
6

Three-dimensional Scene Representations:
Modeling, Animation, and Rendering

Techniques

Uǧur Güdükbay and Funda Durupınar

Department of Computer Eng., Bilkent University, 06800, Bilkent, Ankara, Turkey

Modeling the behavior and appearance of captured three-dimensional (3D)
objects is a fundamental requirement for scene representation in a three-
dimensional television (3DTV) framework. By using the data acquired from
multiple cameras, it is possible to model a scene with high quality visual
results. In fact, 3D scene capturing and representation phases are highly cor-
related. Information acquired from the capturing phase can be employed in
the representation phase by using computer graphics and image processing
techniques. The resultant model then allows the users to interact with the
scene, not just remain observers but be participants themselves. Thus, the
main considerations for the quality of a scene representation technique are
basically the accuracy of the technique about how the results correspond to
the original scene and the efficiency of the technique as real-time performance
is required.

3D shape modeling is an essential component of scene representation for
3DTV. Time-varying mesh representations provide a suitable way of repre-
senting 3D shapes. With these methods, the static components of a scene
are constructed only once and the other objects are modeled as dynamic
components, thus the computational time to represent 3D scenes is reduced.
Polygonal meshes are efficiently used in shape modeling due to their built-
in representation in hardware. Thus, they are suitable for applications such
as 3DTV where real-time performance is required. Alternatively, volumetric
representations can be used in shape modeling. The basic volume elements,
voxels, of a 3D space correspond to the 2D pixels of an image. Volumetric
techniques require large amounts of data in order to represent a scene or ob-
ject accurately. Images acquired from multiple calibrated cameras provide the
necessary information for volumetric models. Thus, these methods are intu-
itive for 3DTV. However, recent research shows that point-based approaches
are the most suitable shape modeling techniques for 3DTV. The reason is that
results of 3D data acquisition methods such as laser scans already represent
the scene in a point-based manner.

166 U. Güdükbay and F. Durupınar

3D scene representation has two components: geometry and texture. Ge-
ometry representation is handled by modeling the shape of an object or a
scene. Since the scenes mostly contain dynamic objects that move and de-
form in different ways, modeling the motion becomes important. Animation
techniques that have potential for real-time hardware implementations are
promising approaches to be used in a 3DTV framework. Texture represen-
tation is handled by the underlying rendering technique. Scan-line rendering
techniques are suitable for 3DTV as they are hardware-supported and ef-
ficient. In addition, image-based rendering is a very successful and promis-
ing rendering scheme for 3DTV as it directly makes use of the captured
images.

This chapter provides introductory knowledge for the modeling, animation,
and rendering techniques used in computer graphics. It is not an exhaustive
survey of these topics and includes only representatives of each, focusing on
techniques relevant to 3DTV. The interested reader is referred to the refer-
ences for an in-depth discussion of the topics covered.

The chapter is organized as follows. First, different 3D scene representa-
tion techniques, namely mesh-based representations, volumetric methods, and
point-based techniques, will be discussed. Then, we will explain animation
techniques for modeling object behavior. Finally, we will discuss illumination
models and rendering techniques for 3D scenes containing different types of
objects and lighting conditions.

6.1 Modeling

There are two main approaches to represent the shape of arbitrary free-form
objects. The first approach, which is called Constructive Solid Geometry, mod-
els the shapes of free-form objects as a composition of geometrically and alge-
braically defined primitives, such as polygons, implicit surfaces, or parametric
surfaces. This approach uses Boolean operations to combine regular shapes
and is widely used as a Computer-Aided Design tool. The second approach
deforms regular shapes using deformation techniques, such as regular defor-
mations [1] and Free-Form Deformations [2] to obtain irregular, free-form
objects.

Before going into the details of different shape representation techniques
based on Euclidean geometry, we will say a few words about modeling the
shapes of natural objects. Natural objects, such as mountains, clouds, and
trees, cannot be described using equations since these objects do not have
regular shapes; their irregular or fragmented features cannot be realistically
modeled using the methods based on Euclidean geometry [3]. Fractal-geometry
methods use procedures to model such objects [4]. L-systems (Lindenmayer
systems) provide a mathematical formalism for realistic modeling of plants
and plant generation. The basic idea is to define complex objects, like plants,

6 Three-Dimensional Scene Representations 167

by successively replacing parts of simple initial objects using a set of rewriting
rules. The rewriting rules are applied in a parallel fashion for different parts
of the objects [5].

6.1.1 Polygonal Mesh Representations

The surface of a 3D object can be approximated using a number of planar
polygons. A polygonal approximation to a 3D object has faces, edges, vertices
and normal vectors to identify the spatial orientation of the polygon surfaces.
These are stored in geometric data tables. A vertex table stores the x, y,
and z-coordinates of the vertices. Surfaces, or polygons, are stored in surface
tables, which contain pointers to the vertex tables for each vertex comprising
that polygonal surface. Edge tables are useful for wireframe drawing purposes
and they also represent edges using pointers to the vertex tables [3]. Mostly,
triangles are used for polygonal approximations of objects since triangles can
be processed in hardware using graphics cards in today’s computers. Figure 6.1
shows a simple object and its corresponding vertex, edge and surface tables. In
addition, there are also some attributes associated with vertices and faces such
as the degree of transparency, surface reflectivity, and texture characteristics,
which are stored in attribute data tables. These are necessary for shading
polygonal surfaces. The normal vector of a polygonal surface is calculated by
taking the cross product of two non-colinear vectors lying on the polygonal
surface. The vertex normals are calculated by taking the average of the face
normals sharing a vertex.

3v

5v1v

1e

2v

7e

4v4v

4e

5e

2e
S1

3e 3S

6e
S2

S2

S1

1v

2v

3v

4v

5v

1x 1y 1z

2x 2y 2z

3x 3y 3z

4x 4y 4z

5x 5y 5z
2v 3v 4v

2v

1v

4v

1v

1e

2e

3e

4e

5e

1v

4v

4v

5v

5v

2v

3v2v6e

7e 3v 4v

StartEdge End

Edge table

1v 2v 4v

3S 1v 4v 5v

Surface table

Surface
1 2 3

VertexVertexVertex
zyVertex x

Vertex table

Fig. 6.1. A polygonal object and its vertex, edge and surface tables

168 U. Güdükbay and F. Durupınar

When the polygonal approximations of objects are very large, contain-
ing millions of polygons, level-of-detail approximations of the models become
inevitable. Polygonal model simplification is the main tool to obtain different
levels of detail of polygonal models. Progressive mesh representations that
store different level-of-detail approximations of large models are used to vi-
sualize complex models using view-dependent visualization techniques. These
techniques are used to display the models by using the suitable level of detail
according to the current viewpoint so that the polygons that do not con-
tribute to the final image are not processed by the graphics pipeline [6, 7, 8].
Figure 6.2 shows a sphere rendered with two different levels of detail.

6.1.2 Parametric Surfaces

A parametric surface is defined as a mapping from 2-space to 3-space since
each parametric surface can be defined using two parameters. Parametric
surfaces are represented with the following equation:

X(u, v) =

⎡

⎣
x(u, v)
y(u, v)
z(u, v)

⎤

⎦ , u0 ≥ u ≤ u1

v0 ≥ v ≤ v1
(6.1)

Normal vectors for parametric surfaces can be calculated by taking the
cross product of the surface tangent functions. Surface tangent functions can
be found by taking the partial derivatives of the parametric surface function
with respect to the surface parameters. As an example, the derivation of the
parametric normal vector equation for the unit sphere is given in the following
equations.

X(u, v) =

⎡

⎣
cos(u) cos(v)
cos(u) sin(v)
sin(u)

⎤

⎦ , −
π
2 ≤ u ≤ π

2−π ≤ v < π
(6.2)

N(u, v) =
∂X

∂u
× ∂X

∂v
(6.3)

(a) (b)

Fig. 6.2. Level-of-detail example on wireframe and smooth-shaded spheres. (a) low-
resolution; (b) high resolution

6 Three-Dimensional Scene Representations 169

N(u, v) =

⎡

⎣
−sin(u) cos(v)
−sin(u) sin(v)
cos(u)

⎤

⎦×
⎡

⎣
−cos(u) sin(v)
cos(u) cos(v)
0

⎤

⎦ (6.4)

N(u, v) =

⎡

⎣
cos2(u) cos2(v)
cos2(u) sin2(v)
sin2(u)

⎤

⎦ (6.5)

Each coordinate of a point on a parametric surface can be calculated in-
dependently from other coordinates; this makes the parametric surfaces at-
tractive for generating polygonal approximations for object surfaces. This is
generally done by sampling a regular grid on the parameter space and then
calculating the points on the parametric surface by plugging the parameter
values at the grid locations into the parametric surface functions for each co-
ordinate. The coordinates of the points on the parametric surface are stored
in a two-dimensional array that corresponds to the grid for parameter values.
Then, the polygons (triangles) are implicitly obtained by forming triangles on
the grid. Such kinds of polygonal approximations are called regular meshes
since the polygons are formed using neighboring grid points in a regular way
and the polygon information is not stored explicitly. The problem with para-
metric surfaces is that we only know the parametric surface functions for a
limited set of regular objects.

Examples of parametric surfaces that can be used for representing prim-
itive objects are quadrics, superquadrics [9], and bi-cubic surfaces, such as
B-spline, Hermite, Bézier, etc. [10, 11]. Figure 6.3 shows examples of paramet-
ric surfaces, namely supertoroids with different parameters (a) and a Bézier
surface (b).

6.1.3 Implicit Surfaces

An implicit surface equation has the following form:

f(x, y, z) = 0. (6.6)

(a) (b)

Fig. 6.3. Examples of parametric surfaces: (a) supertoroids with different parame-
ters; (b) a Bézier surface

170 U. Güdükbay and F. Durupınar

Implicit surfaces divide the space into object interior and exterior regions.
They allow us to talk about the solids defined by the interior of the implicit
surfaces. Implicit surfaces are especially useful for collision detection and re-
sponse in computer animation and ray surface intersection tests for rendering
applications such as ray tracing. However, they are not suitable for generating
polygonal approximations for the surfaces of the objects.

Collision detection applications generally require to test whether a point
p is inside or outside of a surface, for which we can use the implicit equation
of the surface.

if

⎧
⎨

⎩

f(p) = 0, p is on the surface.
f(p) > 0, p lies outside the surface.
f(p) < 0, p lies inside the surface.

(6.7)

Implicit surface equations are also used for ray-surface intersection tests.
A ray is represented parametrically as

r(t) = r0 + t v (6.8)

where r0 is the ray origin, v is the direction vector of the ray, and t is the
ray parameter. Then, we can test whether a ray intersects an implicit surface
f(x, y, z) = 0 by substituting the parametric ray equation into the implicit
surface equation and solving for the ray parameter t:

f(r0 + t v) = 0 (6.9)

6.1.4 Subdivision Surfaces

Subdivision surfaces is another popular surface modeling scheme. The idea
of subdivision surfaces was first introduced by Catmull and Clark [12] and
Doo and Sabin [13] independently in 1978. Other notable subdivision schemes
are Loop [14], Butterfly [15], and

√
3-Subdivision [16]. Algorithmic defini-

tion of subdivision surfaces distinguishes them from standard spline surfaces.
Subdivision surfaces resemble both polygon meshes and patch surfaces, and
they take the best aspects of each representation technique. For instance,
they can represent smooth surfaces with arbitrary topology and can be ren-
dered smoothly owing to the well-defined surface normal, unlike low-resolution
polygonal geometry. Simplicity, efficiency, and ease of implementation are the
main advantages of subdivision surfaces.

Subdivision surfaces are constructed through recursive splitting and av-
eraging operations. Splitting is performed by dividing a face into new faces
and averaging is performed by taking a weighted average of neighboring ver-
tices to obtain a new vertex. Splitting and averaging operations are shown
in Fig. 6.4. The Doo-Sabin Subdivision Scheme is illustrated in Fig. 6.5 and
the Catmull-Clark Subdivision Scheme is illustrated in Fig. 6.6. The results
of applying various subdivision schemes to a cube are shown in Fig. 6.7.

6 Three-Dimensional Scene Representations 171

(a) (b)

Fig. 6.4. Subdivision operations: (a) recursive splitting; (b) averaging

The shape of a subdivision surface is determined by a structured mesh of
control points and a set of subdivision rules prescribing a procedure for refining
the mesh to a finer approximation. The subdivision surface itself is defined as
the limit of repeated recursive refinements. Subdivision surfaces satisfy all the
usual requirements for surface representation that confront computer graphics
practitioners. Starting with an initial polygonal mesh of arbitrary topology, a
subdivision scheme is used to generate a new mesh that is the initial mesh for
the next refinement. The repetitive application of this process will generate a
sequence of polygonal meshes whose limit may be a smooth surface, assuming
that appropriate conditions are satisfied [17]. This makes subdivision surfaces
suitable as a multi-resolution mesh representation where switching between
coarser and finer refinements can be easily achieved. The recursive nature of
subdivision surfaces provides control over different levels of detail through
adaptive subdivision. However, this nature also introduces a weakness for the
modeling of sharp features such as creases or corners. Recently, some new
techniques that perform modifications and additions to the subdivision rules
have overcome this problem [18].

(a) (b) (c) (d)

Fig. 6.5. The Doo-Sabin subdivision scheme: (a) generate new vertices with re-
spect to Doo-Sabin subdivision masks; (b) form new faces inside the old faces by
connecting the generated vertices; (c) form new faces for each edge in the coarser
mesh by connecting the four new vertices adjacent to an old edge; (d) form new
faces for each vertex in the old mesh by connecting the new vertices adjacent to an
old vertex

172 U. Güdükbay and F. Durupınar

(a) (b) (c) (d)

Fig. 6.6. The Catmull-Clark subdivision scheme: (a) generate new vertices for each
face; (b) generate new vertices for each edge; (c) move each original vertex to a new
location; (d) form new faces using the generated vertices

6.1.5 Point-based Representations

Points were first introduced as rendering primitives by Levoy [19] in 1985.
As new display elements, points are also known as surfels [20]. Due to their

(a) (b)

(c) (d)

Fig. 6.7. Results of applying various subdivision schemes to a cube: (a)
√

3-
Subdivision; (b) Loop Subdivision; (c) Doo-Sabin Subdivision; (d) Catmull-Clark
Subdivision. The control mesh is the unit cube drawn in wireframe. Courtesy of
Tekin Kabasakal

6 Three-Dimensional Scene Representations 173

structural simplicity and flexibility, point samples are used to model shapes.
Although point-based representations utilize more modeling primitives, since
the primitives are simple and do not require explicit connectivity or topology
information, these methods are efficient alternatives to mesh-based representa-
tions. Point sets do not have a fixed continuity class, contrary to meshes, which
have piecewise linear C0 connectivity. The continuity problem for meshes is
handled by smoothing techniques such as applying Gouraud shading or sub-
division operations. In contrast, point-based methods specify connectivity in-
formation implicitly through the spatial interrelation among the points [21].
Point-based modeling is in some sense similar to image-based modeling as it
takes different views of an object as input and reconstructs the surface. How-
ever, point samples require more geometric information than image pixels and
they are view-independent [22]. Moreover, the ease of insertion, deletion and
repositioning of point samples makes these techniques suitable for dynamic
settings with frequent changes of model geometry [23].

Point-based representations can be grouped into two: piecewise constant
point sampling and piecewise linear surface splats [24]. Studies in the first
group include Point Set Surfaces (PSS) [21, 25, 26]. PSS are used to represent
shapes by taking a weighted average of the points. Normally, they can only
be applied to regular samples due to the weighting scheme, which is based
on a spatial scale parameter. Adamson et al. extend PSS to irregular settings
by generalizing the weighting scheme [26]. Fleishman et al. [21] describe a
progressive scheme, which reduces the amount of data required and improves
modeling and visualization. They develop a simplification scheme for point
sets to construct a base point set that represents a smoother version of the
original shape. Then, they perform adaptive surface refinement.

Reconstruction of continuous surfaces from the irregularly-spaced point
samples without losing visual quality is an important challenge for point-based
methods. Moreover, hidden surface removal and transparency issues should be
correctly handled. These difficulties have been overcome by the introduction
of surface splats, first proposed by Zwicker et al. [27]. Surface splatting uses
samples of the surface of an object to represent it [28]. Surface splats pro-
vide better visual quality and more efficiency by using an Elliptical Weighted
Average (EWA) filter, which reduces aliasing artifacts. The performance lim-
itations of this technique, which was originally purely software-based, have
been overcome recently by utilizing the latest GPU technology. Botsch et al.
discuss the capabilities of GPUs for hardware-based surface splatting in [24].

6.1.6 Volumetric Representations

Spatial subdivision techniques provide a natural way to represent solid objects
and 3D scenes. These techniques simplify many calculations on solid objects
and 3D scenes, such as boolean operations on solid objects to create complex
objects from simpler ones, collision detection for animation, ray/surface in-
tersections for raytracing, occlusion detection for the visualization of urban

174 U. Güdükbay and F. Durupınar

scenery, etc. The only disadvantage of these techniques is the high storage cost
since a solid object or a 3D scene is represented using a three-dimensional ar-
ray. The high storage cost of spatial subdivision data structures are alleviated
by using an adaptive subdivision of space instead of a uniform subdivision.

The unit element of a three-dimensional space is called a voxel. One com-
mon method to represent solid objects or 3D scenes is to use octrees, which are
hierarchical tree structures. The three-dimensional space is partitioned into
eight regions (octants), where each region corresponds to a node of the tree
structure. Each octant is further subdivided recursively, if necessary. In case of
a regular subdivision, the subdivision process terminates when a pre-defined
depth is reached. In adaptive subdivision, the subdivision process terminates
if the octant is completely unoccupied or a minimum resolution is obtained
for the cells. The nodes of the octree structure point to the parts of the scene,
or the solid object, contained in the part of the space to which that node
corresponds. The octree representation is shown in Fig. 6.8.

Another spatial subdivision method to represent solid objects and 3D
scenes volumetrically is Binary Space Partitioning (BSP) trees. The main
idea is to adaptively partition the space into two regions with a plane. BSP
trees are more efficient than octrees as they reduce the tree depth. They are
especially useful for applications that require the subdivision of space into
regions containing an equal number of scene objects.

Spatial subdivision techniques can be used for different types of object
representations, including polygon meshes and surface patches. Different al-
gorithms, such as intersection tests, traverse the octree structure recursively
starting from the root. Details of spatial subdivision techniques can be found
in [29].

Voxel-based representations are also used to reconstruct an environment
from images obtained by multiple calibrated cameras. These representations
generally use a regular 3D voxel array or an octree subdivision and the 3D
scene is represented as a set of occupied voxels. These voxels can be colored
and transparent and the surface normals associated with occupied voxels are
stored for rendering purposes. Volume rendering techniques can be used to
render such voxel-based 3D scenes. Unless the voxels are very small, rendering
the surfaces of voxel-based 3D data produces a blocky appearance. Thus,

Fig. 6.8. The octree representation

6 Three-Dimensional Scene Representations 175

refinement techniques should be applied to the meshes describing the surface
to obtain a plausible appearance.

Some volumetric 3D reconstruction techniques compute the outer-bound
approximation of the scene geometry, called visual hull, from silhouette im-
ages [30, 31, 32]. These techniques are applicable to images where foreground-
background segmentation at each reference view is possible. The silhouette is
the 2D projection of the corresponding 3D foreground object. The parts of
the surface of the object that also lie on the surface of the visual hull can be
reconstructed using silhouette-based approaches.

6.2 Animation

An illusion of motion is created when slightly different images are viewed in
succession. Animation is the process of organizing and filming immobile ob-
jects to produce the images necessary to create such an illusion of movement.
Animation techniques can be categorized into two main groups: traditional
animation and computer animation.

Cartoon movies are the most widespread of traditional animation exam-
ples. They are produced by the method called cel animation. Cel animation is
performed by the animators who draw and paint each frame by hand. Cartoon
films have been an important sector of the entertainment industry since the
1930’s, a consequence of the success of the Walt Disney Studios.

The second animation category is computer animation. Computer anima-
tion can be further subdivided into two groups: computer-assisted animation
and computer-generated animation [33]. Computer-assisted animation is the
computer-aided counterpart of traditional 2D cel animation. Papers, paint,
brushes and various drawing materials are replaced by computers, scanners,
cameras, mice, etc. The computer is mainly used for cell painting and inbe-
tweening. In this way, traditional cartoon animation can be performed more
efficiently and economically. Computer-generated animation is also known as
true computer animation, where images are generated by means of rendering a
3D model. Motion is produced by modifying the model over time. The models
have various parameters such as polygon vertex positions, spline knot posi-
tions, joint angles, muscle contraction values, colors, and camera parameters.
Animation is performed by varying the parameters over time and rendering
the models to generate the frames along the way [34].

Fundamental principles of traditional animation, such as squash and
stretch, timing and motion, anticipation, staging, follow through and over-
lapping action, straight ahead action and pose-to-pose action, slow in and out,
arcs, exaggeration, secondary action, and appeal [35], can be formalized and
used as high level constructs in computer animation systems. In this way, most
of the burden of generating realistic animation is left to the computer since
the elements of an animated character move in harmony according to these

176 U. Güdükbay and F. Durupınar

constructs. The application of these principles ensures that the characters
have a personality appealing to the audience.

6.2.1 Hierarchical Approaches

Hierarchical modeling approaches store a 3D scene in the form of a tree or a
graph structure. A very important property of these hierarchical approaches
is that they unify modeling and animation. These representations store the
primitive objects, including the lights and cameras, that make up the scene
hierarchy (specified in the objects’ local coordinate system) and the trans-
formations to place them in world coordinates, in the nodes of a graph or a
tree. Representative examples of such hierarchical techniques are scene graphs
and scene tree representations. Virtual Reality Modeling Language (VRML),
Java3D, and Open Scene Graph are widely used scene graph Application Pro-
gramming Interfaces [36]. Figure 6.9 illustrates the scene tree representation
for a 3D scene.

Transformation hierarchies is a modeling technique to represent articulated
structures, such as humans and robots. It uses tree structures to represent ar-
ticulated bodies. An intermediate node contains 3D transformation(s) that
apply to all the children of that node. The leaf nodes correspond to primi-
tive objects. Hierarchical modeling is implemented by using a matrix stack
where the transformation matrices in the hierarchy are stored in the matrix
stack. A recursive algorithm traverses the model hierarchy and calculates the
composite transformations that correspond to the intermediate nodes. The
algorithm stores the composite transformation matrices at the intermediate
nodes of the tree structure by pushing them onto the stack so that they can be
popped and re-used for the other branches of the same node. The primitives in
the leaf nodes are drawn by applying the composite transformation sequence
from the root to that node. Transformation hierarchies do not let the anima-
tor control the end-effectors of an articulated structure. They cannot handle

Planet1

Moon

Sun

Planet2

(a)

Translate

Rotate

Rotate

Translate

Rotate

Sun

Separator

Planet2

Translate

Planet1

Moon

(b)

Separator

Fig. 6.9. (a) A 3D scene; (b) corresponding scene tree representation

6 Three-Dimensional Scene Representations 177

closed-kinematics chains, such as keeping the feet on the ground. They cannot
handle general constraints. Although there are more sophisticated techniques
to model articulated structures, such as inverse kinematics, hierarchical mod-
eling is a principal tool for modeling and animation [37].

6.2.2 Keyframing

One of the biggest problems in traditional cel animation is the necessity to
draw and paint each frame by hand, which makes it highly labor-intensive.
Lead animators, who want to work more efficiently, only draw the most impor-
tant frames, which are called the keyframes. Then, low-level animators draw
the remaining frames between the keyframes.

Computer animation, on the other hand, makes use of the computer to
generate both the keyframes and the inbetween frames. The keyframes of a
bouncing ball can be seen in Fig. 6.10, where the ball is depicted on the ground,
at the highest point, and on the ground, respectively. Inbetween frames can
be generated by interpolation techniques. One of these techniques is linear in-
terpolation. If linear interpolation is used to generate inbetweens for a moving
object, the object moves with constant velocity. Discontinuities and sudden
leaps can be observed in the motion. In order to have a smooth motion, curve
interpolation techniques such as Hermite or B-spline curves can be used. The
inbetweens generated with different interpolation techniques can be seen in
Fig. 6.11.

A bouncing ball does not have the same velocity throughout its path; the
closer it is to the ground, the faster it moves. Thus, in order to obtain more
realistic results, it is not sufficient to specify the path alone, but the velocity
changes as well. In addition, various other properties of the object, such as
its shape and color, may change during the motion. Figure 6.12 shows the
motion of a deformable bouncing ball.

6.2.3 Physically-based Modeling and Animation

Methods used for modeling the shape and appearance of objects are not suit-
able for dynamic scenes where the objects are moving. The models do not
interact with each other or with external forces. In real life, the behavior and
form of many objects are determined by their physical properties, such as
mass, damping, and the internal and external forces acting on the object.

Fig. 6.10. The keyframes from the animation of a bouncing ball

178 U. Güdükbay and F. Durupınar

(a)

(b)

Fig. 6.11. The inbetweens from the animation of a deformable bouncing ball gen-
erated with different interpolation techniques: (a) linear interpolation; (b) spline
interpolation

The rigidity (or deformability) of the objects is determined by the elastic and
inelastic properties (such as internal stresses and strains) of the material.

If we want to realistically animate the objects, we must model the phys-
ical properties of the objects so that they follow pre-defined trajectories and
interact with the other objects in the environment, just like real physical ob-
jects. Physically-based techniques achieve this by adding physical properties
to the models, such as forces, torques, velocities, accelerations, mass, damp-
ing, kinetic and potential energies, etc. Physical simulation is then used to
produce animation based on these properties. To this end, the solution of the
equations of motion is required so that the course of a simulation is deter-
mined by the initial positions and velocities of the objects, and by the forces

Fig. 6.12. The motion of a deformable bouncing ball

6 Three-Dimensional Scene Representations 179

and torques applied to the objects as it moves. Today, physical simulations
are widely used in the film industry and in game development and there are
efficient techniques to approximate the physics involved.

When several objects are simultaneously involved in a computer anima-
tion, we encounter the problem of detecting and controlling object interac-
tions. In such an animation, we may have more than one object moving
around, or we may have impenetrable obstacles (such as walls) that do not
move. When no special attention is paid to object interactions, the objects will
sail through each other; this is usually not physically reasonable and produces
a disconcerting visual effect. Whenever two objects attempt to penetrate each
other (i.e., the surface of one object comes into contact with the surface of a
second object), a collision is said to occur [38, 39].

The general requirement that arises then is an ability to detect collisions.
Some animation systems at present do not provide even minimal collision
detection; they require the animator to visually inspect the scene for object
interactions and respond accordingly. This is time consuming and difficult
even for keyframe or parameter systems where the user explicitly defines the
motion; it is even worse for procedural and dynamic animation systems where
the motion is generated by functions and laws defining their behavior. Al-
though automatic collision detection is expensive to code and to run, it is a
considerable convenience for animators, particularly when more automated
methods of motion control, such as dynamics or behavioral control, are used.

The other related issue is the response to a collision once it is detected.
Even keyframe systems could benefit from automatic suggestions about the
motion of objects immediately following a collision; animation systems using
dynamic simulation must respond to collisions automatically and realistically.
Linear and angular momentum must be preserved, and surface friction and
elasticity must be reasonable. An elaborate discussion of collision detection
and response can be found in [40, 41].

6.2.3.1 Constraint-based Methods of Animation

Constraints provide a unified method to build objects and to animate them.
The models assemble themselves as the elements move to satisfy the con-
straints. Constraints provide a way to specify the behavior of physical objects
in advance without specifying their exact positions, velocities, etc. In other
words, constraints are partial descriptions of the objects’ desired behavior.
So, given a constraint, we must determine the forces to meet the constraint
and then find forces to maintain the constraint. A good deal of research has
been done towards the use of constraint-based methods to create realistic an-
imation [42, 43, 44, 45]. Many constraint-based modeling systems have been
developed, including constraint-based models for the human skeleton [46] (in
which the connectivity of segments and limits of angular motion on joints
are specified), the energy constraints [47], and the dynamic constraints [48].
Examples of constraints are point-to-nail constraint, which is used to fix a

180 U. Güdükbay and F. Durupınar

point on a model to a user-specified location in space, point-to-point (attach-
ment) constraint, which is used to attach two points on different bodies to
create complex models from simpler ones, point-to-path constraint, which re-
quires some points on a model to follow an arbitrary user-specified path, and
orientation constraint, which is used to align objects by rotating them [48].
Figure 6.13 shows a cloth patch constrained from two corners waving with
gravity and wind forces.

6.2.3.2 Deformable Models

Modeling the behavior of deformable objects is an important aspect of re-
alistic animation. To simulate the behavior of deformable objects, we must
approximate a continuous model by using discretization techniques, such as
finite difference and finite element methods. For finite difference discretiza-
tion, a deformable object could be approximated by using a grid of control
points where the points are allowed to move in relation to one another. The
manner in which the points are allowed to move determines the properties
of the deformable object. For example, in order to obtain the effect of an
elastic surface, the grid points can be connected by springs. In fact, mass-
spring systems are one of the simplest, yet most effective ways of representing
deformable objects and they are very popular. By changing the spring forces
acting on the particles that comprise an object, different deformable behaviors
can be simulated.

To animate nonrigid objects in a simulated physical environment, the
methods of elasticity and plasticity theory can be employed. However, such
techniques are computationally demanding. Elasticity theory provides meth-
ods to construct the differential equations that model the behavior of nonrigid
objects as a function of time.

Fig. 6.13. A cloth patch constrained from two corners waving with the gravity and
wind forces

6 Three-Dimensional Scene Representations 181

To simulate the dynamics of elastically deformable models, there are two
well-known approaches: the primal formulation [49] and the hybrid formula-
tion [50]. These formulations use concepts from elasticity and plasticity theory
and represent deformations of the objects using quantities from differential
geometry, such as metric and curvature tensors [51]. The primal formulation
works better for highly deformable materials since this formulation can handle
nonlinear deformations; however the hybrid formulation is better for highly
rigid materials since it can only handle small deformations that can be repre-
sented linearly.

To create animation with deformable models, the differential equations
of motion must be discretized and the system of linked ordinary differential
equations obtained from the discretization process must be solved as described
in [50]. The finite difference or finite element methods can be used for the
discretization process.

In addition to the approaches using elasticity theory to model the shapes
and motions of deformable models, there are other approaches to model and
animate deformable models. Witkin et al. formulate a model for nonrigid
dynamics based on global deformations with relatively few degrees of free-
dom [42]. This model is restricted to simple linear deformations that can be
formulated by affine transformations. In [52], Pentland and Williams describe
the use of modal analysis to create simplified dynamic models of nonrigid ob-
jects. This approach breaks nonrigid dynamics down into the sum of indepen-
dent vibration modes. It reduces the dimensionality and stiffness of the models
by discarding high-frequency modes. Another method, based on physics and
optimization theory, uses mathematical constraint methods to create realistic
animation of flexible models [44]. This method uses reaction constraints for
fast computation of collisions of flexible models with polygonal models, and
it uses augmented Lagrangian constraints for creating animation effects, such
as volume preserving squashing, and the molding of taffy-like substances. To
model flexible objects, they use the finite element method. Thingvold and
Cohen [53] define a model of elastic and plastic B-spline surfaces which sup-
ports both animation and design operations. The motion of their models is
controlled by assigning different physical properties and kinematic constraints
to various portions of the surface. Metaxas and Terzopoulos [54] propose an
approach for creating dynamic solid models capable of realistic physical behav-
iors starting from common solid primitives such as spheres, cylinders, cones,
and superquadrics [9]. Such primitives can deform kinematically in simple
ways. To gain additional modeling power they allow the primitives to un-
dergo parameterized global deformations (bends, tapers, twists, shears, etc.).
Even though their models’ kinematic behavior is stylized by the particular
solid primitives used, the models behave in a physically correct way with
prescribed mass distributions and elasticities. Metaxas and Terzopoulos also
propose efficient constraint methods for connecting the dynamic primitives to
make articulated models.

182 U. Güdükbay and F. Durupınar

6.3 Rendering

Rendering techniques in computer graphics try to model the interaction of
light with the environment to generate pictures of scenes [55]. This varies
from implementation of the Phong illumination model, which is a first or-
der approximation of the rendering equation [56], to very sophisticated global
illumination techniques. More realistic renderings of the scenes can be ob-
tained by using complex methods such as ray tracing [57, 58], or radios-
ity [59], and photon mapping [60], which calculate object-to-object inter-
reflections, transmission, etc. Rendering techniques to be used in a 3DTV
framework must generate realistic pictures and must be amenable to real-
time implementations. A detailed discussion of real-time rendering can be
found in [61].

6.3.1 Reflection and Illumination Models

Reflection models define the interaction of light with a surface. They take into
account the material properties of the surface and the nature of the incident
light, such as wavelength, the angle of incidence, etc. The reflective properties
of materials are fully described by the Bidirectional Reflectivity Distribution
Function (BRDF) [62]. BRDF is the ratio of the reflected radiance in a partic-
ular direction from a surface to the irradiance incoming from another direction
to the surface. Each of the incoming and outgoing directions is represented
with two angles (bidirectional). The BRDF is composed of specular, uniform
diffuse, and directional diffuse components.

Illumination models define the nature of the light reflected from or re-
fracted through a surface. Local illumination models only calculate the di-
rect illumination from light sources on object surfaces. They do not consider
object-to-object light interactions (reflections, transmissions, etc.). Light in-
cident at a surface is composed of the reflected, scattered, absorbed and
transmitted light. One of the most popular local illumination models used
in computer graphics is the Phong illumination model. This model has three
components:

• Ambient light : the amount of illumination in a scene which is assumed
to come from any direction and is thus independent of the presence of
objects, the viewer position, or actual light sources in the scene.

• Diffuse reflection: the light reflected in all directions from a point on the
surface of an object. It does not depend on the viewer’s position.

• Specular reflection: the component of illumination seen at a surface point
of an object that is produced by reflection about the surface normal. It
depends on the viewer’s position and appears as a highlight.

When there is a single light source in the environment, the Phong illumi-
nation model is composed of these three components as (see Fig. 6.14):

6 Three-Dimensional Scene Representations 183

L

N R

V

Fig. 6.14. Vectors used in the Phong illumination model

I = kaia + [kd(L · N)id + ks(R · V)ns is], (6.10)

where

• ia is the ambient intensity,
• id is the diffuse intensity of the light source,
• is is the specular intensity of the light source,
• ka is the ambient reflection coefficient,
• kd is the diffuse reflection coefficient,
• ks is the specular reflection coefficient,
• N is the unit normal vector,
• L is the unit direction vector to the light,
• R is the unit reflection vector,
• V is the unit direction vector to the viewer,
• ns is a shininess constant that decides how the light is reflected from a

shiny point; it is very high for highly specular objects, such as mirror,
which causes very shiny but small highlights.

The vectors used in the model are illustrated in Fig. 6.14. When there are
multiple light sources in a scene, the contributions from the individual sources
are summed as:

I = kaia +
n∑

l=1

[kd(N · Ll)ild + ks(Rl ·V)ns ils] (6.11)

6.3.2 Rendering Techniques

Rendering techniques are classified into object-space and image-space tech-
niques. Object-space techniques calculate the intensity of light for each point
on an object surface (usually represented using polygonal approximations)
and then use interpolation techniques to interpolate the intensity inside each
polygon. Flat shading, Gouraud shading [63], and Phong shading are in this
category. They use local illumination models, e.g., the Phong illumination
model [64], to calculate the intensities of points and a scan-line approach to

184 U. Güdükbay and F. Durupınar

render the polygons. Radiosity is also an object-space technique; however, it
is a global illumination algorithm that solves the rendering equation only for
diffuse reflections. In contrast to object-space techniques, image-space tech-
niques calculate intensities for each pixel on the image. Ray tracing is an
image-space rendering algorithm. It sends rays to the scene from the camera
through each pixel and recursively calculates the intersections of these rays
with the scene objects.

To render a 3D scene, the visible parts of it for different views must be
calculated. This requires the implementation of hidden surface algorithms to-
gether with rendering methods. Some rendering algorithms, such as ray trac-
ing and radiosity, handle the visible surface problem implicitly while in others,
such as Gouraud and Phong shading, that use local illumination models, it
must be handled explicitly.

Images containing uniformly shaded objects are not very realistic since real
objects have textures, bumps, scratches, and dirt on them. There are several
rendering techniques that add realism to the rendering of uniformly shaded
3D scenes. Texture mapping [65, 66], environment mapping [67], and bump
mapping [68] are representative examples of such methods.

Since scan-line renderers, such as Gouraud shading, are amenable to hard-
ware implementations, they are more appropriate for the real-time display
capabilities required for 3DTV than sophisticated rendering techniques, such
as raytracing and radiosity. Image-based rendering is a recent and promising
approach to the rendering of 3D scenes. Such techniques directly render new
views of a scene from the acquired images, thus eliminating the need for an
explicit scene representation phase.

6.3.2.1 Scan-line Renderers

Scan-line rendering is one of the most popular methods due to its low compu-
tational cost. Hardware implementation enables the rendering of very complex
models in real-time, but even without hardware support, scan-line algorithms
offer very good performance.

Scan-line algorithms work in object-space by iterating over the polygons
(mostly triangles) of scene objects. First, the frame buffer, which holds the
pixel intensity values, and the z-buffer, which manages pixel depth values
relative to the camera, are initialized. Next, the polygons are painted by pro-
jecting them onto the screen and filling them by scan-converting into a series
of horizontal spans. While iterating over the scan lines to paint a polygon, the
intersection points of the scan line with the polygon edges are computed and
the horizontal spans inside the polygons are painted pixel by pixel. For each
pixel inside a polygon, intensity and depth values are calculated in order to
paint each pixel correctly. Depending on the z-buffer depth value of a pixel, it
can be colored or just skipped. If the depth of a polygon pixel is less than the
value for the respective screen pixel in the z-buffer, the z-buffer is updated and

6 Three-Dimensional Scene Representations 185

the pixel is colored by the corresponding value in the frame buffer, otherwise,
it is ignored.

Flat shading: By using a local illumination model, e.g., the Phong illumi-
nation model, we can calculate an intensity value for the RGB color compo-
nents at a single position for each polygon. We can then fill every projected
polygon approximating an object with the intensity value calculated for this
polygon. This method quickly generates a curved-surface appearance for an
object approximated with polygons.

Gouraud shading: Flat shading generates intensity discontinuities along
polygon edges. Although increasing the number of the polygons that com-
pose an object gives a smoother appearance when flat shading is used, it
requires more computational power. Gouraud shading was developed to gen-
erate a smooth appearance for objects using only a small number of polygons.
Gouraud shading linearly interpolates the intensity values across the surface
of a polygon. The basic steps of Gouraud shading are as follows:

• The vertex normal vectors are calculated by averaging the face normals
surrounding the vertex as (see Fig. 6.15 (a)):

NV =
∑n

i=1Ni

|∑n
i=1Ni| (6.12)

• An illumination model is applied to each vertex to calculate the vertex
intensity. The brightness at each vertex is calculated.

• Each projected polygon is shaded by using a modified scan-line polygon
filling algorithm. Moving from scan line to scan line, the intensity values
of the pixels are linearly interpolated for each projected polygon. Any
number of quantities can be interpolated at this step. For instance, colored
surfaces are rendered by interpolating the color component R, G and B
values. Figure 6.15 (b) illustrates how the intensity values are interpolated
along the edges of the polygon and the pixels inside the polygon.

N4 NV

N3

N2

N1 V

(a)

A

CB

D E

D=lerp(A, B)

P
P=lerp(D, E)

E=lerp(A, C)

(b)

Fig. 6.15. Gouraud shading: (a) calculating vertex normals from face normals;
(b) linear interpolation (lerp) of the intensities along the polygon edges and interiors

186 U. Güdükbay and F. Durupınar

Gouraud shading is a simple and fast technique, which is supported by
most of the graphics accelerators today. It does have some deficiencies as a
result of the linear interpolation scheme; for instance, discontinuities appear
as odd looking bright or dark bands, called Mach Bands, on the surface of the
object. It also fails to give good results when the color changes quickly, e.g.,
specular highlights.

Phong shading: The disadvantages of Gouraud shading have been over-
come by Phong shading. The basic steps of the Phong shading algorithm are
as follows:

• The vertex normal vectors are calculated by averaging the surface normals
surrounding the vertex. This step is the same as the first step in Gouraud
shading.

• The vertex normals are linearly interpolated over the polygon surface.
• A modified version of scan-line polygon filling algorithm is applied to ren-

der projected polygons. An illumination model is used to calculate pixel
intensities using the interpolated normal vectors.

Phong shading gives more accurate results than Gouraud shading; how-
ever, since the intensities are calculated explicity for each pixel, this method
requires more computations. Object rendering techniques using local illumi-
nation models are illustrated in Fig. 6.16.

6.3.2.2 Ray Tracing

Ray tracing tries to imitate the light-object interactions in nature by modeling
the behavior of photons emitted from light sources. When photons hit the ob-
jects, they bounce losing some of their energy. When the photons lose most of
their energy, they are absorbed. If the objects are transparent or translucent,
some of the light energy is transmitted. To imitate the behavior of photons
for photorealistic image synthesis, we must take into account the effect of
the photons that hit the image plane and come to our eyes. These photons
emanate from the light sources and come to the image plane after successive
bounces from the objects in the scene, thus contributing to the intensity and
color of the pixels in the image. Photons that do not reach the image plane
make no contribution to the image.

The trajectories that photons follow can be modeled with rays. Backward
ray tracing starts from the eye and sends rays to the pixels in the image plane,
instead of following the rays emitted from light sources, to avoid tracing the
rays that do not contribute to the image. The light intensity of the image pixels
are determined by the rate at which the photons hit and by their energies.
The color of pixels are determined by the distribution of the wavelengths of
incoming photons. The rays sent from the viewer (camera) to the image pixels
are called eye (pixel) rays. If they hit a light source in the scene, we use the
intensity of the light source to determine the intensity of the pixel. If the

6 Three-Dimensional Scene Representations 187

(a) (b)

(c) (d)

Fig. 6.16. Object rendering using local illumination models. (a) wireframe; (b) flat
shading; (c) Gouraud shading; (d) Phong shading

ray does not hit anything in the scene, we set the intensity of the pixel to
zero. If we hit a surface point, we recursively follow more rays to determine
where the light striking that surface point came from. This is done by sending
a reflection ray in the specular reflection direction at that point (which is
calculated according to the incoming ray direction and the surface normal)
and a transmission ray according to the theory of refraction (Snell’s Law is
used to calculate the transmission ray direction). We also send illumination
(shadow) rays to the light sources to understand whether the surface point
sees a light source or not. We add the contributions coming from reflection
and transmission directions and the contribution of the light sources that see
the point to find the intensity and color. The reflection and transmission rays
are recursive rays, just like eye rays, in the sense that when they hit a surface
point new reflection and transmission rays are fired. Illumination rays are
not recursive. Figure 6.17 illustrates how backward ray tracing works [58].
Figure 6.18 depicts a raytraced scene.

In ray tracing, most of the time is spent for intersection calculations. Dif-
ferent objects need different ways to find the intersections. Ray/surface in-
tersections can be easily found for the objects whose implicit functions are

188 U. Güdükbay and F. Durupınar

L1

S5

E

R1

T1

R2

L2

R3

T2
2Object

1Object

3Object

S6

S

S3

S 1

S2

4

(a)

Object1

Object3Object2

R1 T1

S1

S2

T2 R3
R2

4

S

S

3

S6

S5

E

(b)

Fig. 6.17. Backward ray tracing. (a) An eye ray E sent from the eye to a pixel is
traced through successive bounces in the scene. Reflection rays are labeled with R,
transmission rays are labeled with T, and shadow rays are labeled with S. (b) Cor-
responding ray tree. Reprinted from [58] with permission. c©1988 Elsevier

known. Techniques proposed to accelerate ray tracing generally try to make
intersection tests faster by using bounding boxes or reducing the number of
intersection tests by utilizing bounding volume hierarchies and spatial coher-
ence schemes. To make ray-object intersection tests faster, simple bounding
volumes enclosing the objects are first tested with the rays. If the rays in-
tersect with the bounding volumes, then real ray-object intersection tests are
performed. Spatial coherence schemes first preprocess the scene to construct a
spatial subdivision structure, such as a regular 3D grid (Spatially Enumerated
Auxiliary Data Structure-SEADS) [69], uniform or adaptive octrees [70], or
Binary Space Partition (BSP) trees [58]; the objects in the scene are stored in
the nodes of the spatial subdivision structure. The ray tracing algorithm only

Fig. 6.18. An image generated with ray tracing. Courtesy of Okan Arıkan

6 Three-Dimensional Scene Representations 189

makes intersection tests for the objects in the nodes of the spatial subdivision
structure that the ray passes through.

Two other important acceleration techniques for ray tracing are adaptive
depth control [71] and first-hit speed-up [72]. Ray tracing produces a ray tree
for each eye ray, the depth of which increases with each reflection and trans-
mission that does not leave the scene. Since rays at low levels contribute little
to the image, adaptive depth control stops firing reflection and transmission
rays when the computed intensity for a point becomes less than a certain
threshold. This is checked for an intersection point by multiplying the spec-
ular reflection and transmission coefficients for the intersections up to that
point and comparing it with a pre-defined threshold.

Even for highly reflective scenes, the average ray tree depth does not exceed
two if we use adaptive depth control. Since most of the intersection calcula-
tions are done in the step, Weghorst proposed to use a z-buffer algorithm as a
pre-processing step to determine the first hit. Then the ray tracing algorithm
is executed by using the intersection points for the objects that are stored in
the z-buffer.

Ray tracing can only handle specular reflections where the light sources
are point light sources (although there are some variations of ray tracing, like
distributed ray tracing, that increase the realism of the rendering by adding
spatial aliasing, soft shadows, and depth-of-field effects, by firing more rays
and distributing the ray origins and directions statistically based on proba-
bility distribution functions) [73].

6.3.2.3 Radiosity

The main motivation for radiosity is to accurately model the diffuse object-
to-object reflections since most real environments consist mainly of objects
that reflect light diffusely. A very large proportion of the light energy comes
from direct illumination from light sources and diffuse reflections. For pho-
torealistic image synthesis, the physical behavior of light must be modeled.
Since the intensity and distribution of light is governed by energy transfer
and conservation principles, these must be taken into account to accurately
simulate the physical behavior of light transport between light sources and
materials in a scene [59].

Radiosity is a method to determine the intensity of light diffusely reflected
within an environment. It is an object-space algorithm that solves for the
intensity at discrete points or surface patches within an environment. The so-
lution is thus independent of the viewer position. The radiosity solution (which
are intensities of patches in the environment) is then input to a rendering al-
gorithm (such as Gouraud shading) to compute the image for a particular
view position. This final phase does not require much computation and differ-
ent views are easily obtained from the view-independent solution. This makes
radiosity very attractive for dynamic scenes, e.g., architectural walkthroughs,
where the geometry is fixed but the viewer position is dynamic [74, 75].

190 U. Güdükbay and F. Durupınar

The main assumption of the method is that all the surfaces in the scene
are perfect diffuse (Lambertian) reflectors. Unlike ray tracing, radiosity also
assumes that the surfaces in the scene are decomposed into polygonal patches.
Light sources and other objects are treated uniformly; the patches may be
emitters (area light sources) or other objects that do not emit light.

Radiosity, B, is defined as the energy leaving a surface patch per unit area
per unit time and is the sum of emitted and the reflected energy. The radiosity
Bi of a patch i is given by

BidAi = EidAi +Ri

∫

j

BjFdAjdAidAj , (6.13)

The form factor, FdAjdAi , determines the fraction of energy leaving dAj that
arrives on dAi. The integral is over all patches j in the environment. Ri is the
fraction of the incident light that is reflected from the patch i in all directions,
called the reflectivity of the patch i. We can discretize an environment into n
patches and assume the radiosity and emittance over a patch is constant. If
we replace FAjAi by Fji to simplify the notation, the radiosity of a discrete
patch is given by

BiAi = EiAi +Ri

n∑

j=1

BjFjiAj (6.14)

The reciprocity relationship between two patches is given by

FijAi = FjiAj and Fij = Fji
Aj

Ai
(6.15)

Then, the radiosity equation becomes

Bi = Ei +Ri

n∑

j=1

BjFij (6.16)

For an environment containing n patches, we have a linear system of
equations for the radiosities of the patches

⎡

⎢⎢⎢⎣

1 −R1F11 −R1F12 · · · −R1F1n

−R2F21 1 −R2F22 · · · −R2F2n

...
...

. . .
...

−RnFn1 −RnFn2 · · · 1 −RnFnn

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

B1

B2

...
Bn

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

E1

E2

...
En

⎤

⎥⎥⎥⎦ (6.17)

The emittance values (Ei) are non-zero for only light sources and the
reflectivities (Ri) are known. The form factors Fij are calculated based on
the geometry of the patches. The form factors for a patch can be calculated
analytically by placing a hemisphere around the patch and using the rela-
tive orientation and distance from this patch to the other patches. However,

6 Three-Dimensional Scene Representations 191

this is only possible for very simple geometries. In most cases, approxima-
tion methods, such as the hemi-cube approach [76], are used to calculate the
form factors. Note that the form factors Fii are zero for planar or convex
patches. Since the form factors from a patch to all other patches add up to 1
(
∑n

j=1 Fij = 1) and Ri is always less than 1, the matrix in the linear system
of (6.17) is diagonally dominant and guaranteed to converge [75].

The classical radiosity algorithm calculates the radiosity of the patches one
at a time by gathering the radiosities from all other patches. In this approach,
it is not possible to obtain an intermediate solution for the patches during
the solution of the radiosity algorithm. Another variant of the radiosity algo-
rithm, called progressive refinement radiosity [77], updates the radiosity of all
patches in a scene by shooting the radiosity of a patch to all other patches. In
this way, the radiosity of all the patches are updated simultaneously and it is
possible to obtain intermediate solutions during the solution of the algorithm.
If these partial solutions are rendered, the scene is lit progressively. This idea
can be further elaborated by sorting the patches with respect to their emit-
tance values. If the patches with higher emittance values (light sources) are
processed first by shooting their radiosities to the other patches, it is possible
to obtain very good approximations of the final images in the earlier steps.

Hierarchical radiosity is another improvement to reduce the computational
complexity of the classical radiosity algorithm [78]. The dominant term in the
computational complexity of the algorithm comes from form factor calcula-
tions, which are (O(n2)) for a scene containing n patches since we have to
compute the form factors from each patch to all other patches. During the
solution, hierarchical radiosity computes the light interactions between sepa-
rated groups of patches (clusters) as a single interaction. Thus, it starts with a
set of coarse initial patches and forms a quadtree with respect to the form fac-
tor estimations. Some of the patches are then subdivided on-the-fly according
to the form factor estimations and brightness values, and the radiosity solution
is refined. Figure 6.19 shows two scenes rendered using hierarchical radiosity.

There are attempts to combine ray tracing and radiosity. Wallace et al.
describe a multi-pass method where an extended radiosity solution is ap-
plied in the first pass and a ray tracing solution is applied in the second
pass. The method successfully calculates the effects of different light trans-
port mechanisms: diffuse-to-diffuse, diffuse-to-specular, specular-to-specular,
and specular-to-diffuse, to some extent. It makes certain assumptions about
the rendered scenes, e.g., that the number of specular surfaces is limited and
that they cannot see each other, in order to prevent infinite reflections [79].

6.3.2.4 Photon Mapping

Photon mapping is a new approach to the global illumination of the scenes,
which makes realistic rendering more affordable. Photon mapping uses forward
ray tracing (i.e., sending rays from light sources) to calculate reflecting and re-
fracting light for the photons. It is a two-step process (distributing the photons

192 U. Güdükbay and F. Durupınar

Fig. 6.19. Images of the University of California, Berkeley Soda Hall (Rooms 380
and 420) generated with hierarchical radiosity. Courtesy of Ali Kemal Sinop

and rendering the scene) that works for arbitrary geometric representations,
including parametric and implicit surfaces; it calculates the ray-surface in-
tersections on demand. Figure 6.20 shows an image generated with photon
mapping.

6.3.2.5 Image-based Rendering

Unlike the approaches described above that render a 3D scene composed of
objects modeled with different geometric modeling techniques, there is another
rendering approach, called image-based rendering (IBR), that directly renders
a scene from the pre-acquired photographs. High-quality visualization results

Fig. 6.20. An image of the Cornell Box generated with photon mapping. Courtesy
of Atılım Çetin

6 Three-Dimensional Scene Representations 193

can be obtained depending on both the quality and quantity of the reference
images. The main motivation for IBR is to reduce the modeling bottleneck,
since the creation of an object or scene model is a highly demanding task and
it is expensive to represent all the surface details with geometric primitives.

The roots of IBR date back to texture and environment mapping tech-
niques. In addition to their original functions of approximating reflections of
the environment on a surface, environment maps are also used to display an
outward-looking view of the environment from a fixed location with vary-
ing orientation [80]. Chen [81] uses such a technique by employing 360-degree
cylindrical panoramic images to construct a virtual environment. Camera pan-
ning and zooming are simulated by digitally warping the virtual environment.

Unfortunately, interpolation between two images by warping fails in cases
where previously occluded areas become visible. Another interpolation ap-
proach is to use corresponding feature points between two images and thus
to compute the depth of each pixel by using the information of the camera
positions. Chen and Williams [82] describe the view interpolation technique
that performs morphing on adjacent images to create an image of a new in-
between viewpoint. The method uses the camera’s position and orientation
and the range data of the images to determine a pixel-by-pixel correspondence
between the images. The correspondence maps between two successive images
are computed and they are stored as a pair of morph maps. The precompu-
tation of the morphing provides efficiency. Another method, Layered Depth
Images, solves the occlusion problem by associating more than one depth value
to a pixel. These values correspond to the depth of each surface layer that a
ray through the pixel intersects [83].

A 5D function that describes the intensity of light observed from every
position and direction in 3D space is called the “plenoptic function” [84]. The
plenoptic function is defined as:

p = P (θ, φ, Vx, Vy , Vz)

where (Vx, Vy , Vz) represent a point in space, θ represents the azimuth angle
and φ represents the elevation angle. It is also possible to include the time pa-
rameter to the plenoptic function in a dynamic scene. IBR aims to reconstruct
the plenoptic function from a set of images. In fact, the plenoptic function de-
scribes the set of all possible environment maps for a given scene in computer
graphics terminology [85]. Once this function is obtained, the reconstruction
of the scene becomes straightforward.

Levoy and Hanrahan propose a technique called “Light Field Rendering”
that is based on the idea of interpreting the input images as 2D slices of the
light field, which is a 4D function based on the plenoptic function [80]. The
light field characterizes the radiance as a function of position and direction in
unobstructed space. Generating new views corresponds to extracting and re-
sampling a slice. Lumigraph is a similar method that also uses a 4D function,

194 U. Güdükbay and F. Durupınar

which is a subset of the plenoptic function [86]. Lumigraph enables the gen-
eration of new images of an object independent of the geometric complexity
or illumination conditions of the scene or object. McMillan and Bishop [85]
also present an IBR system that is based on the sampling, reconstruction and
resampling of the plenoptic function.

IBR only requires the acquisition of photographs; thus scene and object
representation is comparably easy [87]. Standard geometric and lighting tech-
niques sometimes lack the proper models to simulate some real-world shading
and appearance effects. Since IBR methods do not require explicit geometric
models to render real-world scenes, they can reproduce real-world shading
and appearance effects faithfully without having to explicitly model them.
Although IBR methods have significant memory requirements (e.g., light
fields) and their computational complexity is very high, the computational
cost of interactively viewing the scene is independent of the complexity of the
scene. Moreover, IBR techniques can also combine real-world photographs
with computer-generated images to be used as pre-acquired images. Thus,
with all its advantages, IBR is a promising approach to be used in a 3DTV
framework. However, there are many challenges, such as feature correspon-
dence, camera calibration, and the construction of plenoptic functions, that
need to be addressed for IBR to be applicable as a general rendering technique
for complex dynamic scenes [88].

6.3.2.6 Volume Rendering

Volumetric data contains scalar values for 3D locations in space. The 3D lo-
cations for which the volume data are defined determines the type of the
volumetric data. If the scalar values are defined for a regular 3D array of
locations, the data can be represented in the form of structured grids where
the connnectivity between the vertices is defined implicitly. If the distribu-
tion of data points do not follow a regular pattern, the connectivity of the
vertices should be defined explicitly. These unstructured grids are generally
represented by using tetrahedral cells.

Volume rendering techniques are classified as direct and indirect. Indirect
volume rendering methods, such as Marching Cubes [89], extract an interme-
diate geometric representation of the surfaces from volume data and render
them using surface rendering methods. Indirect methods are faster and more
suitable for applications where the visualization of the surfaces of the volume
data is important. Visual hull techniques can also be regarded as an indi-
rect volume rendering approach since they extract and render the surface of
the scene geometry. Direct volume rendering techniques render the volume
data without generating an intermediate representation; thus facilitating the
visualization of the inside of a material, such as partially transparent body
fluids. Structured volume data can be directly visualized in real-time using
special-purpose hardware [90].

6 Three-Dimensional Scene Representations 195

Direct volume rendering algorithms for unstructured grids are classified
as image-space, object-space and hybrid. Image-space methods traverse the
image-space by casting a ray for each pixel. The ray is followed inside the
volume to sample and compose the volume data along the ray. In object-space
methods, the volume is traversed in object-space and the cells are depth-sorted
with respect to the current viewpoint. Then, the cells are projected onto the
image-plane in sorted order and their contributions are composited. In hybrid
methods, the volume is traversed in object order and the contributions of the
cells to the final image are accumulated in image order [91].

Volumetric datasets can also be rendered by using advanced per-pixel op-
erations available in the rasterization stage and in the graphics hardware [92].
Although this approach works for both structured and unstructured grids, it
is much more successful for structured grids since it can use 3D textures. In
both cases, it avoids any polygonal representation using per-pixel operations.

Currently, volume visualization techniques are most commonly used in
medical imaging and scientific simulations, such as Computational Fluid Dy-
namics or geophysical simulations. The improvement of 3D scene capture tech-
nologies and high-performance computers provide easy acquisition of volume
data so that volume visualization techniques can be used in other applications,
such as 3DTV. However, this requires real-time implementation of these tech-
niques and although there are specialized hardware for direct volume rendering
of structured data, direct volume rendering of unstructured data, namely the
tetrahedral mesh representations, is still far from being real time.

6.4 Conclusions

3D shape modeling is an indispensable component of scene representation for
3DTV. Dynamic mesh representations provide a suitable way of represent-
ing 3D shapes. Polygonal meshes are amenable to hardware implementations;
thus, they are suitable for a 3DTV framework where real-time performance
is required. Volumetric representations provide a good alternative for 3DTV
because images acquired from multiple calibrated cameras provide the neces-
sary information for volumetric models. Point-based representations are also
promising for 3DTV because the results of 3D data acquisition methods such
as laser scans already represent the scene in a point-based manner.

Since the scenes mostly contain dynamic objects, modeling the motion
becomes important. Animation techniques that have potential for real-time
implementations are promising approaches to be used in a 3DTV framework.
Today, physically-based modeling and animation techniques are widely used in
the film industry and in game development and there are efficient techniques
to approximate the physics involved; thus these techniques have potential for
use in 3DTV.

Since scan-line renderers are amenable to hardware implementations, they
are more appropriate for the real-time display capabilities required for 3DTV

196 U. Güdükbay and F. Durupınar

than sophisticated rendering techniques. Point-based software renderers can
realistically render models containing millions of points in a second. Image-
based rendering is a very successful and promising rendering scheme for 3DTV
as it directly makes use of the captured images. However, there are many
challenges to be addressed for IBR to be applicable as a general rendering
technique for complex dynamic scenes.

Acknowledgment

This work is supported by the EC within FP6 under Grant 511568 with the
acronym 3DTV.

References

1. A. H. Barr, “Global and local deformations of solid primitives,” ACM Computer
Graphics (Proc. SIGGRAPH’84), Vol. 18, No. 3, pp. 21–30, Jul. 1984.

2. T. W. Sederberg and S. R. Parry, “Free-form deformation of solid geomet-
ric models,” ACM Computer Graphics (Proc. SIGGRAPH’86), Vol. 20, No. 4,
pp. 151–160, Aug. 1986.

3. D. Hearn and P. Baker, Computer Graphics with OpenGL, 3rd Edition. Engle-
wood Cliffs, NJ: Prentice Hall, 2003.

4. B. Mandelbrot, Fractals: Geometry of Nature. New York: Freeman Press, 1982.
5. P. Prusinkiewicz and A. Lindenmayer, The Algorithmic Beauty of Plants (The

Virtual Laboratory). Springer, 1996.
6. H. Hoppe, “Progressive meshes,” ACM Computer Graphics (Proc. SIG-

GRAPH’96), pp. 99–108, Jul. 1996.
7. ——, “View-dependent refinement of progressive meshes,” ACM Computer

Graphics (Proc. SIGGRAPH’97), pp. 189–198, Jul. 1997.
8. D. Luebke and C. Erikson, “View-dependent simplification of arbitrary

polygonal environments,” ACM Computer Graphics (Proc. SIGGRAPH’97),
pp. 199–208, Jul. 1997.

9. A. H. Barr, “Superquadrics and angle-preserving transformations,” IEEE Com-
puter Graphics and Applications, Vol. 1, No. 1, pp. 11–23, Jan. 1981.

10. R. Bartels, J. Beatty, and B. Barsky, An Introduction to Splines for Use in Com-
puter Graphics and Geometric Modeling. Los Alamos, CA: Morgan Kaufmann,
1987.

11. P. Bézier, Numerical Control — Mathematics and Applications. London: John
Wiley & Sons, 1972.

12. E. Catmull and J. Clark, “Recursively generated b-spline surfaces on arbitrary
topological meshes,” Computer-Aided Design, Vol. 10, No. 6, pp. 350–355, 1978.

13. D. Doo and M. Sabin, “Behaviour of recursive subdivision surfaces near extraor-
dinary point,” Computer-Aided Design, Vol. 10, No. 6, pp. 356–360, 1978.

14. C. Loop, “Smooth subdivision surfaces based on triangles,” Master’s thesis,
Department of Mathematics, University of Utah, 1987.

6 Three-Dimensional Scene Representations 197

15. N. Dyn, D. Levin, and J. A. Gregory, “A butterfly subdivision scheme for surface
interpolation with tension control,” ACM Trans. on Graphics, Vol. 9, No. 2,
pp. 160–169, 1990.

16. L. Kobbelt, “
√

3-Subdivision,” ACM Computer Graphics (Proc. of SIG-
GRAPH’00), pp. 103–112, 2000.

17. D. Zorin and P. Schroder, “Subdivision for modeling and animation,” ACM
SIGGRAPH Course Notes, 2000.

18. A. Lee, H. Moreton, and H. Hoppe, “Displaced subdivision surfaces,” ACM
Computer Graphics (Proc. SIGGRAPH’00), pp. 85–94, Jul. 2000.

19. M. Levoy and T. Whitted, “The use of points as display primitive,” University
of North Carolina at Chapel Hill, Tech. Rep. TR-85-022, 1985.

20. H. Pfister, M. Zwicker, J. Van Baar, and M. Gross, “Surfels: Surface elements
as rendering primitives,” ACM Computer Graphics (Proc. of SIGGRAPH’00),
pp. 335–342, 2000.

21. S. Fleishman, D. Cohen-Or, M. Alexa, and C. Silva, “Progressive point set
surfaces,” ACM Trans. on Graphics, Vol. 22, No. 4, pp. 997–1011, 2003.

22. J. Grossman and W. Dally, “Point sample rendering,” in Proceedings of Euro-
graphics Rendering Workshop, pp. 181–192, 1998.

23. M. Pauly, L. Kobbelt, and M. Gross, “Point-based multiscale surface represen-
tation,” ACM Trans. on Graphics, Vol. 25, No. 2, pp. 177–193, 2006.

24. M. Botsch, A. Hornung, M. Zwicker, and L. Kobbelt, “High-quality surface
splatting on today’s GPUs,” in Proceedings of Eurographics Symposium on
Point-Based Graphics, pp. 17–24, 2005.

25. M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. Silva, “Point
set surfaces,” in Proceedings of IEEE Visualization’01, pp. 21–28, 2001.

26. A. Adamson and M. Alexa, “Anisotropic point set surfaces,” in Proceedings of
AFRIGRAPH’06, 2006.

27. M. Zwicker, H. Pfister, J. Van Baar, and M. Gross, “Surface splatting,” ACM
Computer Graphics (Proc. of SIGGRAPH’01), pp. 371–378, 2001.

28. S. Rusinkiewicz and L. Levoy, “QSplat: A multiresolution point rendering sys-
tem for large meshes,” in ACM Computer Graphics (Proc. of SIGGRAPH’00),
pp. 343–352, 2000.

29. H. Samet, “The quadtree and related hierarchical data structures,” ACM Com-
puting Surveys, Vol. 16, No. 2, pp. 187–260, 1984.

30. A. Laurentini, “The visual hull concept for silhouette based image understand-
ing,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 16, No. 2,
pp. 150–162, 1994.

31. J.-M. Hasenfratz, M. Lapierre, J.-D. Gascuel, and E. Boyer, “Real-time capture,
reconstruction and insertion into virtual world of human actors,” in Proceedings
of Eurographics Vision, Video and Graphics Conference, pp. 49–56, 2003.

32. G. Slabaugh, W. Culbertson, T. Malzbender, M. Stevens, and R. Schafer,
“Methods for volumetric reconstruction of visual scenes,” International Journal
of Computer Vision, Vol. 57, No. 3, pp. 179–199, 2004.

33. R. Parent, Computer Animation: Algorithms and Techniques. Los Altos, CA:
Morgan-Kaufmann, 2001.

34. A. Witkin, “Animation,” in Computer Graphics I Course Notes, School of Com-
puter Science, Carnegie-Mellon University, 1995.

35. J. Lasseter, “Principles of traditional animation applied to 3D computer an-
imation,” ACM Computer Graphics (Proc. SIGGRAPH’87), Vol. 21, No. 4,
pp. 35–44, Jul. 1987.

198 U. Güdükbay and F. Durupınar

36. E. Angel, Interactive Computer Graphics: A Top-Down Approach Using
OpenGL. Addison-Wesley, 2006.

37. A. Witkin, “Hierarchical modeling,” in Computer Graphics I Course Notes,
School of Computer Science, Carnegie-Mellon University, 1995.

38. D. Baraff, “Analytical methods for dynamic simulation of non-penetrating rigid
bodies,” ACM Computer Graphics (Proc. SIGGRAPH’89), Vol. 23, No. 3,
pp. 223–232, Jul. 1989.

39. M. Moore and J. Wilhems, “Collision detection and response for computer an-
imation,” ACM Computer Graphics (Proc. SIGGRAPH’88), Vol. 22, No. 4,
pp. 289–298, Aug. 1988.

40. P. Jiménez, F. Thomas, and C. Torras, “3D collision detection: A survey,” Com-
puters & Graphics, Vol. 25, No. 2, pp. 269–285, 2001.

41. M. C. Lin and S. Gottschalk, “Collision detection between geometric mod-
els: A survey,” in Proceedings of IMA Conference on Mathematics of Surfaces,
pp. 37–56, 1998.

42. A. Witkin, M. Gleischer, and W. Welch, “Interactive dynamics,” ACM Com-
puter Graphics (Proc. SIGGRAPH’90), Vol. 24, No. 4, pp. 11–22, Aug. 1990.

43. A. Witkin and W. Welch, “Fast animation and control of nonrigid structures,”
ACM Computer Graphics (Proc. SIGGRAPH’90), Vol. 24, No. 4, pp. 243–252,
Aug. 1990.

44. J. Platt and A. H. Barr, “Constraint methods for flexible models,” ACM Com-
puter Graphics (Proc. SIGGRAPH’88), Vol. 22, No. 4, pp. 279–288, Aug. 1988.

45. A. Witkin and M. Kass, “Spacetime constraints,” ACM Computer Graphics
(Proc. SIGGRAPH’88), Vol. 22, No. 4, pp. 159–168, Aug. 1988.

46. N. I. Badler, K. H. Manoochehri, and G. Walters, “Articulated figure positioning
by multiple constraints,” IEEE Computer Graphics and Applications, Vol. 7,
No. 6, pp. 39–51, Nov. 1987.

47. A. Witkin, K. Fleischer, and A. H. Barr, “Energy constraints on parameter-
ized models,” ACM Computer Graphics (Proc. SIGGRAPH’87), Vol. 21, No. 4,
pp. 225–232, Jul. 1987.

48. R. Barzel and A. H. Barr, “A modeling system based on dynamic constraints,”
ACM Computer Graphics (Proc. SIGGRAPH’88), Vol. 22, No. 4, pp. 179–188,
Aug. 1988.

49. D. Terzopoulos, J. Platt, A. H. Barr, and K. Fleischer, “Elastically deformable
models,” ACM Computer Graphics (Proc. SIGGRAPH’87), Vol. 21, No. 4,
pp. 205–214, Jul. 1987.

50. D. Terzopoulos and A. Witkin, “Physically based models with rigid and de-
formable components,” IEEE Computer Graphics and Applications, Vol. 8,
No. 6, pp. 41–51, Nov. 1988.

51. M. P. Do Carmo, Differential Geometry of Curves and Surfaces. Englewood
Cliffs, NJ: Prentice-Hall, 1974.

52. A. Pentland and J. Williams, “Good vibrations: Modal dynamics for graph-
ics and animation,” ACM Computer Graphics (Proc. SIGGRAPH’89), Vol. 23,
No. 3, pp. 215–222, Jul. 1989.

53. J. A. Thingvold and E. Cohen, “Physical modeling with b-spline surfaces
for interactive design and animation,” ACM Computer Graphics (Proc. SIG-
GRAPH’90), Vol. 24, No. 4, pp. 129–137, Aug. 1990.

54. D. Metaxas and D. Terzopoulos, “Dynamic deformation of solid primitives with
constraints,” ACM Computer Graphics (Proc. SIGGRAPH’92), Vol. 26, No. 2,
pp. 309–312, Jul. 1992.

6 Three-Dimensional Scene Representations 199

55. D. Rogers, Procedural Elements of Computer Graphics (2nd Edition). Boston,
MA: McGraw-Hill, 1997.

56. J. T. Kajiya, “The rendering equation,” ACM Computer Graphics (Proc. SIG-
GRAPH’86), Vol. 20, No. 4, pp. 143–150, 1986.

57. T. Whitted, “An improved illumination model for shaded display,” Communi-
cations of the ACM, Vol. 23, No. 6, pp. 343–349, 1980.

58. A. Glassner (editor), An Introduction to Ray Tracing. Academic Press, 1989.
59. C. Goral, K. Torrance, D. Greenberg, and B. Battaile, “Modeling the interac-

tion of light between diffuse surfaces,” ACM Computer Graphics (Proc. SIG-
GRAPH’84), pp. 213–222, 1984.

60. H. W. Jensen, Realistic Image Synthesis Using Photon Mapping. Addison
Wesley, 2001.

61. T. Moller, E. Haines, and T. Akenine-Moller, Real-Time Rendering (2nd Edi-
tion). Natick, MA: A.K. Peters, Ltd., 2002.

62. F. Nicodemus, “Reflectance nomenclature and directional reflectance and emis-
sivity,” Applied Optics, Vol. 9, pp. 1474–1475, 1970.

63. H. Gouraud, “Continuous shading of curved surfaces,” IEEE Trans. on Com-
puters, Vol. C-20, No. 6, pp. 623–629, Jun. 1971.

64. B. T. Phong, “Illumination for computer generated pictures,” Communications
of the ACM, Vol. 18, No. 6, pp. 311–317, 1975.

65. J. F. Blinn and M. E. Newell, “Texture and reflection in computer generated
images,” Communications of the ACM, Vol. 19, No. 10, pp. 542–547, 1976.

66. P. Heckbert, “Survey of texture mapping,” IEEE Computer Graphics and Ap-
plications, Vol. 6, No. 11, pp. 56–67, Nov. 1986.

67. N. Greene, “Environment mapping and other applications of world projections,”
IEEE Computer Graphics and Applications, Vol. 6, No. 11, pp. 21–29, 1986.

68. J. F. Blinn, “Simulation of wrinkled surfaces,” ACM Computer Graphics (Proc.
SIGGRAPH’78), Vol. 12, No. 3, pp. 286–292, Aug. 1978.

69. A. Fujimoto, T. Tanaka, and K. Iwata, “ARTS: Accelerated ray-tracing system,”
IEEE Computer Graphics and Applications, Vol. 6, No. 4, pp. 16–26, 1986.

70. B. Pradhan and A. Mukhopadhyay, “Adaptive cell division for ray tracing,”
Computers & Graphics, Vol. 15, No. 4, pp. 549–552, 1991.

71. R. A. Hall and D. P. Greenberg, “A testbed for realistic image synthesis,” IEEE
Computer Graphics and Applications, Vol. 3, No. 8, pp. 10–99, 1983.

72. H. Weghorst, G. Hooper, and D. P. Greenberg, “Improved computational meth-
ods for ray tracing,” ACM Trans. on Graphics, Vol. 3, No. 1, pp. 52–69, 1984.

73. L. Cook, T. Porter, and L. Carpenter, “Distributed raytracing,” ACM Computer
Graphics (Proc. SIGGRAPH’84), pp. 137–145, 1984.

74. I. Ashdown, Radiosity: A Programmer’s Perspective. John Wiley & Sons, 1994.
75. A. Watt and M. Watt, Advanced Animation and Rendering Techniques.

Addison-Wesley, 1992.
76. M. F. Cohen and D. P. Greenberg, “The hemicube: A radiosity solution for com-

plex environments,” ACM Computer Graphics (Proc. SIGGRAPH’85), Vol. 19,
No. 3, pp. 31–40, 1985.

77. M. F. Cohen, E. C. Chen, J. R. Wallace, and D. P. Greenberg, “A progres-
sive refinement approach to fast radiosity image generation,” ACM Computer
Graphics (Proc. SIGGRAPH’88), Vol. 22, No. 4, pp. 75–84, 1988.

78. P. Hanrahan, D. Salzman, and L. Aupperle, “A rapid hierarchical radiosity
algorithm,” ACM Computer Graphics (Proc. of SIGGRAPH’91), Vol. 25, No. 4,
pp. 197–206, 1991.

200 U. Güdükbay and F. Durupınar

79. J. R. Wallace, M. F. Cohen, and D. P. Greenberg, “A two-pass solution to the
rendering equation: A synthesis of ray tracing and radiosity methods,” ACM
Computer Graphics (Proc. SIGGRAPH’87), Vol. 21, No. 4, pp. 311–320, 1987.

80. M. Levoy and P. Hanrahan, “Light field rendering,” ACM Computer Graphics
(Proc. SIGGRAPH’96), pp. 31–42, 1996.

81. S. Chen, “Quicktime VR – An image-based approach to virtual environment
navigation,” ACM Computer Graphics (Proc. of SIGGRAPH’95), pp. 29–38,
1995.

82. S. Chen and L. Williams, “View interpolation for image synthesis,” ACM Com-
puter Graphics (Proc. of SIGGRAPH’93), pp. 279–288, 1993.

83. J. Shade, S. Gortler, L.-W. He, and R. Szeliski, “Layered depth images,” ACM
Computer Graphics (Proc. SIGGRAPH’98), pp. 231–242, 1998.

84. E. Adelson and J. R. Bergen, “The plenoptic function and the elements of early
vision,” Computational Models of Visual Processing. Cambridge, MA: MIT
Press, 1991.

85. L. McMillan and G. Bishop, “Plenoptic modeling: An image-based rendering
system,” ACM Computer Graphics (Proc. SIGGRAPH’95), pp. 39–46, 1995.

86. S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The Lumigraph,”
ACM Computer Graphics (Proc. SIGGRAPH’96), pp. 43–54, 1996.

87. V. Popescu, “Forward rasterization: A reconstruction algorithm for image-based
rendering,” Ph.D. dissertation, Department of Computer Science, University of
North Carolina at Chapel Hill, 2001.

88. S. B. Kang and H.-Y. Shum, “A review of image-based rendering techniqes,”
in Proceedings of IEEE/SPIE Visual Communications and Image Processing
(VCIP), pp. 2–13, 2000.

89. W. Lorensen and H. Cline, “Marching cubes: A high resolution 3D surface con-
struction algorithm,” ACM Computer Graphics (Proc. SIGGRAPH’87), Vol. 21,
No. 4, pp. 163–169, Jul. 1987.

90. H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and L. Seiler, “The Vol-
umePro real-time ray-casting system,” ACM Computer Graphics (Proc. SIG-
GRAPH’99), Vol. 33, pp. 245–250, 1999.

91. H. Berk, C. Aykanat, and U. Güdükbay, “Direct volume rendering of unstruc-
tured grids,” Computers & Graphics, Vol. 27, No. 3, pp. 387–406, 2003.

92. R. Westermann and T. Ertl, “Efficiently using graphics hardware in volume
rendering applications,” ACM Computer Graphics (Proc. of SIGGRAPH’98),
Vol. 32, No. 4, pp. 169–179, 1998.

