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Adding Nonlinearity to Linear Discriminants

(revisited)
§ Linear discriminants yield hyperplane decision boundaries

§ If they are not sufficient to construct a “good” model

1. Transform the space into a new one using nonlinear 
mappings and construct linear discriminants on the 
transformed space à Support vector machines

2. Learn nonlinearity at the same time as you learn the 
linear discriminants à Neural networks



XOR Problem

Support vector machines use the idea of nonlinear 
mapping to find a linearly separable space
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XOR Problem
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Neural networks learn the nonlinearity at the same 
time as they learn the linear discriminants 
(learn all the weights at the same time)
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Support Vector Machines
(Slide credit: Selim Aksoy, CS Bilkent)







This new mapping 
allows to separate 
points by a hyperplane











It gives a solution where the vector w is a 
linear combination of support vectors
• The maximum margin can be written as 

dot products between the support 
vectors and all samples

• When the input space is transformed 
using a mapping function ⏀, the dot 
product between a support vector and a 
sample is ⏀(x) . ⏀(xi)

• You do not need to know the mapping 
function itself but the dot product in the 
transformed space

• This is known as the KERNEL TRICK 
in support vector machines

polynomial kernel

radial basis function kernel

sigmoidal kernel



For non-separable data, 
we relax the constraints



Decision Trees



Decision Trees
§ A decision tree provides a classification or regression 

model built in the form of a tree structure
§ It corresponds to partitioning the input space into localized 

regions, each of which can make different decision
§ Decision tree learning aims to find these partitions
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Decision Trees
§ It is composed of internal decision nodes and leaves

– An internal node corresponds to a test function whose discrete 
outcomes label the branches

– A leaf defines a localized region (and a class for classification 
and a numerical value for regression)
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Decision Trees
§ In training, the goal is to construct a tree yielding the minimum error

– At each step, the “best” split is selected among all possible ones
– Tree construction iteratively continues until all leaves are pure
– This is the basis of CART, ID3, and C4.5 algorithms

§ For an unseen instance, start at the root, take branches according to 
the test outcomes until a leaf is reached
– The value in the leaf is the output
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Decision Trees
§ Univariate trees

– Test functions use one feature at a time
– Define splits orthogonal to the coordinate axes

§ Multivariate trees
– Test functions use more than one feature at a time
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Classification Trees
§ For tree construction, iteratively select the “best” split 

until all leaves are pure
§ What is the “best” split?

– The goodness of a split is quantified by an impurity measure
– Entropy is one of the most commonly used measures

Entropy 
at node m

number of 
classes

Probability of having 
i-th class at node m

Entropy of a 
binary split S



Classification Trees
Construct a tree for the training instances below

x1 x2 class

S1 red 0.5 1
S2 red 0.2 2
S3 green 0.5 2
S4 blue 0.1 1
S5 red -0.5 2
S6 green 0.1 1
S7 green 0.4 2
S8 blue 0.0 2

§ At every step
1. List all possible splits
2. Calculate the entropy for every split
3. Select the one with the minimum 

entropy



Classification Trees
Construct a tree for the training instances below

x1 x2 class

S1 red 0.5 1
S2 red 0.2 2
S3 green 0.5 2
S4 blue 0.1 1
S5 red -0.5 2
S6 green 0.1 1
S7 green 0.4 2
S8 blue 0.0 2

§ For classification
– Each different value of a discrete 

feature will define a split
– Halfway between continuous 

feature values of the samples 
belonging to different classes will be 
split points

– Possible splits:
x1 = red     x1 = green x1 = blue
x2  ≤ 0.05    x2  ≤ 0.15 x2  ≤ 0.45



Classification Trees
Construct a tree for the training instances below

x1 x2 class

S1 red 0.5 1
S2 red 0.2 2
S3 green 0.5 2
S4 blue 0.1 1
S5 red -0.5 2
S6 green 0.1 1
S7 green 0.4 2
S8 blue 0.0 2

§ Calculate the entropy for all possible splits
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Classification Trees
Construct a tree for the training instances below

x1 x2 class

S1 red 0.5 1
S2 red 0.2 2
S3 green 0.5 2
S4 blue 0.1 1
S5 red -0.5 2
S6 green 0.1 1
S7 green 0.4 2
S8 blue 0.0 2

§ Select the split with the minimum entropy 
and continue

x2 ≤ 0.05

Yes No

S5 – Class 2
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S1 – Class 1
S2 – Class 2
S3 – Class 2
S4 – Class 1
S6 – Class 1
S7 – Class 2

Pure then 
STOP

Continue for this branch
List all possible splits for 
this branch, calculate the 
entropy for each, and select 
the one with the min entropy



Alternative Splitting Criteria
Entropy at node m

Probability of having 
i-th class at node m

Gini impurity at node m

Misclassification impurity at node m



When to Stop Splitting
§ Until all leaves are pure à Overfitting

§ To prevent overfitting
– Set a small threshold value in the reduction in impurity
– Use cross validation techniques (e.g., continue splitting if the 

cross validation error is decreasing)
– Use an explicit measure of the complexity to encode the training 

samples and the tree, stop growing when the encoding size is 
minimized (minimum description length principle)

– Use statistical tests (e.g., use chi-squared statistic to understand 
if a split differs significantly from a random one)

§ Then, it might be useful to keep the classes existing in a 
leaf together with their class probabilities



Pruning
§ Prepruning: Stop growing the tree earlier before it 

overfits the training samples

§ Postpruning: Grow the tree until it overfits the training 
samples (all leaves are pure) then prune the grown tree
– Reduced error pruning: Remove nodes (or subtrees) only if the 

pruned tree performs no worse than the unpruned one over the 
validation set

– Rule post pruning: Convert a tree into a set of rules and simplify 
(prune) each rule by removing any preconditions that result in  
no-worse-than validation performance

if  (x1 ≥  θ1)  and  (x2 ≥  θ2)  then  Class 2

Try removing A or B and see what happens 
on the validation set
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Rule Extraction
§ One advantage of using a decision tree classifier is its 

ability to extract human interpretable rules

x1:  living close to migration routes (Yes / No)
x2:  feeding poultry (Yes / No)
x3:  contact with sick poultry (Yes / No)
x4:  gender (Male / Female)

Rule 1: if  (contact = yes)  then  high-risk
Rule 2: if  (contact = no)  and  (feeding = yes)  then  medium-risk
Rule 3: if  (contact = no)  and  (feeding = no)  and  (close-living = yes)  then  medium-risk
Rule 4: if  (contact = no)  and  (feeding = no)  and  (close-living = no)  then  low-risk
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Consider the following problem setting in which we 
estimate the risk of getting avian flu

Rule support is the percentage of the training samples covered by the rule



Regression Trees
§ Continuous outputs at leaves (instead of 

class labels)
§ Error measure is used for the goodness of 

a split (instead of an impurity measure)
§ Iteratively grow the tree until the error 

measure falls below a certain threshold
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To estimate fm

The mean (median) over the outputs of 
the training samples at node m could be 
used (piecewise constant approx.)

A linear function is fit over the outputs 
of the training samples at node m and its 
output value could be used (piecewise 
linear approx.)




