
U
si

n
g

 U
M

L
, P

at
te

rn
s,

 a
n

d
 J

av
a

O
b

je
ct

-O
ri

en
te

d
 S

o
ft

w
ar

e
E

n
g

in
ee

ri
n

g

Chapter 3, Project Organization
and Communication

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

Lecture Outline

• Project Definition

• Project Organization

• Roles

• Tasks & Activities

• Work Product & Deliverables

• Focus of this lecture

• Understand project management concepts from the
developer’s perspective

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

How it should go

Requirements
Analysis

Design

Implementation

System Testing

Delivery and Installation

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

How it often goes

Requirements
Analysis

D

E

L

A

Y
Vaporware

Bananaware

ripes with the
Customer

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Project Definition

• A project is an undertaking, limited in time, to
achieve a set of goals that require a concerted
effort

• A project includes

• A set of deliverables to a client

• A schedule

• Technical and managerial activities required to produce
and deliver the deliverables

• Resources consumed by the activities (people, budget)

• Focus of project management

• Administer the resources

• Maintain accountability

• React to change

• Make sure, the goals are met.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Simple Object Model of a Project

Project

Deliverables Schedule Activity Resource

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

Laws of (Software) Project Management

• Projects progress quickly until they are 90%
complete

• Then they remain at 90% complete forever

• If project content is allowed to change freely, the
rate of change will exceed the rate of progress

• Project teams detest progress reporting because it
manifests their lack of progress

• Murphy’s law:

• “When things are going well, something will go wrong”

• “When things just can’t get worse, they will”

• “When things appear to be going better, you have
overlooked something.”

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Refinement of the Model

*

Resource

Participant

Fund

Equipment

Schedule

Task

*

Activity

con-

Facility

*

Staff

Department Team

produces

Work Set of Work

*

ProductProducts

*

Internal Project

Work

respon-

sumes

Package

Role

*

des-

*

cribes

Deliverable

sible

playsfor

Organi-

zation

Structure

**

depends

Work Product
Project Function

Project

Outcome
Work

Organizational

Unit

Work

Breakdown

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Dynamic Model of a Project

Definition

do/Define Scope

Start

do/Assign Tasks

Steady State

do/Develop System

Termination

do/Deliver System

Tasks

Assigned

Scope Defined

System Done

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

Project Organization

• A project organization defines the relationships
among resources, in particular the participants,
in a project

• A project organization should define

• Who decides (decision structure)

• Who reports their status to whom (reporting structure)

• Who communicates with whom (communication
structure)

Team ParticipantOrganization
**

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Example of a Communication Structure

UserInterface

:Team Database

:Team

Control

:Team

communicateStatus()

communicateDecision()communicateDecision()

communicateStatus()

Management

:Team

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Reporting vs. Communication

• Reporting supports project management in
tracking project status

• What work has been completed?

• What work is behind schedule?

• What issues threaten project progress?

• Reporting along the hierarchy is not sufficient
when two teams need to communicate

• A communication structure is needed

• A participant from each team is responsible for
facilitating communication between both teams

• Such participants are called liaison

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Hierarchical Project Organization

Chief Executive

First Level Manager

(“Front-Line Manager”)

Project Members

Basis of organization:

Complicated information and control flow

across hierarchical boundaries

A B

A wants to talk to B: Information Flow

A wants to make sure B does a certain change: Controlflow

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Peer-To-Peer Communication

Project

Leader

Leaders

Team

Members

Basis of organization:

Nonlinear information flow across dynamically formed units

Subsystem Team Subsystem Team Subsystem Team

A B

A wants to make sure B does a certain change: Simple Controlflow

A wants to talk to B: Simple Information Flow

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Role

• A role defines a set responsibilities (“to-dos”)

• Examples

• Role: Tester

• Write tests

• Report failures

• Check if bug fixes address a specific failure

• Role: System architect

• Ensure consistency in design decisions and define
subsystem interfaces

• Formulate system integration strategy

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Roles

• Each member may assume multiple roles

• Role types

• Management roles

• Project manager, team leader ...

• Development roles

• System architect, object designer, implementor
(development engineer), tester ...

• Cross-functional roles

• API engineer, document editor, configuration
manager, tester ...

• Consultant roles

• Client, end-user, application domain specialist,
solution domain specialist ...

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Responsibilities are assigned to Roles,
Roles are assigned to People

“To Do” List for the Project

• Item 1

• Item 2

• Item 3

• Item 4

• Item 5

• Item 6

• Item 7

• Item 8

• Item 9

Item 1

Item 2

Item 9

Role 1

Item 4

Item 5

Item 7

Role 2

Item 3

Item 6

Item 8

Role 3

Person A

Role 1

Role 2

Person B

Role 3

Team A .

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Possible Mappings of Roles to Participants

• One-to-One

• Ideal but rare

• Many-to-Few

• Each project member assumes several "hats"

• Danger of over-commitment

• Need for load balancing

• Many-to-"Too-Many"

• Some people don't have significant roles

• Lack of accountability

• Loosing touch with project

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Task

• A task describes the smallest amount of work
tracked by management

• Typically 3-10 working days effort

• Tasks descriptions

• Role

• Work product

• Start date

• Planned duration

• Required resources.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Example: Tasks for building a House

Survey Excavate
Buy

Material

Lay

Foundation

Build

Outside

Wall

Request

Permits

Survey Excavate Buy

Material
Lay Foundation

Build

Outside

Wall

Request

Permits

FINISH

Install

Interior

Plumbing

Install

Interior

Electrical

Install

Wallboard

Paint

Interior
Install

Flooring

Install

Exterior

Plumbing

Install

Exterior

Electrical

Install

Exterior

Siding

Paint

Exterior

Install

Roofing

Install

Exterior

Doors

Install

Interior

Doors

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Survey, Excavate

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

Example: Tasks for building a house

START

Request

Permits

Survey Excavate
Buy

Material

Lay

Foundation

Build

Outside

Wall

FINISH

Install

Interior

Plumbing

Install

Interior

Electrical

Install

Wallboard

Paint

Interior
Install

Flooring

Install

Exterior

Plumbing

Install

Exterior

Electrical

Install

Exterior

Siding

Paint

Exterior

Install

Roofing

Install

Exterior

Doors

Install

Interior

Doors

FINISH

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Tasks and Work Packages

• A task is specified by a work package

• Description of work to be done

• Preconditions for starting, duration, required resources

• Work products to be produced, acceptance criteria for it

• Risks involved

• A task must have completion criteria

• Includes the acceptance criteria for the work products
(deliverables) produced by the task.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

Work Products

• A work product is a visible outcome of a task

• Examples

• A document

• A review of a document

• A presentation

• A piece of code

• A test report

• Work products delivered to the customer are
called deliverables

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Task Sizes

• Tasks are decomposed into sizes that
allow monitoring

• You may not know how to decompose the
problem into tasks at first

• Depends on the nature of work and how well
task is understood.

• Finding the appropriate size is crucial

• To-do lists from previous projects

• Each software development activity identifies
more tasks and modifies existing ones.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

Activities

• Major unit of work

• Culminates in a major project milestone:

• Scheduled event used to measure progress

• Internal checkpoints should not be externally visible

• A project milestone usually produces a baseline

• Activities are often grouped again into higher-
level activities with different names:

• Phase 1, Phase 2 …

• Step 1, Step 2 …

• Allows separation of concerns

• Precedence relations can exist among activities

• Example: “A1 must be executed before A2”

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

Example: Activities for Building a House

START

Request

Permits

Survey Excavate
Buy

Material

Lay

Foundation

Build

Outside

Wall

FINISH

Install

Interior

Plumbing

Install

Interior

Electrical

Install

Wallboard

Paint

Interior
Install

Flooring

Install

Exterior

Plumbing

Install

Exterior

Electrical

Install

Exterior

Siding

Paint

Exterior

Install

Roofing

Install

Exterior

Doors

Install

Interior

Doors

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

Example: Activities for Building a House

START

Request

Permits

Survey Excavate
Buy

Material

Lay

Foundation

Build

Outside

Wall

FINISH

Install

Interior

Plumbing

Install

Interior

Electrical

Install

Wallboard

Paint

Interior
Install

Flooring

Install

Exterior

Plumbing

Install

Exterior

Electrical

Install

Exterior

Siding

Paint

Exterior

Install

Roofing

Install

Exterior

Doors

Install

Interior

Doors

Build

Outside Wall

Finish

Exterior

Finish

Interior

Establish

Foundation
START FINISH

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 29

Examples of Software Engineering
Activities

• Planning

• Requirements Elicitation

• Analysis

• System Design

• Object Design

• Implementation

• Testing

• Delivery

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 30

Associations between Tasks, Activities,
Roles, Work Products, and Work Packages

1

*

TaskActivity

Unit Of Work

Work Package Work Product

describes results in

Role

assigned to

*

1

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 31

Schedule

• Mapping of tasks onto time with dependencies
specified

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 32

Schedule – Gannt chart

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 33

Schedule – PERT chart

Storage subsystem
system analysis

1
Nov 13

5d
Nov 19

Storage subsystem
object design

2
Nov 20

5d
Nov 26

Storage subsystem
test plan

5
Nov 27

10d
Dec 10

Storage subsystem
implementation

3
Nov 27

15d
Dec 17

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 34

Summary

• Projects are concerted efforts towards a goal
that take place within a limited time

• Project participants are organized in terms of
teams, roles, control relationships, and
communication relationships.

• An individual can fill more than one role.

• Work is organized in terms of tasks assigned to
roles and producing work products.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 35

Outline

• Concepts and terminology

• Communication events

• Planned communication

• Unplanned communication

• Communication mechanisms

• Synchronous communication

• Asynchronous communication

• Communication activities

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 36

Pair of WiresBox 1 Box 2

A Communication Example

From an Airplane Crash report:

"Two missile electrical boxes manufactured by
different contractors were joined together by a
pair of wires.”

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 37

Box 1 Box 2

A Communication Example (continued)

Thanks to a particular thorough preflight check, it
was discovered that the wires had been
reversed."

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 38

After the Crash...

...

"The postflight analysis revealed that the
contractors had indeed corrected the reversed
wires as instructed."

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 39

“In fact, both of them had.”

Box 1 Box 2

Box 1 Box 2

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 40

Communication is critical

• In large system development efforts, you will
spend more time communicating than coding

• A software engineer needs to learn the so-called
soft skills:

• Collaboration

• Negotiate requirements with the client and with
members from your team and other teams

• Presentation

• Present a major part of the system during a review

• Management

• Facilitate a team meeting

• Technical writing

• Write part of the project documentation.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 41

Communication Event vs. Mechanism

Communication event

• Information exchange with defined objectives and scope

• Scheduled: Planned communication
• Examples: weekly team meeting, review

• Unscheduled:Event-driven communication
• Examples: problem report, request for change, clarification

Communication mechanism

• Tool or procedure that can be used to transmit
information

• Synchronous: Sender and receiver are communicating at
the same time

• Asynchronous: Sender and receiver are not
communicating at the same time.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 42

Modeling Communication

is supported by

* *

Synchronous

Mechanism

Asynchronous

Mechanism

Communication

Mechanism

Unplanned

Event

Planned

Event

Communication

Event

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 43

Planned Communication Events

Problem Definition

• Objective:Present goals, requirements and constraints

• Example: Client presentation

• Usually scheduled at the beginning of a project

Project Review: Focus on system models

• Objective: Assess status and review the system model

• Examples: Analysis review, system design review

• Scheduled around project milestones and deliverables

Client Review: Focus on requirements

• Objective: Brief the client, agree on requirements changes

• The first client review is usually scheduled after analysis phase.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 44

Planned Communication Events (cont’d)

Walkthrough (Informal)

• Objective: Increase quality of subsystem

• Example

• Developer informally presents subsystem to team
members (“peer-to-peer”)

• Scheduled by each team

Inspection (Formal)

• Objective: Compliance with requirements

• Example

• Demonstration of final system to customer (Client
acceptance test)

• Scheduled by project management

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 45

Planned Communication Events (cont’d)

Status Review

• Objective: Find deviations from schedule and correct
them or identify new issues

• Example

• Status section in regular weekly team meeting

Brainstorming

• Objective: Generate and evaluate large number of
solutions for a problem

• Example

• Discussion section in regular weekly team meeting.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 46

Planned Communication Events (cont’d)

Release

• Objective: Baseline the result of each software
development activity

• Examples:

• Software Project Management Plan

• Requirements Analysis Document

• System Design Document

• Beta version of software

• Final version of software

• User Manual

• Usually scheduled after corresponding activity (“phase”)

Postmortem Review

• Objective: Describe Lessons Learned

• Scheduled at the end of the project

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 47

Unplanned Communication Events

Request for clarification

• The bulk of communication among developers, clients
and users

• Example: A developer may request a clarification about
an ambiguous sentence in the problem statement.

From: Alice

Newsgroups: vso.discuss

Subject: SDD

Date: Wed, 2 Nov 9:32:48 -0400

When exactly would you like the System Design Document? There

is some confusion over the actual deadline: the schedule

claims it to be October 22, while the template says we have

until November 7.

Thanks,-Alice

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 48

Unplanned Communication Events

Request for change

• A participant reports a problem and proposes a solution

• Change requests are often formalized when the project
size is substantial

• Example: Request for additional functionality

Report number: 1291 Date: 5/3 Author: Dave

Synopsis: The STARS form should have a galaxy field.

Subsystem: Universe classification

Version: 3.4.1

Classification: missing functionality

Severity: severe

Proposed solution: …

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 49

Unplanned Communication Events

Issue resolution
• Selects a single solution to a problem for which several

solutions have been proposed

• Uses issue base to collect problems and proposals.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 50

Synchronous Communication Mechanisms

• If they require both sender and receiver to be
available at the same time

• Smoke signals

• Hallway conversation

• Supports: Unplanned conversations, Request for
clarification, request for change

+ Cheap and effective for resolving simple problems

– Information loss, misunderstandings are frequent

• Meeting (face-to-face, phone, video conference)

• Supports: Planned conversations, client review,
project review, status review, brainstorming, issue
resolution

+ Effective for issue resolution and consensus building

– High cost (people, resources), low bandwidth.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 51

Meetings

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 52

Meetings

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 53

Meetings

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 54

Meetings

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 55

Meetings

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 56

Asynchronous Communication Mechanisms

• E-Mail
• Supports: Release, change request, brainstorming

+ Ideal for planned communication and announcements

– E-mail taken out of context can be misunderstood, sent to
the wrong person, or lost

• Newsgroup
• Supports: Release, change request, brainstorming

+ Suited for discussion among people who share a common
interest; cheap (shareware available)

– Primitive access control (often, you are either in or out)

• World Wide Web (Portal)
• Supports: Release, change request, inspections

+ Provide the user with a hypertext metaphor: Documents
contain links to other documents.

– Does not easily support rapidly evolving documents.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 57

Mechanisms for planned events

Problem

definition/

Brainstorm

Project/

Client

Review

Status

Review

Inspection/

Walkthrough

Release

Hallway

Meeting

Email

Newsgroup

WWW

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 58

Mechanisms for planned events

Problem

definition/

Brainstorm

Project/

Client

Review

Status

Review

Inspection/

Walkthrough

Release

Hallway

Meeting

Email

Newsgroup

WWW

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 59

Mechanisms for unplanned events

Request for

clarification

Change request Issue

resolution /

Decision

Making

Hallway

Meeting

Email

Newsgroup

WWW

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 60

Mechanisms for unplanned events

Request for

clarification

Change request Issue

resolution /

Decision

Making

Hallway

Meeting

Email

Newsgroup

WWW

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 61

Outline

• Concepts and terminology

• Communication events

• Planned communication

• Unplanned communication

• Communication mechanisms

• Synchronous communication

• Asynchronous communication

• Communication activities

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 62

Typical Initial Communication Activities in
a Software Project

• Understand problem statement

• Join a team

• Schedule and attend team status meetings

• Join the communication infrastructure.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 63

Understand the Problem Statement

• The problem statement is developed by the
client

• Also called scope statement

• A problem statement describes

• The current situation

• The functionality the new system should support

• The environment in which the system will be deployed

• Deliverables expected by the client

• Delivery dates

• Criteria for acceptance test.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 64

Join a Team

• During the project definition phase, the project
manager forms a team for each subsystem

• Additional cross-functional teams are formed to
support the subsystem teams

• Each team has a team leader

• The responsibilities of the team and the
responsibilities each member must be defined to
ensure the team success.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 65

Attending Team Status Meetings

• Important part of a software project: The
regular team meeting (weekly, daily,…)

• Meetings are often perceived as pure overhead

• Important task for the team leader:

• Train the teams in meeting management

• Announce agendas

• Write minutes

• Keep track of action items

• Show value of status meeting

• Show time-saving improvements.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 66

Join the Communication Infrastructure

• A good communication infrastructure is the
backbone of any software project

• Web-Portal, e-mail, Newsgroups, Lotus Notes

• Learn to use the appropriate communication
mechanism for the information at hand

• The appropriateness of mechanisms may depend on
the organizational culture.

• Register for each communication mechanism
which is used by the software project

• Get an account, get training

• Questions to ask:
• Are meetings scheduled in a calendar?

• Does the project have a problem reporting system?

• Do team members provide peer reviews in meetings or
in written form?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 67

Work ProductTask

Participant

produces

*

Role

Schedule

Team

*

*

mapped to

1

responsible for

*

1

assigned to

*
*

*

Review

Request for

Clarification

Planned Event

Issue

Resolution
Release

Unplanned Event

Problem

Definition

Change Request

concerns
**

appears

Communication
1

1

Organization

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 68

Summary

• Communication Events

• Planned (stipulated by the schedule)

• Unplanned (driven by unexpected events)

• Communication Mechanisms

• Asynchronous communication mechanisms

• Synchronous communication mechanisms

• Important events and mechanisms in a software
project

• Weekly meeting

• Project reviews

• Online communication mechanisms:

• Discussion forum, email, web (Wiki)

