muscle, so no skeletal motion is produced [38]. Although most body
movements require both isometric and isotonic contraction, many applica-
tions consider only isotonic contraction; isometric contractions have very little
influence on the appearance of the body during animation.

In most muscle models, a muscle is represented using two levels: the ac-
tion line and the muscle shape. Sometimes, the muscle layer is represented
only with action lines and the muscle shape is not considered (Fig. 7.11).
The key idea behind this is that the deformations of the skin mesh can
be calculated based on the underlying action lines and no muscle shape

f

isotonic contraction

Fig. 7.10. Isotonic contraction
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Fig. 7.11. Action line abstraction of a muscle

is needed for most applications. The calculation of the muscle shape and
its effect on the skin layer is a complicated and computationally-intensive
process.

7.5.2.1 Modeling of Muscles

An action line denotes the imaginary line along which the force applied onto
the bone is produced. However, the definition of this line is not clear [38].
Many specialists assume the action line to be a straight line, but more com-
monly, the action line is represented as a series of line segments (or polyline
in computer graphics terminology) [86]. These segments and their number are
determined through the anatomy of the muscle. A muscle represented by an
action line simulates the muscle forces and is basically defined by an origin
and an insertion point. The control points on the action line guide the line
and incorporate the forces exerted on the skin mesh. These force fields are
inversely proportional to the length of the corresponding action line segment.
An example of this kind of action line is shown in Fig. 7.12.

7.5.2.2 Animation of Muscles

Animation of muscles is a very complicated process due to the difficulty
in determining the position and deformation of a muscle during motion. In
computer-generated muscle models, the deformations of the muscles are gen-
erally inferred from the motion of the skeleton, the opposite of real life. The
deformations of the skin layer are driven by the underlying bones and action
lines. This allows the three-dimensional nature of the deformation problem

Fig. 7.12. The structure of an action line: control points and forces on these points



228 U. Güdükbay et al.

to be reduced to one dimension. The control points of the action lines that
correspond to the insertion and origin of the muscle are attached to the skele-
ton joints so that their motion is dictated by the skeleton. The positions of
all the remaining control points are obtained through a linear interpolation
formulation for each animation frame. We first need to determine the local
frame of each action-line control point since the positions of the control points
of the action line provide information as to how the surface mesh will expand
or shrink over time.

After the local frames are constructed, the action line is ready to animate
in correspondence with the underlying skeleton. Since the insertion and origin
points of the action line are fixed on the skeleton, movement of the skeleton
layer is reflected on the action line as a decrease or increase in length. Parallel
to the overall change in action-line length, the lengths of each action line
segment also change. Since the force fields at each control point are inversely
proportional to the segment length, this variation in length also causes a
change in the force fields as demonstrated in Fig. 7.13. The next step in
animation is the deformation in the skin mesh due to the changes on the
forces that are exerted on skin vertices by the action line control points. This
deformation is automatically propagated on the skin layer via the anchors
between skin vertices and the action line. If the segment length shortens, the

(a) (b)

(c)

Fig. 7.13. Deformation of an action line and force field changes: (a) rest position and
initial force fields of an action line, (b) the action line shortens and forces increase
due to muscle contraction, and (c) the action line lengthens and forces decrease due
to muscle lengthening
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force fields increase and cause the skin mesh to bump. Similarly, the increase
in segment length results in a decrease in force fields and relaxation of the
skin mesh.

7.5.3 Skin Layer

The skin is a continuous external sheet that covers the body. The skin accounts
for about 16% of the body weight and has a surface area from 1.5 to 2.0 m2

in adults [87]. Its thickness varies depending on the location.

7.5.3.1 Modeling the Skin Layer

There are basically three ways to model a skin layer. The first method involves
designing from scratch or modifying an existing mesh in a 3D modeler, such as
Poser [88]. Another way is to laser scan a real person, thus producing a dense
mesh that truly represents a human figure. The last method is to extract the
skin layer from underlying components that already exist.

Figure 7.14 shows the shaded points and the solid view of the P3 Nude
Man model, one of the standard characters of the Poser software [88]. The
model contains 17,953 vertices and 33,234 faces. The whole body is composed
of 53 parts such as hip, abdomen, head, right leg, left hand, etc. This structure
facilitates the binding of skin vertices to the inner layers.

(a) (b)

Fig. 7.14. The shaded point (a) and solid view (b) of the skin model
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7.5.3.2 Animation of the Skin Layer

In attaching, each vertex in the skin is associated with the closest underlying
body components (muscle and bone). Basically, the attachment of a particular
skin vertex is to the nearest point on its underlying component. Thus shape
changes in the underlying component are propagated through these anchors
to the corresponding skin vertices [89].

Skin vertices are first bound to the joints of the skeleton layer in a multi-
step algorithm. To attach the skin to the joints, skin vertices are transformed
into the joint coordinate system. The skin model is decomposed into parts,
which are basically groups of vertices of the skin mesh corresponding to some
part of the body. In the first step of the attachment process, a particular joint
is determined for each part of the skin and attach the vertices of this part to
this joint, i.e., the right upper arm is bound to the right shoulder joint and
the left thigh is anchored to the left hip joint (Fig. 7.15(a)).

However, the first step is not sufficient for realistic deformation of the skin
layer. Realism requires that some vertices be bound to more than one joint.
In particular, the vertices near the joints need to be attached to two adja-
cent joints. The second step of the attachment process is focused on binding
the necessary vertices to two joints. For this purpose, a distance threshold
should be determined for each highly movable joint. If the distance between
vertex and joint is smaller than the threshold value, then the vertex is bound
to this second joint with a weight (Fig. 7.15(b)). The weights are inversely
proportional to the distance between the vertex and the joint.

It is difficult to determine the most appropriate distance threshold for the
binding operation. A small threshold value misses some of the vertices that
should be attached to the joints. For example, some vertices in the back part
of the hip need to be attached to the left hip or right hip joints in order to gen-
erate a realistic walking motion. However, since the distances between these
vertices and the corresponding joints are larger than the threshold value, there
may be holes in the skin mesh because of the unattached vertices. Increasing

(a) (b)

Fig. 7.15. The attachment process: (a) the left thigh is bound to the left hip joint;
(b) binding skin vertices to more than one joint based on a distance threshold. The
vertices inside the ellipsoids are bound to more than one joint
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the threshold value is a solution to this problem but this attempt may cause
unnatural results in other parts of the body during movement.

Therefore, unlike the first two steps, which are fully automatic, a manual
correction step is generally applied to overcome these deficiencies. This can be
done by selecting some of the unattached vertices one by one using a mouse
and binding them to the appropriate joints. In 3D Studio Max, it is performed
by manually adjusting the 3D influence envelopes [90]. A 3D influence envelope
includes the skin vertices to be effected by the corresponding bone. Since the
envelopes may overlap, some vertices are effected by more than one bone.
Sometimes the automatically-defined envelopes may be wider or smaller than
necessary; thus, a manual size adjustment may be required.

Anchoring points to the action lines of muscles is achieved by a similar
process. An action line can be thought of as a skeleton; control points denote
joints and line segments correspond to bones. This allows us to reuse (with
some extensions) algorithms originally developed for mapping skin vertices to
skeleton joints. In the skin-skeleton mapping algorithm, each skin vertex is
bound to a particular joint. In the skin-action line mapping process, each skin
vertex is again attached to a particular action line. An action line is composed
of a set of control points and each control point has a different force field on
the skin mesh. Thus, each skin vertex is bound to a number of control points
on the action line (see Fig. 7.16).

Before applying muscle-induced deformations to the skin layer, each skin
vertex is moved based on the skeletal position. This step has two goals: to
generate a smooth skin appearance and to simulate the adherence of the skin
layer to the skeleton layer. Skin vertices are attached to the joints of the
skeleton layer rather than the limbs. But since the limbs are connected to the
joints, the skin vertices move with the limbs in the underlying skeleton [89].

Figure 7.17 shows different motions with the rendered skin. The position
curves seen in Figs. 7.9 and 7.17 are the trajectories of left ankle, right an-
kle and pelvis. The position and velocity curves of each limb are generated
automatically.

Figure 7.18 demonstrates muscular and skeletal deformations. In the series
of still frames, the right arm is raised forward and then flexed to demonstrate
muscular deformation on the skin mesh.

Fig. 7.16. Binding skin vertices with action lines. Point j is attached to its nearest
three control points, v1, v2 and v3



232 U. Güdükbay et al.

(a)

(b)

(c)

(d)

(e)

Fig. 7.17. Different motions of the human figure with the skin: (a) walking; (b)
running; (c) jumping; (d) squatting; (e) forearm motion

The most tedious and time consuming operation is binding the skin layer to
the underlying layers. However, this does not affect the frame rate if it is done
as a preprocessing step before the animations. Depending on the application,
different skin meshes ranging from low to high resolution can be used.
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Fig. 7.18. Muscular deformation on the upper arm

7.6 Conclusions

Multi layered modeling of human motion based on anatomical approach yields
realistic and real time results for generating avatars in motion for three di-
mensional computer animations. Films produced by these techniques have
become very popular and wide spread, many with major box office success.
The motion, up till recently, was specified by the animators. The current de-
velopments in motion capture now can also provide data for animation thus
making human model animation a readily integral part of three dimensional
television systems.

Building up motion data bases and using various motion definitions from
such data bases, as well as modifying parts of this data whenever needed,
provides a very powerful tool for the entertainment industry for generating
three dimensional realistic humans in motion. Many other applications ranging
from medical to flight simulators need near correct human models. Research
outlined in this chapter will continue to this end and will increasingly become
an important source for providing tools for three dimensional display systems.
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