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Outline

• Getting data

• Storing data

• Data management

• RDBMs and SQL

• Pandas

• Other data models

• Key-Value Stores and Column Stores

• Distributed Storage 

• Parallel Processing frameworks

• MapReduce

• Spark
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Mechanisms for 
Getting Data
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Getting data

• We can download files manually (simply via a browser). 
• Various formats (txt, binary, CSV,  JSON,  XML, xls,…)

• We can write a program that scraps web. 
• Downloads pages and files reached via web links. 

• A client program queries data from a database server (DB) 
• Program issues SQL requests to a DB server.

• A client program queries an API (usually web based API)
• REST API is a common web-based API
• SOA (service oriented architecture) is another alternative
• Source of data can be a DB server or some other program
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Web scraping: HTTP queries

• We can download pages from web servers 

• Underlying protocol is HTTP

• Below is a python code
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import requests
response = requests.get("http://w3.cs.bilkent.edu.tr")
# some relevant fields
print (response.status_code)
print (response.content)  # or response.text
print (response.headers)
print (response.headers['Content-Type'])

Page is downloaded to local disk

Web
Server

App

HTTP

Page address (URL)



Web scraping: HTTP queries – Parameters

• Uses the GET method of  the HTTP protocol

• A URL can have parameters

• http://www.google.com/search?q=bilkent&num=5
• q and num are parameters

• In python: 
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plist = {"q": “bilkent”, "num": “5”}     # parameter list
resp = requests.get("http://www.google.com/search” , params=plist)
print (resp.status_code)
print (resp.content)

http://www.google.com/search?q=bilkent&num=5


Web API: HTTP commands

• We can query web services via  Web API and 
get data. 

• HTTP commands  (methods) used
• GET is the most common

• URL specified

• But there are other HTTP 
methods that can change
some state on the server

     HTTP POST

     HTTP PUT

     HTTP DELETE

7

API providing
Amazon services

GoogleAmazon

Our 
Application

API providing
Google services



Web API

• There are web APIs for a lot of web Services 

• Web Services: applications running in remote servers (cloud) 
and accessed via web servers.

• The service should be programmed to provide an API. 

• REST is one such API standard

• REST: representational state transfer
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Service
(program running in 
a server (or cloud))
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REST

• REST is a commonly used API standard.

• Set of rules that developers follow when they create their 
APIs. 

• It is a simple architecture style to transfer data (resources) 
over HTTP (offer services over web).
• 1. Uses standard HTTP interface and methods (GET, PUT, 

POST, DELETE)
• 2. Stateless – the server does not remember what is done 

previously (stores no state).
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REST

• You query a REST API with standard HTTP requests 

• You include parameters in the query. 

• For example, GitHub API uses GET/PUT/DELETE to let you 
query or update elements in your GitHub account.

• A service that provides REST API: Restful service. 
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REST key elements

• Resources  (and URI)

• Data objects

• Request Verbs
• What to do with data

• Request Headers

• Additional instructions

• Request Body 
• Data

• Response Body
• Data
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Service

(Data 
Objects)

Client
A
P
I

We write
code to 
process GET, 
PUT, POST, 
DELETE
(service handlers)

We identify our
resources with URIs.

We map them (URIs) to service
endpoints (request handlers).



RESTful Service
an example
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REST request handler
Direct the GET/PUT 
request to correct 
service handler for 

the URI

REST service handler
Process request and 

prepare JSON 
response

Database handler
Access database if 

needed

REST
Client

Request (GET, PUT, or Post)
Incudes URI

Response
(JSON, XML, or HTML)

• Example: A server stores 
information about mobile 
phones.  We can query the 
information. 

Write in PHP 
for example



Data Format:
JSON

• JSON: JavaScript Object 
Notation

• Open-standard file and data 
format 

• For storing data
• For exchanging data

• Uses human-readable text  
to transfer data objects
A data object consists of 
attribute-value
pairs or array data types
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https://en.wikipedia.org/wiki/JSON



XML

• XML: Extensible Markup Language
• For representing data
• For storing data
• For exchanging data

•  XML defines a set of rules for encoding documents and data in a 
format that is both human readable and machine-readable. 

• Textual data format

• Allows to define your own custom tags
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<?xml version="1.0" encoding="UTF-8"?>
<note>
  <to>Tove</to>
  <from>Jani</from>
  <heading>Reminder</heading>
  <body>Do not forget exercising</body>
</note>

https://en.wikiversity.org/wiki/XML



Structure of the data

• Structured data (has schema describing the structure)
• Schema: defines the structure/organization of the data
• Database (DB) Tables.

• Semi-structured data
• Does not have a strict scheme, no rigid structure. 
• Documents
• XML, JSON

• Unstructured data 
• Text files,  plain text, media (images, videos).
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Storing and Retrieving Data
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Databases and Data Management Systems

• Database:  A collection of data

• Database Management System
• Software that stores, manages and facilitates access to 

data. (Oracle, MySql, Sqlite, …).

•  Traditionally: relational database systems.
• Supports transaction processing, concurrency, reliability, 

recovery….
• Bank accounts, student records, customer records, 

inventory records, ….

• Modern needs and usage varies (NoSQL databases, etc.)
• Hadoop, Spark.

• Cloud databases.
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File system

• We can store data in files. 

• This may be good enough for a lot of applications. 

• But not all applications.

• File system is not a database
• Two people (processes) accessing a file may cause 

inconsistency. 
• Sudden power off may cause loss of data. 

• No query support
• No transaction (ACID) support. 
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Relational DBMSs and SQL
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Relational Database

• Models a real world data environment
• Entities (students, courses, instructors)
• Relationships (taking the course, giving the course, is 

advisor of, etc.)

• RDMBs work with tables (relations)
• Relation: a table (with rows and columns)
• Schema: describes columns, fields. 

• A table (also called a relation) stores information about 
objects or relations of the same kind (same set of attributes)

• Rows are called tuples (records); must be unique
• Columns are attributes
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Table

• Rows (tuples).  A relation is a set of tuples. 

• Columns (attributes)

• Relation (Table) name is Student. 

• It has 4 attributes

• It has 3 tuples. 

• These 3 tuples are an instance of the Student Relation. 
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ID Name Dept CGPA

1 Ali CS 3,50

2 Veli CS 3,20

3 Ahmet CS 3,80

attributes

tuples

Student



Multiple Tables

• A database typically has multiple tables. 
• Student table, 

Course table, 
Department table, 
Instructor Table, 
Offerings table, 
Enrollment table, ..
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ID Name Dept Credits
CS342 Operating Systems CS 4
GE461 Data Science GE 3
EEE202 Circuit  Theory EEE 4
CS202 Data Structures CS 3
IE202 Optimization IE 3

ME101 Mechanical Systems ME 4

Course



Schema

• Schema for a database describes the tables and their 
attributes. 

• It is fixed. 

• It is the logical design. 

• It is then populated with data (instances).

• Data + Schema = Database.
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Schema

• Example Schema 

• Department (id, name, building)
• Student (id, name, dept, CGPA)
• Course (id, name, dept, credits)

• Some tables are for objects: Student table

• Some tables are for relations: Enrollment
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Keys

• Primary Key: the attributes used to identify tuples in a table uniquely

• Foreign Key: an attribute in a table that is the primary key in another table. 
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ID Name Building

CS Computer Science EA

EE Electrical Engineering EE

IE Industrial Engineering EA

ME Mechanical Engineering EA

MATH Mathematics SC

Department

ID Name Dept Credits

CS342 Operating Systems CS 4

GE461 Data Science GE 3

EEE202 Ciruit  Theory EEE 4

CS202 Data Structures CS 3

IE202 Optimization IE 3

ME101 Mechanical Systems ME 4

Course

Primary key

Primary key

Foreign key



Query Language

• Query language is language to request information from a 
database

• Procedural or declarative

• SQL : structured query language (declarative)
• Most common, but not the only one. 
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Query Language

• Can be used to

• Create / delete a database (data definition)
• Create / delete a table (data definition)
• Insert, delete, update tuples  (data manipulation)

• Query  table(s) (retrieve data)  (data manipulation)
• Select some set of tuples from a table
• Join multiple tables
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SQL

• SQL has two main parts: 

• DDL (data definition language); 
• DML (data manipulation language)

• Supported data types
• char(n)

• varchar(n)
• int

• real, float(n)
• …
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SQL

• CREATE TABLE Department (id varchar(20),
         name varchar(20), 
       building varchar(20),
       primary key (id)); 

• CREATE TABLE Student (id int,
            name varchar(20), 
                     dept varchar(20),
                                           cgpa float, 
          primary key (id), 
          foreign key (dept) references Department; 

• INSERT INTO Student VALUES (4, ‘Can’, ‘CS’, 3,75);  

           

29



SQL 

• To retrieve data from a table or from multiple tables, we can 
form and execute SQL queries. 

• Basic structure for SQL queries:

SELECT <columns> FROM <tables>  WHERE <predicate>

• SELECT name FROM Course

• SELECT dept FROM Course

• SELECT name, dept FROM Course

• SELECT name FROM Course WHERE dept == ‘CS’
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Joins

• Merge information in multiple tables together. 

• Join operation merges multiple tables into a single 
table/relation (can be then saved as a new table or just 
directly used)

• You join two tables on columns from each table, where
these columns specify which rows are kept.

• There are  different types of joins:

• Inner
• Left (outer)
• Right (outer)

• Full  (outer)

31
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Example: joining instructor and department
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ID Name Building

CS Computer Science Building-X

EE Electrical Engineering Building-X

IE Industrial Engineering Building-X

ME Mechanical Engineering Building-X

MATH Mathematics Building-Y

PHYS Physics Building-Y

ECON Economy Building-Z

Department

Instructor
ID Name Dept Title

id101 Cem CS C

id102 Mustafa CS A

id103 Emre EE B

id103 Ayse CS A

id105 Ozgur IE C

id106 Dilek ME A

id107 Ahmet POLS B

id108 Atakan IR C

id109 Remzi PSYC A



Example: joining instructor and department
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ID Name Dept Title Name (Department) Building

id101 Cem CS C Computer Science Building-X

id102 Mustafa CS A Computer Science Building-X

id103 Emre EE B Electrical Engineering Building-X

id103 Ayse CS A Computer Science Building-X

id105 Ozgur IE C Industrial Engineering Building-X

id106 Dilek ME A Mechanical Engineering Building-X

SELECT * FROM Instructor INNER JOIN Department 
ON Instructor.dept == Department.id;

Or

SELECT * FROM Instructor, Department 
WHERE Instructor.dept == Department.id;

Resulting relation (can be used or can be saved)

INNER JOIN: only matching rows included. Unmatched rows are not included. 



SQL Lite

• SQLite: an actual relational database management system 
(RDBMS)

• Unlike most systems, it is a server-less model, applications 
directly connect to a file.

• Allows for simultaneous connections from many applications 
to the same database file (but not quite as much 
concurrency as client-server systems).

• All operations in SQLite use SQL (Structured Query 
Language) commands issued to the database object.
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Client-Server DBMS vs 
Serverless DBMS
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Figure from : developia.org/sqlite

Client – Server Architecture
For example: MySQL server

Serverless DBMS
For example: SQLite

SQLite implementation in the library

File contains the
whole database

(all tables)



Use of SQL in Python
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import sqlite3

 conn = sqlite3.connect('ders.db') / # create or open db
 c = conn.cursor()  # obtain a handle to the connection

query = "CREATE TABLE Student (id varchar(10) \
 PRIMARY KEY, name varchar(20), dept varchar(10), \
 cgpa REAL NOT NULL);"
 
c.execute(query)
conn.commit()

query = "INSERT INTO Student VALUES (?, ?, ?, ?);”
c.execute(query, ‘2222’, ‘Ali’ , ‘CS’, ‘3.5’))
conn.commit()



SQL in Python
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query = "SELECT * FROM Student;” 
c.execute(query)
    
rlist = c.fetchall()    # fetch the rows into a list 
for i in range(len(rlist)):           # print the list 
        print (rlist[i][1])              # one row at a time
        

query = "SELECT * FROM Student WHERE Student.dept == ‘CS’ ;” 
c.execute(query)

query = "SELECT * FROM Instructor, Department WHERE   \              
 Instructor.dept == Department.id;”           # JOIN
c.execute(query)



Pandas

• Pandas is a “Data Frame” library in Python, developed for 
manipulating in-memory data with row and column labels (as 
opposed to, e.g., matrices, that have no row or column labels)

• Pandas is not a relational database system, but it contains 
functions that mirror some functionality of relational 
databases. For example: merge mimics join. 
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Data
Frame 
(Table)

Column labels

R
ow

 la
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Important data structures of Pandas

• Series: 

• Array (of objects of the same type) (1D)
• Homogenous array that can be indexed.

•  DataFrame: 
• Table structure (2D)

• Columns
• Column types can be different

• For one column: all values are of the same type (a Series)
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Pandas

• Fast and efficient DataFrame object with default and
customized indexing.

• Tools for loading data into in-memory data objects from
different file formats.
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From: https://www.tutorialspoint.com/python_pandas/



Pandas

• Label-based slicing, indexing and subsetting of large data 
sets.

• Columns from a data structure can be deleted or inserted.

• Group by data for aggregation and transformations.

• High performance merging and joining of data.

• Time Series functionality.
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Pandas

42

Column index

Row index

// Column Labels



Pandas

• Pandas is not RBMS, no primary key concept

• It has index concept.

• Operations in Pandas are typically not in place (that is, they 
return a new modified DataFrame, rather than modifying an 
existing one; by default)

• We  can use the “inplace” flag to make them done in place

• If we select a single row or column in a Pandas DataFrame, it 
will return a “Series” object, 

• A Series object is like a one-dimensional indexed array 
(sequence of values and their indices). 
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Pandas: some data frame methods

df.head(): some number of rows from beginning. 

df.tail(): some number of rows from end. 

df.iloc[i,j]: access the entry (value) at the  ith row and jth column

 x = df.iloc[0,1] // will access “Ali”.   [0,0] will access “id1”. 

df.loc[rowindexlabel, columnindexlabel]: access the entry at the specified 
row and column

     x = df.loc[3, “Dept”]

          will access “ME”

 



Other Data Models
and 

Big Data
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Other Data Models

• RDDMS is good for storing transactional and/or structured 
data.

• Bank account data
• Employee data
• Student data

• New classes of data intensive applications
• Search
• Email

• Browsing
• Instant messaging
• Social media

• Online retail

• NoSQL databases (not only SQL)
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Big Data

• For non-big data: 

• Singe machine solutions are good.

• For big data (TeraBytes, PetaBytes of data), a single 
computer/server will not provide enough storage capacity, 
with acceptable reliability and performance. 

• We need  a cluster of machines to store and process big 
data. 

• How can we store and process data in a cluster?
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What is a Cluster?

48

Rack Rack

ToR switch

a Computer/Server
(Compute Node)
with local storage

Compute node: processor(s), with its main memory, cache, and local disk (storage)

Many servers in a rack. 
Connected with a switch.

Many racks 
connected by 
other switches



Distributed File System (DFS)

• To exploit cluster computing, files must look and behave 
somewhat differently from the conventional file systems found 
on single computers (Linux FS, NTFS, FAT32 are local file 
systems). 

• This new file system, often called a distributed file system or 
DFS is typically used as follows.
• Files can be enormously big, possibly terabytes in size. 
• Files are rarely updated. They are mostly read. New data is 

appended from time to time. 
• A single file’s content is stored in multiple computers and is 

also replicated. 

• Example: HDFS  (Hadoop File System) or GFS (Google File 
System).
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Data Stores
Key-Value Stores

• Key/Value Stores (NoSQL)
• Can store very large data
• Key-value sets stored

• Example: customer id, purchased items, date.
• Performance is  critical
• Eventual consistency is fine. 
• No fancy reports. 
• Data analysis and recommendation
• Query set depends on the application
• Just keys and values, no schema

• Example systems: 
• Amazon Dynamo DB.
• Apache Cassandra.
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From wikipedia



Other data stores: 
Column Family Stores

• A big table of rows and columns (billions of rows, billions of 
columns possible): sparse

• Columns are grouped into Column Families

• Column Families: 
• Typically stored together (physically)
• Can have different columns for each row
• Can have duplicate items in any column

• No schema or type enforcement
• All data treated as byte strings

• Indexed by row (row key)
• Rows are grouped into tablets (chunks)

• Rows usually kept in sorted order wrt row key
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Example: Google BigTable



Other data stores: Column Family Stores
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from: CS109 Harvard



How data internally stored

C1 C2 C3

R1 X (t3, t2, t1)

R2 X X

R3 X (t1) X

R4 X (t2, t1) X

R5 X

Table
X denotes an existing value

Ri is a row key (string)
CFi: is a column family name
Ci is a column name (string) (also called column key)

CF1 CF2

R1 CF1:C1 t3 X
R1 CF1:C1 t2 X
R1 CF1:C1 t1 X
R3 CF1:C1 t1 X
R4 CF1:C1 t2 X
R4 CF1:C1 t1 X

R2 CF2:C2 t1 X
R2 CF2:C3 t1 X
R3 CF2:C3 t1 X
R4 CF2:C2 t1 X
R5 CF2:C3 t1 X

This is how data can be
stored internally in two files. 

Logical View Physical View
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CF1 CF2



How data internally stored

• Bigtable cells which do not contain a value consume no disk 
space. 
• Sparse table. 

• For each valid cell value, we store both the row key and the 
column name. 

• For each cell, we can keep different versions of cell data 
(time stamped).

• To learn which column names are there in the table, we have 
to do a full scan of the table. Schema just gives created 
column families, not column keys. 

• For each key-value pair, we keep the associated lengths as 
well.
• key length, value length (both variable size).

KeyLen KeyValueLen Value
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Table and Tablets
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rowA

rowB

rowC

rowD

rowE

rowF

rowG

rowH

rowI

rowJ

rowK

rowL

tablet

tablet

tablet

Rows are kept always in sorted order wrt row key



Table and Tablets

rowA

rowB

rowC

rowD

rowE

rowF

rowG

rowH

rowI

rowJ

rowK

rowL

tablet

tablet

tablet

Tablet 
server

Tablet
server

Tablet 
server

GFS

C
lien

ts

56



BigTable Architecture

Master Node Chubby

Tablet Server Tablet Server

Tablet Tablet Tablet Tablet Tablet Tablet

GFS Chunkserver GFS Chunkserver

SSTable SSTable SSTable SSTable SSTable SSTable

GFS SSTable
(replica_

SSTable
(replica) 57

sorted string table



Locating tablets and data
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Example: locating data with row key = 900

Index
servers

Tablet Server

Tablet

Index

Index



Document Stores

• A Key/Value store where value is a document with structure

•  Structures for documents: 

• JSON
• XML
• PDF

• DOC

• Search for and within documents possible. 
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MapReduce
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Distributed Big Data Processing

• Big Data is distributed on many machines

• Local processing preferable, but not always sufficient and 
possible. 

• MPI was used in the past

• Explicit data handling.

• New frameworks are available to process data.

• MapReduce Framework (Google, Hadoop)
• Distributed data storage file system (GFS or HDFS) 

• Distributed big data table (BigTable or HBASE)
• Distributed processing language/framework (MapReduce)

• Spark Framework
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MapReduce Framework

• MapReduce: 
• A programming model and associated implementation for 

processing and generating large datasets.

• Hadoop system has it as its programming model. 
• Hadoop system has also a file system (HDFS) and a NoSQL 

database system (Hbase).

• An application specifies a map() function and a reduce() 
function for a computation to be done.

• Many real-world tasks expressible with this model.

• A program written with this model is automatically 
parallelized and executed by the Framework on a large 
cluster of machines. 
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Programming Model

• Computation

• Input: A set of input key/value pairs
• Output: a set of output key/value pairs

• User of MapReduce library specifies
• a map() function 

• a reduce() function
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Programming Model

• Map function: 

• Takes: an input key/value pair (e.g., doc-name, doc-
content)

• Produces: a set of intermediate key/value pairs
• All intermediate values with the same intermediate key 

are grouped.

• Reduce function:
• Takes: an intermediate key and a set of values associated 

with that
• Produces: a smaller set of values resulting from  the 

merging of all the values associated with the key (for 
example, sum, count, etc.).
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MapReduce Computation
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k1, v1 list(k2,v2)

k2,list(v2)
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map

map

reduce
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reduce
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INPUT DATA

input 
chunks



Example: word-count
counting words in a set of documents
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map() and reduce() functions below



Programming

• We write an application program in which
• We write map() and reduce() functions

• Specify the input files
• Specify the number of map workers (machines) (N)
• Specify the number of reduce workers (machines) (R)

• Specify output files

• Framework will do the rest  (parallel processing)
• Partition the input into M splits (for M map-tasks)
• Handle each split via the map() as a task
• Schedule tasks to machines (workers)
• Sort at the reduce-workers before the reduce() 

• Reduce and write the results to output files (sorted order)
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Application Examples

• Distributed Grep:

• Map() function emit a line if it matches a supplied pattern

• Framework sorts the lines at Reducer Machines. 

• The reduce()  function is an identity function (does nothing)

• Count of URL access frequency

• Logs of web page requests

• Map() output  is <URL, 1>.

• Framework sorts the <URL, 1> pairs at Reducer Machines. 

• Reduce() adds together all values for the same URL and emits <URL, 
total-count> pair.

• Distributed Sort

• Files containing records to be sorted

• Map() extracts key from each record and emits <key, record>

• Framework sorts the <key, record> pairs at Reducer Machines. 

• Reduce() emits all pairs unchanged. 
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Application Examples

• Reverse Web-Link Graph

• Map() outputs <target, source> pairs for each link to a target 
URL found in a webpage that has name (also URL) as source

• Framework sorts  all <target,source> pairs at Reducer 
Machines. 

• Reduce() concatenates the list of all source URLs associated 
with a given target URL and emits the pair: <target, 
list(sources)>

• Inverted Index

• Map() parses each document and emits a sequence of <word, 
document-ID> pairs. 

• Framework sorts the <word,document-ID> pairs (at Reducer 
Machines). 

• Reduce() accepts all pairs for a given word, sorts the 
corresponding document IDs and emits a <word, list(document 
ID)> pair.
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Execution Overview

• 1) SPLIT: MapReduce library in user program splits the input files into 
M pieces (splits) of typically 16-64 MB each.  Then it starts many 
copies of the user program on the machines of the cluster.  Hence 
each machine runs a copy of the program. 

• 2) SCHEDULE: One of the copies of the program is special – master. 
The rest are workers (N map and R reduce workers) that are assigned 
work by the master. There will be M map-tasks and R reduce-tasks to 
be assigned. Master picks up idle workers and assign each either map 
or reduce task. 

• 3) MAP:  A worker that is assigned map-task reads the content of the 
corresponding input-split, parses key-value pairs and passes each pair 
to the user-defined map() function. map() function produces 
intermediate key-value pairs and buffers them. 
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Execution Overview

• 4) INTERMEDIATE FILES: Periodically, buffered  pairs are written to 
local disk, partitioned into R regions by the partitioning function. 
The location of these files are passed to master, which forwards 
them later to the reduce workers.

• 5) SORT AND GROUP: When a reduce worker is notified by the 
master about these locations (assigned a reduce task), it uses RPC 
to read the buffered regions (files) from map-worker local disks. 
When a reduce worker has read all data, it sorts by intermediate 
key so that all occurrences of the same key are grouped together. 
If memory is not enough, external sort can be used.
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Execution Overview

• 6) REDUCE: The reduce worker iterates over the sorted 
intermediate key-value pairs and for each unique intermediate key 
encountered, it passes the key and the corresponding  set of 
values to the user-defined reduce() function. The output  of 
reduce() is appended to a final output file for this reduce partition. 

• 7) FINISH: When all map and reduce tasks have been completed, 
the master wakes up the user program.  At this point, the 
MapReduce() call in the user program returns back to the user 
code. 

At the end, R final output files are produced (one per reduce task).
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sort reduce

map

map

map



Small Example: word count

this is a good school
cloud is nice today
sky and cloud nice school
the cloud computing blue
blue come true
sky is the limit
disk space the limit
nice output come today
hello cloud what nice is

this is a good school
cloud is nice today
sky and cloud nice school
the cloud computing blue
blue come true
sky is the limit
disk space the limit
nice output come today
hello cloud what nice is

Split 0

Split 1

Split 2

Assume we have the following input data which is a sequence of 
lines of arbitrary words. 

Splitting the Input DataInput Data
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Assume M = 3, R = 2



Small Example

this is a good school
cloud is nice today
sky and cloud nice school

disk space the limit
nice output come today
hello cloud what nice is

the cloud computing blue
blue come true
sky is the limit

map task 0

map task 1

map task 2

this 1
a 1
school 1
today 1
sky 1
and 1
school 1

is 1
good 1
cloud 1
is 1
nice 
cloud 1
nice 1

the 1
blue 1
blue 1

true 1
sky 1
the 1

cloud 1
computing 1
come 1

is 1
limit 1

disk 1
space 1
the 1
today 1
what 1

limit 1
nice 1
output 1
come 1
hello 1
cloud 1
nice 1
is 1

Machine M1

Machine M2

Machine M3
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hash(key) mod R
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R1 R2



Small Example

M1

M2

M3

R1

R2

Shuffle over Network

intermediate 
data
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Small Example

this 1
a 1
school 1
today 1
sky 1
and 1
school 1

the 1
blue 1
blue 1

true 1
sky 1
the 1

disk 1
space 1
the 1
today 1
what 1

a 1
and 1
blue 1
blue 1
disk 1
school 1
school 1
sky 1
sky 1
space 1
the 1
the 1
the 1
this 1
today 1
today 1
true 1
what 1

receive sort
shuffle

reduce

a 1
and 1
blue 2
disk 1
school 2
sky 2
space 1
the 3
this 1
today 2
true 1
what 1

output

GFS file

reduce worker  R1

Network
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Small Example

is 1
good 1
cloud 1
is 1
nice 1
cloud 1
nice 1

cloud 1
computing 1
come 1

is 1
limit 1

limit 1
nice 1
output 1
come 1
hello 1
cloud 1
nice 1
is 1

cloud 1
cloud 1
cloud 1
cloud 1
come 1
come 1
computing 1
good 1
hello 1
is 1
is 1
is 1
is 1
limit 1
limit 1
nice 1
nice 1
nice 1
nice 1
output 1

receive sort
shuffle

reduce

cloud 4 
come 2
computing 1
good 1
hello 1
is 4
limit 2
nice 4
output 1

output

GFS file

reduce worker R2 78



Small Example

Result (Output) Files

a 1
and 1
blue 2

disk 1
school 2
sky 2
space 1
the 3

this 1
today 2
true 1
what 1

cloud 4 
come 2
computing 1
good 1
hello 1
is 4
limit 2
nice 4
output 1

Sorted. Stored in GFS (a distributed file system). 
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Partitioning Function

• User specifies the number of reduce tasks (i.e., output files) that is 
desired: R.

• Data gets partitioned across these tasks using a partitioning 
function on the intermediate key

• Default function: hash(key) mod R

• User can specify a different function. 

• Example: 

• hash(hostname(URL)) mod R

• to have all entries belonging to a host in the same output file.
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Additional Study Material 
(optional)
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Spark
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• MapReduce limitations (processing for big data)
• Not  good for iterative operations (Machine Learning 

algorithms): slow
• Not good for interactive big data applications: slow
• Difficulty in programming directly
• Not good for every application
• Good for batch applications working on big data

• Specialized systems built 
• Pregel, GraphLab, Storm.

• Spark’s goal was: to generalize MapReduce to support new 
apps with same engine
• Still can work like map-reduce
• But can do much more very efficiently (x10 or more)
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Spark features

• Handles batch, interactive and real-time jobs with a single 
framework

• Native integration with Java, Scala, Python

• Programming at a higher level of abstraction

• More general
• Map/reduce is just one set of constructs

• It is a cluster computing framework. But can run on a single 
node (machine) as well. 
• Scalable (more nodes can be added to the cluster and 

Spark can utilize them)
• Fault tolerant (node failures handled transparently)
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Spark

• Main abstraction in Spark is RDD (resilient distributed 
dataset)

• RDD represents a read-only collection of objects (data items) 
partitioned across a set of machines. Partition can be rebuilt 
if it is lost.
• Data item (element) can be of various types. 

• Users can explicitly cache an RDD
across machines and reuse it in multiple 
MapReduce-like parallel operations. 

• RDD has enough information about how it was 
derived from other RDDs (lineage) to be able to 
rebuild just that partition. Fault tolerance.

• There is a base RDD (on disk) 
85

a machine (node)



Spark
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Cluster
Manager

App
Program

cluster nodes

cluster nodes

cluster nodes

cluster nodes

data item

RDD description



RDD

• RDDs can only be created through deterministic operations 
(transformations) on either (1) data in stable storage or (2) 
other RDDs.

• map, flatmap, filter, join

• RDDs do not need to be materialized at all times. RDD has 
enough information about how it was derived from other 
datasets (its lineage) to compute  its partitions from data in 
stable storage.

• Users can control two other aspects of RDDs: persistence 
and partitioning. 

• Caching
• Partitioning across machines on a key, etc. 
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Programming Interface

• For the programmer, each dataset (RDD) is represented as an 
object (language object) and transformations are invoked using 
methods on these objects.
• Scala can be used.
• Python can be used. 
• Java can be used

• Programmers start by defining one or more RDDs through 
transformations on data in stable storage
• map, fiter, …

• >>> linesRDD = sc.textFile ("world.txt")

• They can then use these RDDs in actions, which are operations 
that return a value to the application or export data to a 
storage system.
• count, collect, save, …
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RDDs can be stored or cached

• Programmers can call a persist() method to indicate which 
RDDs they want to reuse in future operations. 
• Spark keeps persistent RDDs in memory by default, but it 

can spill them to disk if there is not enough RAM.
• Or can just put into the disk. 

• The cache() method is similar, but default is Memory_Only.  
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Example: mining console logs

• Suppose that a web service is experiencing errors and an 
operator wants to search terabytes of logs in the Hadoop 
filesystem (HDFS), a distributed file system,  to find the 
cause. Using Spark, the operator can load just the error 
messages from the logs into RAM across a set of nodes and 
query them interactively. The operator would first type the 
following Scala code:
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Example: mining console logs

91

querying

Extract and 
load error 
messages



Lineage Graph

Data in DFSBase RDD 

RDD

RDD

RDD

RDD



Extracting and querying error messages 
(illustrated)
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Strata conference slides, 2013



RDD generation

• Spark can create RDDs from any file stored in HDFS or other 
storage systems supported by Hadoop, e.g., local file system, 
Amazon S3, Hypertable, HBase, etc.

• Spark supports text files, SequenceFiles, and any other 
Hadoop InputFormat, and can also take a directory or a glob 
(e.g. /data/201404*)
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Generating RDDs in Python

95

# Turn a local collection into an RDD
sc.parallelize([1, 2, 3, 4, 5, 6, 7, 8])

# Load text file from local FS, HDFS, or S3
sc.textFile(“file.txt”)
sc.textFile(“directory/*.txt”)
sc.textFile(“hdfs://namenode:9000/path/file”)

# Use any existing Hadoop InputFormat
sc.hadoopFile(keyClass, valClass, inputFmt, conf)

Strata conference slides, 2013



RDD from another other RDD

• Transformations create a new dataset from an existing one

• All transformations in Spark are lazy: they do not compute 
their results right away – instead they remember the 
transformations

• applied to some base dataset

• optimize the required calculations

• recover from lost data partitions

96

nums = sc.parallelize([1, 2, 3])
# Pass each element through a function
squares = nums.map(lambda x: x*x)   # => {1, 4, 9}
# Keep elements passing a predicate
even = squares.filter(lambda x: x % 2 == 0) # => {4}
# Map each element to zero or more others
nums.flatMap(lambda x: range(0, x))  # => {0, 0, 1, 0, 1, 2}

Strata conference slides, 2013



Operations: Transformations
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Operations: Transformations
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Operations: Actions
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Operations: Actions
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RDD operations (Summary)
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Spark Runtime
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Spark Runtime

103

1. Our Program connects to a cluster manager 
which allocate resources across applications
2. acquires executors on cluster nodes –
worker processes to run computations
and store data
3. sends app code to the executors
4. sends tasks for the executors to run



How fault tolerance achieved

104



A text-file example to form RDD

• We can dowload a textfile from Internet 

• Ebook from Gutenberg project. 

• Assume the downloaded ebook  (Short History of the World) 
is put into a txt file world.txt 
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word.txt
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word.txt
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…



Process text file

• We can now process this file. For example, to obtain all 
words in the book into a list, or to count the words. 

• To obtain words,  in our Python program we write:
• distFile = sc.textFile(“world.txt")!

• distFile.map(lambda x: x.split(' ')).collect()
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Word count

Python code:

from operator import add

f = sc.textFile(“world.txt”)

words = f.flatMap(lambda x: x.split(' ')).map(lambda x: (x, 1))

words.reduceByKey(add).collect()

109
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Word count

• Spark can persist (or cache) a dataset in memory across 
operations

• Each node stores in memory any slices of it that it computes 
and reuses them in other actions on that dataset – often 
making future actions more than 10x faster

• The cache is fault-tolerant: if any partition of an RDD is lost, 
it will automatically be  recomputed using the 
transformations that originally created it
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Accumulators

• Accumulators are variables that can only be “added” to 
through an associative operation

• Used to implement counters and sums, efficiently in parallel 

• Spark natively supports accumulators of numeric value types 
and standard mutable collections, and programmers can 
extend for new types

• Only the driver program can read an accumulator’s value, 
not the tasks
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Accumulators

• We can define and use an accumulator variable. All 
functions, no matter in which node they are executed, can 
add into the accumulator variable. 
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Create the variable

We are accessing to the accumulated value

We are executing the function on each
dataset element x 

There are 4 elements
in the datasetWe define 

a function



Spark libraries/frameworks

• Spark Streaming

• Stream analytics

• MLlib
• Distributed machine learning

 framework

• GraphX
• Distributed graph processing

 framework
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