
CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

1

Chapter 2
Intelligent Agents

CS 461 – Artificial Intelligence
Pinar Duygulu

Bilkent University, Spring 2008

Slides are mostly adapted from AIMA

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

2

Outline

• Agents and environments
• Rationality
• PEAS (Performance measure, Environment,

Actuators, Sensors)
• Environment types
• Agent types

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

3

Agents
• An agent is anything that can be viewed as

– perceiving its environment through sensors and
– acting upon that environment through actuators
– Assumption: Every agent can perceive its own actions (but not

always the effects)

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

4

Agents
• Human agent:

– eyes, ears, and other organs for sensors;
– hands,legs, mouth, and other body parts for actuators

• Robotic agent:
– cameras and infrared range finders for sensors;
– various motors for actuators

• A software agent:
– Keystrokes, file contents, received network packages as sensors
– Displays on the screen, files, sent network packets as actuators

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

5

Agents and environments
• Percept: agent’s perceptual input at any

given instant
• Percept sequence: complete history of everything the agent has ever

perceived
• An agent’s choice of action at any given instant can depend on the

entire percept sequence observed to date

• An agent’s behavior is described by the agent function which maps
from percept histories to actions:

[f: P* A]
• We can imagine tabulating the agent function that describes any

given agent (External characterization)
• Internally, the agent function will be implemented by an agent

program which runs on the physical architecture to produce f
• agent = architecture + program

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

6

Vacuum-cleaner world
• Two locations: A and B
• Percepts: location and contents, e.g., [A,Dirty]
• Actions: Left, Right, Suck, NoOp

One simple function is :
if the current square is dirty then suck, otherwise move to the other square

Right
Suck
Left
Suck
Right
Suck
…
Right
Suck

[A,Clean]
[A, Dirty]
[B,Clean]
[B,Dirty]
[A,Clean],[A,Clean]
[A,Clean],[A,Dirty]
…
[A,Clean],[A.Clean],[A,Clean]
[A,Clean],[A,Clean],[A,Clean]

ActionsPercept sequence

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

7

Rational agents
• An agent should strive to "do the right thing", based on what it can perceive and the

actions it can perform.

• The right action is the one that will cause the agent to be most successful

• Performance measure: An objective criterion for success of an agent's behavior

• E.g., performance measure of a vacuum-cleaner agent could be amount of dirt
cleaned up, amount of time taken, amount of electricity consumed, amount of noise
generated, etc.

• As a general rule, it is better to design performance measures according to what one
actually wants in the environment. Rather than according to how one thinks the
agent should behave (amount of dirt cleaned vs a clean floor)

• A more suitable measure would reward the agent for having a clean floor

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

8

Rationality

• What is rational at any given time depends on four things
– The performance measure that defines the criterion of success
– The agent’s prior knowledge of the environment
– The actions that the agent can perform
– The agent’s percept sequence to date

– Rational Agent: For each possible percept sequence, a rational
agent should select an action that is expected to maximize its
performance measure, given the evidence provided by the
percept sequence and whatever built-in knowledge the agent
has.

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

9

Vacuum cleaner agent

• Let’s assume the following
– The performance measure awards one point for each clean square

at each time step, over a lifetime of 1000 time steps
– The geography of the environment is known a priori but the dirt

distribution and the initial location of the agent are not. Clean
squares stay clean and the sucking cleans the current square. The
Left and Right actions move the agent left and right except when
this would take the agent outside the environment, in which case
the agent remains where it is

– The only available actions are Left, Right, Suck and NoOp
– The agent correctly perceives its location and whether that location

contains dirt
• Under these circumstances the agent is rational:its

expected performance is at least as high as any other
agent’s

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

10

Vacuum cleaner agent

• Same agent would be irrational under different circumstances
– once all dirt is cleaned up it will oscillate needlessly back and forth.
– If the performance measure includes a penalty of one point for each

movement left or right, the agent will fare poorly.
– A better agent for this case would do nothing once it is sure that all the

squares are clean.
– If the clean squares can become dirty again, the agent should occasionally

check and clean them if needed.
– If the geography of the environment is unknown the agent will need to

explore it rather than stick to squares A and B

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

11

Rational agents

• Rationality is distinct from omniscience (all-knowing with
infinite knowledge)

• Rationality maximizes expected performance while
perfection maximizes actual performance

• Agents can perform actions in order to modify future
percepts so as to obtain useful information (information
gathering, exploration)

• An agent is autonomous if its behavior is determined by its
own experience (with ability to learn and adapt)

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

12

Specifying the task environment (PEAS)

• PEAS:
– Performance measure,
– Environment,
– Actuators,
– Sensors

• In designing an agent, the first step must always
be to specify the task environment (PEAS) as fully
as possible

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

13

PEAS for an automated taxi driver

• Performance measure: Safe, fast, legal, comfortable trip, maximize
profits

• Environment: Roads, other traffic, pedestrians, customers

• Actuators: Steering wheel, accelerator, brake, signal, horn

• Sensors: Cameras, sonar, speedometer, GPS, odometer, engine
sensors, keyboard

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

14

PEAS for a medical diagnosis system

• Performance measure: Healthy patient, minimize costs, lawsuits

• Environment: Patient, hospital, staff

• Actuators: Screen display (questions, tests, diagnoses, treatments,
referrals)

• Sensors: Keyboard (entry of symptoms, findings, patient's
answers)

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

15

PEAS for a satellite image analysis system

• Performance measure: correct image categorization

• Environment: downlink from orbiting satellite

• Actuators: display categorization of scene

• Sensors: color pixel arrays

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

16

PEAS for a part-picking robot

• Performance measure: Percentage of parts in correct bins

• Environment: Conveyor belt with parts, bins

• Actuators: Jointed arm and hand

• Sensors: Camera, joint angle sensors

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

17

PEAS for a refinery controller

• Performance measure: maximize purity, yield, safety

• Environment: refinery, operators

• Actuators: valves, pumps, heaters, displays

• Sensors: temperature, pressure, chemical sensors

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

18

PEAS for Interactive English tutor

• Performance measure: Maximize student's score on test

• Environment: Set of students

• Actuators: Screen display (exercises, suggestions, corrections)

• Sensors: Keyboard

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

19

Environment types

• Fully observable vs. partially observable
• Deterministic vs. stochastic
• Episodic vs. sequential
• Static vs. dynamic
• Discrete vs. continuous
• Single agent vs. multiagent

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

20

Environment types

Fully observable vs. partially observable:

• An environment is fully observable if an agent's sensors
give it access to the complete state of the environment at
each point in time.

• Fully observable environments are convenient, because the
agent need not maintain any internal state to keep track of
the world

• An environment might be partially observable because of
noisy and inaccurate sensors or because parts of the state
are simply missing from the sensor data

• Examples: vacuum cleaner with local dirt sensor, taxi
driver

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

21

Environment types

Deterministic vs. stochastic:

• The environment is deterministic if the next state of the
environment is completely determined by the current state
and the action executed by the agent.

• In principle, an agent need not worry about uncertainty in a
fully observable, deterministic environment

• If the environment is partially observable then it could
appear to be stochastic

• Examples: Vacuum world is deterministic while taxi driver
is not

• If the environment is deterministic except for the actions of
other agents, then the environment is strategic

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

22

Environment types

Episodic vs. sequential:

• In episodic environments, the agent's experience is divided
into atomic "episodes" (each episode consists of the agent
perceiving and then performing a single action), and the
choice of action in each episode depends only on the
episode itself.

• Examples: classification tasks

• In sequential environments, the current decision could
affect all future decisions

• Examples: chess and taxi driver

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

23

Environment types

Static vs. dynamic:

• The environment is unchanged while an agent is deliberating.
• Static environments are easy to deal with because the agent need not

keep looking at the world while it is deciding on the action or need it
worry about the passage of time

• Dynamic environments continuously ask the agent what it wants to do
• The environment is semi-dynamic if the environment itself does not

change with the passage of time but the agent's performance score
does

• Examples: taxi driving is dynamic, chess when played with a clock is
semi-dynamic, crossword puzzles are static

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

24

Environment types

Discrete vs. continuous:

• A limited number of distinct, clearly defined states, percepts and
actions.

• Examples: Chess has finite number of discrete states, and has
discrete set of percepts and actions. Taxi driving has continuous
states, and actions

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

25

Environment types

Single agent vs. multiagent:

• An agent operating by itself in an environment is single agent
• Examples: Crossword is a single agent while chess is two-agents
• Question: Does an agent A have to treat an object B as an agent or

can it be treated as a stochastically behaving object
• Whether B's behaviour is best described by as maximizing a

performance measure whose value depends on agent's A behaviour
• Examples: chess is a competitive multiagent environment while taxi

driving is a partially cooperative multiagent environment

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

26

Environment types

• The environment type largely determines the agent design
• The real world is (of course) partially observable, stochastic, sequential,

dynamic, continuous, multi-agent

Single

Multi

Continuous

Discrete

Dynamic

Dynamic

Sequential

Sequential

Stochastic

Stochastic

Partially

Partially

Refinery
controller
Interactive
English Tutor

Single
Single

Continuous
Continuous

Semi
Dynamic

Episodic
Episodic

Deterministic
Stochastic

Fully
Partially

Image Analysis
Part-picking robot

Multi
Single

Continuous
Continuous

Dynamic
Dynamic

Sequential
Sequential

Stochastic
Stochastic

Partially
Partially

Taxi driving
Medical
Diagnosis

Multi
Multi

Discrete
Discrete

Static
Static

Sequential
Sequential

Stochastic
Stochastic

Partially
Fully

Poker
Backgammon

Single
Multi

Discrete
Discrete

Static
Semi

Sequential
Sequential

Deterministic
Strategic

Fully
Fully

Crossword puzzle
Chess with a
clock

AgentsDiscreteStaticEpisodicDeterministicObservableTask
Environment

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

27

Agent functions and programs

• An agent is completely specified by the agent
function mapping percept sequences to actions

• One agent function (or a small equivalence class)
is rational

• Aim: find a way to implement the rational agent
function concisely -> design an agent program

Agent = agent program + architecture

• Architecture: some sort of computing device with
physical sensors and actuators (PC, robotic car)
– should be appropriate: walk action requires legs

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

28

Agent functions and programs

• Agent program:
– Takes the current percept as input from the sensors
– Return an action to the actuators

– While agent function takes the whole percept history,
agent program takes just the current percept as input
which the only available input from the environment

– The agent need to remember the whole percept
sequence, if it needs it

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

29

Table-lookup agent
• A trivial agent program: keeps track of the percept sequence and then uses it to

index into a table of actions to decide what to do
• The designers must construct the table that contains the appropriate action for

every possible percept sequence

function TABLE-DRIVEN-AGENT(percept) returns an action
static: percepts, a sequence, initially empty

table, a table of actions, indexed by percept sequences, initially fully specified
append percept to the end of percepts
action <--LOOKUP(percepts, table)
return action

• Drawbacks:
– Huge table (P^T , P: set of possible percepts, T: lifetime)

•Space to store the table
•Take a long time to build the table
•No autonomy
•Even with learning, need a long time to learn the table entries

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

30

Agent types

• Rather than a table how we can produce rational
behavior from a small amount of code

•
• Four basic types in order of increasing generality:

– Simple reflex agents
– Model-based reflex agents
– Goal-based agents
– Utility-based agents

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

31

Simple reflex agents

function REFLEX-VACUUM-AGENT([location,status]) returns an action
if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left

• Select actions on the basis of the current percept
ignoring the rest of the percept history

• Example: simple reflex vacuum cleaner agent

• Condition-action-rule
• Example: if car-in-front-is-breaking then initiate-

breaking

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

32

Simple reflex agents

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

33

Simple reflex agents

• Simple-reflex agents are simple, but they turn out
to be of very limited intelligence

• The agent will work only if the correct decision
can be made on the basis of the current percept –
that is only if the environment is fully observable

• Infinite loops are often unavoidable – escape
could be possible by randomizing

function SIMPLE-REFLEX-AGENT(percept) returns an action
static: rules, a set if condition-action rules
state <-- INTERPRET_INPUT(percept)
rule <-- RULE_MATCH(state, rules)
action <-- RULE_ACTION[rule]
return action

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

34

Model-based reflex agents

• The agent should keep track of the part of the world it can't see now
• The agent should maintain some sort of internal state that depends

on the percept history and reflects at least some of the unobserved
aspects of the current state

• Updating the internal state information as time goes by requires two
kinds of knowledge to be encoded in the agent program
– Information about how the world evolves independently of the

agent
– Information about how the agent's own actions affects the world

• Model of the world – model based agents

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

35

Model-based reflex agents

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

36

Model-based reflex agents

function REFLEX-AGENT-WITH-STATE(percept) returns an action
static: state, a description of the current world state

rules, a set of condition-action rules
action, the most recent action, initially none

state <-- UPDATE_INPUT(state, action, percept)
rule <-- RULE_MATCH(state, rules)
action <-- RULE_ACTION[rule]
return action

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

37

Goal-based agents

• Knowing about the current state of the environment
is not always enough to decide what to do (e.g.
decision at a road junction)

• The agent needs some sort of goal information that
describes situations that are desirable

• The agent program can combine this with
information about the results of possible actions in
order to choose actions that achieve the goal

• Usually requires search and planning

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

38

Goal-based agents

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

39

Goal-based agents vs reflex-based agents

• Although goal-based agents appears less efficient, it
is more flexible because the knowledge that
supports its decision is represented explicitly and
can be modified

• On the other hand, for the reflex-agent, we would
have to rewrite many condition-action rules

• The goal based agent's behavior can easily be
changed

• The reflex agent's rules must be changed for a new
situation

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

40

Utility-based agents

• Goals alone are not really enough to generate high
quality behavior in most environments – they just
provide a binary distinction between happy and
unhappy states

• A more general performance measure should allow
a comparison of different world states according to
exactly how happy they would make the agent if
they could be achieved

• Happy – Utility (the quality of being useful)
• A utility function maps a state onto a real number

which describes the associated degree of happiness

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

41

Utility-based agents

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

42

Learning agents

• Turing – instead of actually programming
intelligent machines by hand, which is too much
work, build learning machines and then teach them

• Learning also allows the agent to operate in initially
unknown environments and to become more
competent than its initial knowledge alone might
allow

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

43

Learning agents

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

44

Learning agents

• Learning element – responsible for making
improvements

• Performance element – responsible for selecting
external actions (it is what we had defined as the
entire agent before)

• Learning element uses feedback from the critic on
how the agent is doing and determines how the
performance element should be modified to do
better in the future

• Problem generator is responsible for suggesting
actions that will lead to a new and informative
experiences

