
Supervised Learning (Part 2)
GE 461, Spring 2025

Slide credits:
Çiğdem Gündüz Demir

Adding Nonlinearity to Linear Discriminants

(revisited)
§ Linear discriminants yield hyperplane decision boundaries

§ If they are not sufficient to construct a “good” model

1. Transform the space into a new one using nonlinear
mappings and construct linear discriminants on the
transformed space à Support vector machines

2. Learn nonlinearity at the same time as you learn the
linear discriminants à Neural networks

XOR Problem

Support vector machines use the idea of nonlinear
mapping to find a linearly separable space

x1

x2

z1

z2z1 = x1
z2 = x1 x2

XOR Problem

x1

x2

Neural networks learn the nonlinearity at the same
time as they learn the linear discriminants
(learn all the weights at the same time)

net1 = W12 x2 + W11 x1 + W10
h1 = sign(net1)1

0

net2 = W22 x2 + W21 x1 + W20
h2 = sign(net2)1

0

x0 x1 x2

h1 =sign(net1)

W10 W12W1
1

x0 x1 x2

h2 =sign(net2)

W20 W22W21

h0 = 1

y =sign(net)
W0 = 0.5

W1 = 1 W2 = -1

net = W0 h0 + W1 h1 + W2 h2

Support Vector Machines
(Slide credit: Selim Aksoy, CS Bilkent)

This new mapping
allows to separate
points by a hyperplane

It gives a solution where the vector w is a
linear combination of support vectors
• The maximum margin can be written as

dot products between the support
vectors and all samples

• When the input space is transformed
using a mapping function ⏀, the dot
product between a support vector and a
sample is ⏀(x) . ⏀(xi)

• You do not need to know the mapping
function itself but the dot product in the
transformed space

• This is known as the KERNEL TRICK
in support vector machines

polynomial kernel

radial basis function kernel

sigmoidal kernel

For non-separable data,
we relax the constraints

Decision Trees

Decision Trees
§ A decision tree provides a classification or regression

model built in the form of a tree structure
§ It corresponds to partitioning the input space into localized

regions, each of which can make different decision
§ Decision tree learning aims to find these partitions

x1

x2

θ1

θ2

x1 < θ1

x2 < θ2Class 1

Class 1 Class 2

Yes

Yes

No

No

Decision Trees
§ It is composed of internal decision nodes and leaves

– An internal node corresponds to a test function whose discrete
outcomes label the branches

– A leaf defines a localized region (and a class for classification
and a numerical value for regression)

x1

x2

θ1

θ2

x1 < θ1

x2 < θ2Class 1

Class 1 Class 2

Yes

Yes

No

No

Decision Trees
§ In training, the goal is to construct a tree yielding the minimum error

– At each step, the “best” split is selected among all possible ones
– Tree construction iteratively continues until all leaves are pure
– This is the basis of CART, ID3, and C4.5 algorithms

§ For an unseen instance, start at the root, take branches according to
the test outcomes until a leaf is reached
– The value in the leaf is the output

x1

x2

θ1

θ2

x1 < θ1

x2 < θ2Class 1

Class 1 Class 2

Yes

Yes

No

No

Decision Trees
§ Univariate trees

– Test functions use one feature at a time
– Define splits orthogonal to the coordinate axes

§ Multivariate trees
– Test functions use more than one feature at a time

xj = red

Yes No
Discrete features

xj < θ1

Yes No

Continuous features

x1

x2
w11 x1 + w12 x2 + w10 < 0

Class 1

Class 1

Class 2
Yes

Ye
s

No

No

w21 x1 + w22 x2 + w20 < 0

Classification Trees
§ For tree construction, iteratively select the “best” split

until all leaves are pure
§ What is the “best” split?

– The goodness of a split is quantified by an impurity measure
– Entropy is one of the most commonly used measures

Entropy
at node m

number of
classes

Probability of having
i-th class at node m

Entropy of a
binary split S

Classification Trees
Construct a tree for the training instances below

x1 x2 class

S1 red 0.5 1
S2 red 0.2 2
S3 green 0.5 2
S4 blue 0.1 1
S5 red -0.5 2
S6 green 0.1 1
S7 green 0.4 2
S8 blue 0.0 2

§ At every step
1. List all possible splits
2. Calculate the entropy for every split
3. Select the one with the minimum

entropy

Classification Trees
Construct a tree for the training instances below

x1 x2 class

S1 red 0.5 1
S2 red 0.2 2
S3 green 0.5 2
S4 blue 0.1 1
S5 red -0.5 2
S6 green 0.1 1
S7 green 0.4 2
S8 blue 0.0 2

§ For classification
– Each different value of a discrete

feature will define a split
– Halfway between continuous

feature values of the samples
belonging to different classes will be
split points

– Possible splits:
x1 = red x1 = green x1 = blue
x2 ≤ 0.05 x2 ≤ 0.15 x2 ≤ 0.45

Classification Trees
Construct a tree for the training instances below

x1 x2 class

S1 red 0.5 1
S2 red 0.2 2
S3 green 0.5 2
S4 blue 0.1 1
S5 red -0.5 2
S6 green 0.1 1
S7 green 0.4 2
S8 blue 0.0 2

§ Calculate the entropy for all possible splits

x1 = red

Yes No

S1 – Class 1
S2 – Class 2
S5 – Class 2

S3 – Class 2
S4 – Class 1
S6 – Class 1
S7 – Class 2
S8 – Class 2

x2 ≤ 0.05

Yes No

S5 – Class 2
S8 – Class 2

S1 – Class 1
S2 – Class 2
S3 – Class 2
S4 – Class 1
S6 – Class 1
S7 – Class 2

Classification Trees
Construct a tree for the training instances below

x1 x2 class

S1 red 0.5 1
S2 red 0.2 2
S3 green 0.5 2
S4 blue 0.1 1
S5 red -0.5 2
S6 green 0.1 1
S7 green 0.4 2
S8 blue 0.0 2

§ Select the split with the minimum entropy
and continue

x2 ≤ 0.05

Yes No

S5 – Class 2
S8 – Class 2

S1 – Class 1
S2 – Class 2
S3 – Class 2
S4 – Class 1
S6 – Class 1
S7 – Class 2

Pure then
STOP

Continue for this branch
List all possible splits for
this branch, calculate the
entropy for each, and select
the one with the min entropy

Alternative Splitting Criteria
Entropy at node m

Probability of having
i-th class at node m

Gini impurity at node m

Misclassification impurity at node m

When to Stop Splitting
§ Until all leaves are pure à Overfitting

§ To prevent overfitting
– Set a small threshold value in the reduction in impurity
– Use cross validation techniques (e.g., continue splitting if the

cross validation error is decreasing)
– Use an explicit measure of the complexity to encode the training

samples and the tree, stop growing when the encoding size is
minimized (minimum description length principle)

– Use statistical tests (e.g., use chi-squared statistic to understand
if a split differs significantly from a random one)

§ Then, it might be useful to keep the classes existing in a
leaf together with their class probabilities

Pruning
§ Prepruning: Stop growing the tree earlier before it

overfits the training samples

§ Postpruning: Grow the tree until it overfits the training
samples (all leaves are pure) then prune the grown tree
– Reduced error pruning: Remove nodes (or subtrees) only if the

pruned tree performs no worse than the unpruned one over the
validation set

– Rule post pruning: Convert a tree into a set of rules and simplify
(prune) each rule by removing any preconditions that result in
no-worse-than validation performance

if (x1 ≥ θ1) and (x2 ≥ θ2) then Class 2

Try removing A or B and see what happens
on the validation set

x1 < θ1

x2 < θ2Class 1

Class 1 Class 2

Yes

Yes

No

No

A B

Rule Extraction
§ One advantage of using a decision tree classifier is its

ability to extract human interpretable rules

x1: living close to migration routes (Yes / No)
x2: feeding poultry (Yes / No)
x3: contact with sick poultry (Yes / No)
x4: gender (Male / Female)

Rule 1: if (contact = yes) then high-risk
Rule 2: if (contact = no) and (feeding = yes) then medium-risk
Rule 3: if (contact = no) and (feeding = no) and (close-living = yes) then medium-risk
Rule 4: if (contact = no) and (feeding = no) and (close-living = no) then low-risk

x3 = Yes

Yes No

high-risk x2 = Yes

Yes No

x1 = Yes

Yes No
medium-risk

medium-risk low-risk

Consider the following problem setting in which we
estimate the risk of getting avian flu

Rule support is the percentage of the training samples covered by the rule

Regression Trees
§ Continuous outputs at leaves (instead of

class labels)
§ Error measure is used for the goodness of

a split (instead of an impurity measure)
§ Iteratively grow the tree until the error

measure falls below a certain threshold

Mean square
error at node m

training
samples
at node m

estimated
output at
node m

Mean square error
of a binary split S

x

y

To estimate fm

The mean (median) over the outputs of
the training samples at node m could be
used (piecewise constant approx.)

A linear function is fit over the outputs
of the training samples at node m and its
output value could be used (piecewise
linear approx.)

