p—
-«
ion

izat

e%’r Organ
and Communication

¥

4
Proj

t
3,

hapter

eAe[pue ‘suidpeJ “JINN 3UIsn
Surrdaurduy arem}jog pajudir-123(qQ

Lecture Outlline

Project Definition

Project Organization

Roles

Tasks & Activities

Work Product & Deliverables

Focus of this lecture

- Understand project management concepts from the
developer’s perspective

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

How it should go

(Reg‘uir mentﬁ
nalysis %
(Design] %
(Implementatio@ %

[System Testingj %

[Delivery and Installation]

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

How it often goes

nalysis

Requirements \

(Bananaware)

v ripes with the
Customer

Y CVaporware)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

Project Definition

« A project is an undertaking, limited in time, to

achieve a set of goals that require a concerted
effort

« A project includes
- A set of deliverables to a client
- A schedule

« Technical and managerial activities required to produce
and deliver the deliverables

« Resources consumed by the activities (people, budget)
« Focus of project management

« Administer the resources

« Maintain accountability

- React to change

- Make sure, the goals are met.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Simple Object Model of a Project

Project

= 1

Deliverables Schedule Activity Resource

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Laws of (Software) Project Management

 Projects progress quickly until they are 90%
complete

- Then they remain at 90% complete forever

« If project content is allowed to change freely, the
rate of change will exceed the rate of progress

« Project teams detest progress reporting because it
manifests their lack of progress

 Murphy’s law:
« "When things are going well, something will go wrong
« "When things just can’t get worse, they will”

- "When things appear to be going better, you have
overlooked something.”

{4

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

Refinement of the Model

— Equipment
<>| Project <>—
<> 2 — Facility
Resource Fund
- —| Organi-
T~ Work |
Breakdown des- Work Zation
Schedule || Structure cribes
con-
q sume
pro-® Organizational
Outcome Work respon Urit
sible
4 Zxdependc for//plays /\
Role
.<>|St £ Work P | |
ePrgducg; Prggj;t '_ Activity |[JTask Participant Stgff
A I
| — o~ I I
Internal

Work Product

Bernd Bruegge & Allen H. Dutoit

Project
eliverabl

Project Function

Department

Team

Object-Oriented Software Engineering: Using UML, Patterns, and Java

Dynamic Model of a Project

‘i’ jﬁ;ﬂﬁ;i&i:ned
//’> Definition //V Start i\\

\\go/Define Scop \\go/Assign Tasks

\[asks
ssigned

//’ Termination ‘\\ Steady Stateﬂ\\\

\\gp/De11ver System do/Develop System

¢

System Done

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Project Organization

« A project organization defines the relationships

among resources, in particular the participants,
In a project

« A project organization should define
« Who decides (decision structure)
« Who reports their status to whom (reporting structure)

« Who communicates with whom (communication
structure)

Organization o Team o— Participant

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

Example of a Communication Structure

communicateDecision()

Management

Team

UserInterface
:Team

Bernd Bruegge & Allen H. Dutoit

communicateStatus()
|

communicateDecision()

Database
:Team

communicateStatus()
-

Control

:Team

Object-Oriented Software Engineering: Using UML, Patterns, and Java

11

Reporting vs. Communication

« Reporting supports project management in
tracking project status

« What work has been completed?
« What work is behind schedule?
- What issues threaten project progress?

« Reporting along the hierarchy is not sufficient
when two teams need to communicate

« A communication structure is needed

« A participant from each team is responsible for
facilitating communication between both teams

« Such participants are called liaison

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Hierarchical Project Organization

/ Chief Executive

First Level Manager
(“Front-Line Manager”)

OO OO0 OO Project Members

A wants to talk to B: Information Flow
A wants to make sure B does a certain change: Controlflow

Basis of organization:

Complicated information and control flow
across hierarchical boundaries

Object-Oriented Software Engineering: Using UML, Patterns, and Java

Bernd Bruegge & Allen H. Dutoit 13

Peer-To-Peer Communication

Project
Leader

0 ‘“@ Team

Members

Leaders

A wants to talk to B: Simple Information Flow

A wants to make sure B does a certain change: Simple Controlflow

Basis of organization:

Nonlinear information flow across dynamically formed units

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Role

A role defines a set responsibilities (“to-dos”)
Examples

Role: Tester
« Write tests
« Report failures
- Check if bug fixes address a specific failure

Role: System architect

« Ensure consistency in design decisions and define
subsystem interfaces

« Formulate system integration strategy

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Roles

« Each member may assume multiple roles

« Role types
« Management roles
- Project manager, team leader ...
« Development roles

« System architect, object designer, implementor
(development engineer), tester ...

 Cross-functional roles

« API engineer, document editor, configuration
manager, tester ...

« Consultant roles

« Client, end-user, application domain specialist,
solution domain specialist ...

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Responsibilities are assigned to Roles,
Roles are assignhed to People

“To Do” List for the Project

/- ltem 1

e [tem 2

Team A .

Person A

* ltem 3
* ltem 4
* ltem 5
* ltem 6
e ltem 7 Person B
* Item 8

s [tem 9

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

Possible Mappings of Roles to Participants

 One-to-One
 Ideal but rare
« Many-to-Few
- Each project member assumes several "hats”
- Danger of over-commitment
- Need for load balancing
« Many-to-"Too-Many"
« Some people don't have significant roles
- Lack of accountability
- Loosing touch with project

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Task

« A task describes the smallest amount of work
tracked by management

« Typically 3-10 working days effort

« Tasks descriptions
Role

Work product

Start date

Planned duration
Required resources.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

19

Example: Tasks for building a House

Surv

Excay

/

Bu

Mate

Lay Four

Request
Permits

Bernd Bruegge & Allen H. Dutoit

Object-Oriented Software Engineering: Using UML, Patterns, and Java

[nstall Install [nstall
Interior [Interior [Wallboard
Plumbing Electrical
\ Paint
Interior
Install
Flooring Install
Interior
| Doors
Build
Install FINISH
Qutside -
Roofing
Wall
Install
Exterior
Paint / Doors
Exterior
Install Install Install
Exterior H Exterior (H Exterior
Plumbing Electrical Siding

20

Excavate

Survey,

woorswsweaiq | ewnjibeAsyy @

osziszes)

wooawnsweaiq
woij peojumoq

©

21

Object-Oriented Software Engineering: Using UML, Patterns, and Java

Bernd Bruegge & Allen H. Dutoit

Example: Tasks for building a house

Survey [

Excavate

Request
Permits

Bernd Bruegge & Allen H. Dutoit

Buy
Material

Lay
Foundation

Object-Oriented Software Engineering: Using UML, Patterns, and Java

[nstall Install [nstall
Interior [Interior [Wallboard
Plumbing Electrical
Install
Flooring
Build
QOutside Install
Wall Roofing
Paint
Exterior
Install Install Install
Exterior H Exterior (H Exterior
Plumbing Electrical Siding

Paint
Interior

22

Install
Interior
Doors

Install
Exterior
Doors

Tasks and Work Packages

« A task is specified by a work package

Description of work to be done

Preconditions for starting, duration, required resources
Work products to be produced, acceptance criteria for it
Risks involved

« A task must have completion criteria

« Includes the acceptance criteria for the work products
(deliverables) produced by the task.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Work Products

« A work product is a visible outcome of a task

« Examples
« A document
« A review of a document
« A presentation
« A piece of code
« A test report

« Work products delivered to the customer are
called deliverables

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

24

Task Sizes

« Tasks are decomposed into sizes that
allow monitoring

« You may not know how to decompose the
problem into tasks at first

- Depends on the nature of work and how well
task is understood.

« Finding the appropriate size is crucial
« To-do lists from previous projects

- Each software development activity identifies
more tasks and modifies existing ones.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Activities

« Major unit of work

Culminates in a major project milestone:
« Scheduled event used to measure progress
- Internal checkpoints should not be externally visible
- A project milestone usually produces a baseline
Activities are often grouped again into higher-
level activities with different names:
« Phase 1, Phase 2 ...
« Step 1, Step 2 ...

Allows separation of concerns

Precedence relations can exist among activities
« Example: “"Al must be executed before A2”

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

Example: Activities for Building a House

| | Buy Lay
Survey Ex7vate Material Foundation
Request
Permits

Bernd Bruegge & Allen H. Dutoit

Object-Oriented Software Engineering: Using UML, Patterns, and Java

[nstall Install [nstall
Interior [Interior [Wallboard
Plumbing Electrical
\ Paint
Interior
Install ~
Flooring Install
Interior
Doors
Build /
QOutside Install FINISH
Wall Roofing -
|
Install
Exterior
Paint / Doors
Exterior
Install Install Install
Exterior H Exterior (H Exterior
Plumbing Electrical Siding

27

Example: Activities for Building a House
Finish
Interior

\ \ Paint
Interior
Install
xqoring Install
Interior
Doors
Establlgh | Buﬂd —
Foundation i@ Outside Wall Roong

Install
Request / Exterior
Permits / Paint Doors

Exterior

/

Finish
Exterior

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

Examples of Software Engineering
Activities

« Planning

« Requirements Elicitation
« Analysis

« System Design

« Object Design

« Implementation

« Testing

« Delivery

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

Associations between Tasks, Activities,
Roles, Work Products, and Work Packages

describes

results in

Work Package

Unit Of Work

A

1J[

Activity

Bernd Bruegge & Allen H. Dutoit

Work Product

Task

assigned to

1

Object-Oriented Software Engineering: Using UML, Patterns, and Java

Role

30

Schedule

« Mapping of tasks onto time with dependencies
specified

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

31

Schedule - Gannt chari

JI=————————————— Sstoragesubsysten————————————— 0| H
Task Name Duration Hovember December | el
7hofizfiefiglze(aszal1 (4 [7 1of1z[16[19]22 |25 [22 |31 |§
1 Storage subsystern requirerents elic Sd i
2 Storage subsystern design Sd
E Storage subsystern implernentation 154
4 Storage subsystern inspection 2d
o Storage subsystern test plan 104
[Storage subsysterm test Sd
T
8
o

A B E1m| : |:Ir Z

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 32

Schedule - PERT chart

=

Storage subsystel
test plan

\ B 104
Nov 27 Dec 10

Storage subsyste

Storage subsy$ter
|

| O

Nov 13 T Noy 190]

Storage subsyste

2 104

Ny 27 Iﬁec / I

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 33

Summary

« Projects are concerted efforts towards a goal
that take place within a limited time

« Project participants are organized in terms of
teams, roles, control relationships, and
communication relationships.

« An individual can fill more than one role.

« Work is organized in terms of tasks assigned to
roles and producing work products.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 34

Outline

Concepts and terminology

Communication events
 Planned communication
« Unplanned communication

Communication mechanisms
¢ Synchronous communication
« Asynchronous communication

Communication activities

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

35

A Communication Example

From an Airplane Crash report:

"Two missile electrical boxes manufactured by
different contractors were joined together by a
pair of wires.”

Box 1 Pair of Wires Box 2

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 36

A Communication Example (continued)

Thanks to a particular thorough preflight check, it
was discovered that the wires had been
reversed."

Box 1 / Box 2

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 37

After the Crash...

"The postflight analysis revealed that the
contractors had indeed corrected the reversed
wires as instructed.”

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 38

o “In fact, both of them had.”

Bernd Bruegge & Allen H. Dutoit

Box 2

Box 1 //
Box 1 \\ Box 2

Object-Oriented Software Engineering: Using UML, Patterns, and Java

39

Communication is critical

« In large system development efforts, you will
spend more time communicating than coding

« A software engineer needs to learn the so-called
soft skills:

« Collaboration

« Negotiate requirements with the client and with
members from your team and other teams

« Presentation

« Present a major part of the system during a review
« Management

« Facilitate a team meeting
« Technical writing

« Write part of the project documentation.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 40

Communication Event vs. Mechanism

Communication event
« Information exchange with defined objectives and scope
« Scheduled: Planned communication

- Examples: weekly team meeting, review

« Unscheduled:Event-driven communication
- Examples: problem report, request for change, clarification

Communication mechanism

« Tool or procedure that can be used to transmit
information

- Synchronous: Sender and receiver are communicating at
the same time

« Asynchronous: Sender and receiver are not
communicating at the same time.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 41

Modeling Communication

Communication
Event

is supported by [communication

AN

Planned
Event

Bernd Bruegge & Allen H. Dutoit

Mechanism
| I |
UnE1anned SMnchronous Asynchronous
vent echanism echanism
Object-Oriented Software Engineering: Using UML, Patterns, and Java 42

Planned Communication Events

- Objective:Present goals, requirements and constraints
- Example: Client presentation
« Usually scheduled at the beginning of a project
Focus on system models
- Objective: Assess status and review the system model
- Examples: Analysis review, system design review
- Scheduled around project milestones and deliverables
Focus on requirements
- Objective: Brief the client, agree on requirements changes
- The first client review is usually scheduled after analysis phase.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 43

Planned Communication Events (cont’d)

(Informal)
Objective: Increase quality of subsystem
Example

« Developer informally presents subsystem to team
members (“peer-to-peer”)

Scheduled by each team

(Formal)
Objective: Compliance with requirements
Example

« Demonstration of final system to customer (Client
acceptance test)

Scheduled by project management

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 44

Planned Communication Events (cont’d)

Objective: Find deviations from schedule and correct
them or identify new issues

Example
« Status section in regular weekly team meeting

Objective: Generate and evaluate large number of
solutions for a problem

Example
« Discussion section in regular weekly team meeting.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 45

Planned Communication Events (cont’d)

Objective: Baseline the result of each software
development activity

Examples:
« Software Project Management Plan
Requirements Analysis Document
System Design Document
Beta version of software
Final version of software
« User Manual
Usually scheduled after corresponding activity (“phase”)

Objective: Describe Lessons Learned
- Scheduled at the end of the project

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 46

Unplanned Communication Events

« The bulk of communication among developers, clients
and users

« Example: A developer may request a clarification about
an ambiguous sentence in the problem statement.

From: Alice

Newsgroups: vso.dlscuss
Subject: SDD

Date: Wed, 2 Nov 9:32:48 -0400

When exactly would you like the System Design Document? There
is some confusion over the actual deadline: the schedule

claims 1t to be October 22, while the template says we have
until November 7.

Thanks, -Alice

Unplanned Communication Events

- A participant reports a problem and proposes a solution

« Change requests are often formalized when the project
size is substantial

« Example: Request for additional functionality

Report number: 1291 Date: 5/3 Author: Dave
Synopsis: The STARS form should have a galaxy field.
Subsystem: Universe classification

Version: 3.4.1

Classification: missing functionality

Severity: severe

Proposed solution:

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 48

Unplanned Communication Events

- Selects a single solution to acjaroblem for which several
solutions have been propose

« Uses issue base to collect problems and proposals.

By Thread Date T“pi{:

By Author

v (Open) I: Can a dispatcher see other dispatchers'
28.06.99 TrackSections? (Alice Parker)

By Eataniy .. P: TrackSection has access list. (Dave Smith 28.06)

By.Date .. ¥P: TrackSection has subscription operations. (Alice Parker
Ey lnread 28 06}

pro: Extensibility. (Alice Parker 28.06)

pro: Centralize all protected operations. (Dave Smith 28.06)
.. ¥P: NotificationService is not part of access (Ed Jones 28.06)

pro: Dispatchers can see all TrackSections (Ed Jones 28.06)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 49

Synchronous Communication Mechanisms

« If they require both sender and receiver to be
available at the same time

« Smoke signals
« Hallway conversation

« Supports: Unplanned conversations, Request for
clarification, request for change

Cheap and effective for resolving simple problems
— Information loss, misunderstandings are frequent
° Meeting (face-to-face, phone, video conference)

« Supports: Planned conversations, client review,
project review, status review, brainstorming, issue
resolution

Effective for issue resolution and consensus building
— High cost (people, resources), low bandwidth.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 50

Meetings

Header information identifyving ~ When and Where Role

the meeting and audience Date: 1/30 Primary Facilitator: Peter
Start: 4:30 P.M. Timekeeper: Dave
End: 5:30 p.M. Minute Taker: Ed

Room: WH. 3420

Desired outcome of the meeting 1. Objective
Resolve any requirements issues that prevent us from starting
prototyping.

Action items to be reported on 2. Status [Allocated Time: 15 minutes]
Dave: State of command parsing code

Issues scheduled to be discussed 3. Discussion items [Allocated Time: 35 minutes]
(and resolved) during the 3.1 How to deal with arbitrarily formatted input data sets?
meeting 3.2 How to deal with output data?
3.3 Command parsing code (modifiability, backward
compatibility)

The wrap-up period is the same 4. Wrap up [Allocated Time: 5 minutes]
for all meetings 4.1 Review and assign new action items
4.2 Meeting critique

Meetings

Open-ended meetings take more When and Where Role

time than necessary. Date: 1/30 Primary Facilitator: Peter
Start: 4:30 P.M. Timekeeper: Dave
End: open Minute Taker: Ed
Room: WH 3420
This objective is difficult to 1. Objective
achieve and cannot be verified. = Resolve open issues
Lack of context: what were 2. Status [Allocated Time: 15 minutes]
Dave’s action items? Dave: Dave’s action items
Lack of content: what are the 3. Discussion items [Allocated Time: 35 minutes|
current issues in each of these 3.1 Requirements issues
activities? 3.2 Design issues
3.3 Implementation issues

4. Wrap up [Allocated Time: 5 minutes]
4.1 Review and assign new action items
4.2 Meeting critique

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 52

Meetings

Header information
identifving the meeting
and audience

Verbatim from agenda

Summary of the
information that was
exchanged

Record of issue
discussion and resolution

Additions and
maodifications to the task
plan

When and Where Role

Date: 1730 Primary Facilitator: Peter
Start: 4:30 p.M. Timekeeper: Dave
End: 6:00 p.m. Minute Taker: Ed

Room: WH 3420 Attending: Ed, Dave, Mary, Peter, Alice

1. Objective

2, Status

3. Discussion

3.1 Command parsing code is a 1200-1300 line if statement. This makes it
fairly hard to add new commands or to modify existing commands without
breaking backward compatibility with existing clients.

Proposals: 1) Restructure the command parsing code by assigning one
object per kind of command. 2) Pass all command arguments by name. The
latter would make it easier to maintain backward compatibility, On the other
hand, this would increase the size of the commands, thus increasing the size
of the command file.

Resolution: Restructure code for now. Rewisit this issue if backward
compatibility is really an issue (the calling code might be rewritten anyway).

See AI[1].

Discussion of the other issues omitted for brevity

4. Wrap up

Al[1] For: Dave.

Revisit command parsing code. Emphasis on modularity. Coordinate with
Bill from the database group (who might assume backward compatibility).

Other action items and meeting critique omitted for brevity

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

53

Meetings

YESTERDAY, IN OUR
FOUR—HOUR MEETING,
WE AGREED TO POST—

PONE THE VENDOR
SELEC'I"ION.

Bernd Bruegge & Allen H. Dutoit

Dilbert.com DilbertCartoonist@gmail.com

NO, WE T THOUGHT
AGREED TO (JE AGREED

USE OUR TO CANCEL
EXISTING THE WHOLE

VENDOR. PROJECT.

—
= B om

620-15 © 2015 Scott Adams, Inc. /Dist. by Universal Ucick

WE MIGHT
NEED SOME
CLARITY
ON THIS.

)

Object-Oriented Software Engineering: Using UML, Patterns, and Java

FOUR
MORE
HOURS
SHOULD
DO IT.

54

Meetings

YOU THINK

YOURE
FUNNY, BUT

=
©
e
wd
=}
<
o
»
=
<
=]
£
L=
o
@
-
e
us

’/W £ 1096 United Feature Syndicate, Inc (NYC)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 55

Asynchronous Communication Mechanisms

« E-Mail
- Supports: Release, change request, brainstorming
Ideal for planned communication and announcements

— E-mail taken out of context can be misunderstood, sent to
the wrong person, or lost

« Newsgroup
- Supports: Release, change request, brainstorming

Suited for discussion among people who share a common
interest; cheap (shareware available)

— Primitive access control (often, you are either in or out)
« World Wide Web (Portal)
- Supports: Release, change request, inspections

Provide the user with a hypertext metaphor: Documents
contain links to other documents.

— Does not easily support rapidly evolving documents.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 56

Mechanisms for planned events [B

Problem Project/ Status Inspection/ Release
definition/ Client Review Walkthrough
Brainstorm Review

Hallway

Meeting

Email

Newsgroup

WWWwW

Bernd Bruegge & Allen H. Dutoit

Object-Oriented Software Engineering: Using UML, Patterns, and Java

57

Mechanisms for planned events [B

Problem Project/ Status Inspection/ Release
definition/ Client Review Walkthrough
Brainstorm Review
Hallway
= =l
Meeting
= = =l g
Email
Newsgroup
g
WWWwW
g =

Bernd Bruegge & Allen H. Dutoit

Object-Oriented Software Engineering: Using UML, Patterns, and Java

58

Mechanisms for unplanned events

Request for Change request | Issue
clarification resolution /
Decision
Making
Hallway
Meeting
Email
Newsgroup
WWWwW
— pernd Bruegge & Allen H. Dutont OUbject-OUriented soltware Engineering: using UML, Patterns, a

nd Java

59

Mechanisms for unplanned events

Bernd Bruegge & Allen H. Dutort

Request for Change request | Issue
clarification resolution /
Decision
Making
Hallway
= H|
Meeting
= g
Email
El El
Newsgroup
= =
WWWwW
g

ODbject-OUriented soltware Engine

eTINg: Using UML, Patterns, a

nd Java

60

Outline

Concepts and terminology

Communication events
« Planned communication
« Unplanned communication

Communication mechanisms
« Synchronous communication
« Asynchronous communication

Communication activities

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

61

Typical Initial Communication Activities in
a Software Project

« Understand problem statement

« Join a team
« Schedule and attend team status meetings
« Join the communication infrastructure.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 62

Understand the Problem Statement

« The problem statement is developed by the
client

« Also called scope statement

« A problem statement describes

The current situation

The functionality the new system should support

The environment in which the system will be deployed
Deliverables expected by the client

Delivery dates

Criteria for acceptance test.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 63

Join a Team

« During the project definition phase, the project
manager forms a team for each subsystem

« Additional cross-functional teams are formed to
support the subsystem teams

« Each team has a team leader

« The responsibilities of the team and the
responsibilities each member must be defined to
ensure the team success.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 64

Attending Team Status Meetings

« Important part of a software project: The
regular team meeting (weekly, daily,...)

« Meetings are often perceived as pure overhead

« Important task for the team leader:
« Train the teams in meeting management
« Announce agendas
« Write minutes
« Keep track of action items
« Show value of status meeting
« Show time-saving improvements.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 65

Join the Communication Infrastructure

« A good communication infrastructure is the
backbone of any software project

« Web-Portal, e-mail, Newsgroups, Lotus Notes

« Learn to use the appropriate communication
mechanism for the information at hand

- The appropriateness of mechanisms may depend on
the organizational culture.

- Register for each communication mechanism
which is used by the software project

« Get an account, get training
« Questions to ask:
« Are meetings scheduled in a calendar?

« Does the project have a problem reporting system?

« Do team members provide peer reviews in meetings or
in written form?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 66

/ Organization \

assigned to
J — Team
r nsible for ..
esponsible fo Participant
5 1
—> Role
Task 1 produces Work Product
) L Schedule i
mapped to
: : 1
J/'Commun1cat1on \\
appears
Planned Event " Unplanned Event L concerns
Problem Request for
Definition Clarification
Review Change Request
ReT Issue
elease Resolution
Bernd Bruegge & Allen H. Dute# Objeet-Oriented Software Engineering: Usihg-UVHPatternsandJava

Summary

« Communication Events
- Planned (stipulated by the schedule)
« Unplanned (driven by unexpected events)

« Communication Mechanisms
« Asynchronous communication mechanisms
¢ Synchronous communication mechanisms
« Important events and mechanisms in a software
project
« Weekly meeting
* Project reviews
¢ Online communication mechanisms:
« Discussion forum, email, web (Wiki)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 68

