

Abstract—I implement a Cloud Simulation suggested by

Dobashi et al. at [1]. In this work, they propose a simulation

process that results binary output of volumetric data, which is

then smoothed using gaussian filter and rendered.

I. INTRODUCTION

HIS report is a detailed presentation of achieved research

on a Simple, Efficient Method for Realistic Animation of

Clouds[1]. Fig. 1 shows a final result of this research.

 First, the details of Simulation Method that is introduced by

Dobashi et al. are described. Then Rendering Method of the

simulation is discussed. The report is concluded by showing

the final results of final-state of the implementation. Sections

II, III, and IV, which explain the theory behind

implementation, are adapted from [3].

II. BASIC IDEA

In the implementation, I followed the same approach that of

Dobashi et al.’s. The method consists of two processes,

simulation and rendering. As shown in Fig. 2(a), the simulation

space is a cellular automaton. At each cell, there are three

binary properties; vapor/humidity (hum), clouds (cld), and

phase transition (act). Cloud simulation is realized by

applying some transition rules based on those properties at

each frame.

What is obtained from this simulation is just binary

representation of each cell either having a cloud or not having

a cloud. Therefore, a smoothing operation is needed before

the rendering process as shown in Fig. 2(b). After the

smoothing is done the scene is rendered using volume

rendering techniques.

III. SIMULATION METHOD

It can be said that simulation method has two level of

hierarchy. The overall shapes of the clouds are controlled

using ellipsoids and the dynamics like cloud particle

generation and extinction are controlled using cellular

automaton representation.

A. Growth Simulation

As mentioned at Basic Idea, the cells in the automaton have

three variables, hum, act and cld. For simplicity, the

An Implementation of a Simple, Efficient

Method for Realistic Animation of Clouds

Cansın Yıldız

Dept. of Computer Engineering

Bilkent University

Ankara,Turkey

cansin@cs.bilkent.edu.tr

T

Fig. 2. An overview of Dobashi et al.’s method

Fig. 1. A final result from the project.

simulation space is aligned with xyz axes. Each represents

vapor, phase transition factor and cloud respectively. hum=1

means that the vapor amount is enough to form cloud, act=1

means the phase transition from vapor to water ready to occur

and cld=1 means the cell has cloud particle. With the light of

these explanations, the transition rules are as follows.

),,,(),,,(),,,(1 iii tkjiacttkjihumtkjihum , (1)

),,,(),,,(),,,(1 iii tkjiacttkjicldtkjicld , (2)

),,(),,,(),,,(),,,(1 kjiftkjihumtkjiacttkjiact actiii
, (3)

where fact(i,j,k) is a binary function and its computed

according to adjacent cells’ act values. fact(i,j,k) is as follows.

),,1,(),,,1(),,(iiact tkjiacttkjiactkjif

),,1,(),,,1(),1,,(iii tkjiacttkjiacttkjiact (4)

),,,2(),,,2(),1,,(iii tkjiacttkjiacttkjiact

).,2,,(),,2,(),,2,(iii tkjiacttkjiacttkjiact

Beginning from initial status, cloud growth is simulated

using Eqs. (1) through (4).

B. Cloud Extinction

Problem with Growth Simulation transitions is when a

cloud is formed at a cell it never extinct. So, an extinction

algorithm is also needed for a realistic simulation. The

proposed method by Dobashi et al. is as follows. First three

probabilities are assigned to each cell; pext, phum and pact. Then

a random number, rnd (0 ≤ rnd ≤ 1) is generated, and cld, hum

and act variables are changed according to this random

number. The methods for those transitions are as follows.

)),,,((),,,(),,,(1 ihumii tkjiprndistkjihumtkjihum , (5)

)),,,((),,,(),,,(1 iextii tkjiprndistkjicldtkjicld , (6)

)),,,((),,,(),,,(1 iactii tkjiprndistkjiacttkjiact , (7)

The overall of shape of clouds can be adjusted by

manipulating those probabilities accordingly. Some usage of

this phenomenon is mentioned at Controlling Cloud Motion

Using Ellipsoids.

C. Advection by Wind

The cloud motion under wind is another important deal of

cloud simulation. To simulate it, simply a transition rule

which shifts all cld, hum and act variables toward wind

direction is enough. For simplicity, Dobashi et al. assumed

wind always blows toward x-axis direction. Also since the

wind speed varies at different heights, a velocity function

v(zk), which depends on the z-coordinate of a cell (i,j,k) is

proposed. The transition rules are as follows:

otherwise

zvitkjzvihum
tkjihum

kik

i
,0

0)(),,,),((
),,,(1

, (8)

otherwise

zvitkjzvicld
tkjicld

kik

i
,0

0)(),,,),((
),,,(1

, (9)

otherwise

zvitkjzviact
tkjiact

kik

i
,0

0)(),,,),((
),,,(1

, (10)

Unfortunately, advection by wind aspect of the simulation

is not implemented at final project. But, as can be seen from

those equations, it is really easy to add that feature into

simulation method with a few lines of codes.

D. Fast Simulation Using Bit Field Manipulation

Functions

Since each variable is a binary number, they can be

represented by one bit each. So to reduce the computational

overhead, instead of using char for each variable, by using

unsigned long values, thirty-two cells can be grouped into one

variable. Then by applying bitwise boolean functions, thirty-

two cells can be processed at the same time.

In the final implementation of cloud simulation, fast

simulation techniques that are discussed here are omitted for

two reasons; the aimed simulation is not real-time, and even

without the fast simulation techniques, the simulation step

takes nearly no time, compared to rendering.

E. Controlling Cloud Motion Using Ellipsoids

As mentioned at Cloud Extinction, the animator can control

the overall shape of clouds by manipulating probability

values. Ellipsoids are good candidates for this control. They

can be used to simulate air parcels which have a higher

probability of cloud generation at their centers and cloud

extinctions at their edges. This means having higher phum and

pact at ellipsoid’s center than at its edges. Inversely, pext should

be lower at the center than the edges.

The wind effect can also be simulated for those ellipsoids.

By simply moving the ellipsoids position with respect to wind,

while shifting the variables as described at Advection by Wind,

a good wind simulation can be achieved.

IV. RENDERING METHOD

The method which is followed for rendering is described at

this section. First the cloud density distribution will be

calculated using binary results of the simulation. Then, instead

of implementing the method introduced by Dobashi et al.,

calculated density grid will simply be fed to PovRay tool,

which will handle the final volume rendering.

A. Continuous Density Distribution Calculation

The density distribution that comes from simulation results

is binary, unlike the continuous case of real world. Therefore

using Gaussian Filtering a smoothing should be performed.

For each cell (i,j,k), corresponding density value is calculated

for each time step ti using following equation:

0

0

0

0' '0000

1
)12)(12)(12)(12(

1
),,,(

t

tt

k

kk

i
tkji

tkjiq

0

0

0

0' '

)',',','(',',','
j

jj

i

ii

i ttkkjjiicldtkjiw , (11)

Where w is the Gaussian weight function and i0, j0, k0, t0 are

the window sizes of this Gaussian. It should be noted that time

variant is also included in the smoothing since the distribution

of cloud particles with respect to time is also discrete. I have

used Matlab for this 4D Gaussian filtering job. First a 4D

Gaussian Kernel with window size 5 is created. And then, this

window is convolved over density distribution.

As far as I understand, those cells of the automaton could

both represent a pixel or a set of pixels for the scene. In the

latter case, an interpolation for actual pixel values will also be

needed. In the implementation, 32x32x32x30 density

distribution (the last term is time) is interpolated to a final

volume of 125x125x125x291 using interp methods of Matlab.

B. Volume Rendering using PovRay

The Persistence of Vision Raytracer (PovRay) [4] is a high-

quality; totally free tool for creating stunning three-

dimensional graphics.

Although, another tool PBRT was initially proposed for

rendering job at [3], but further investigation revealed PovRay

is both more suitable and easy to learn tool for rendering

process. So, after density distribution is calculated, PovRay is

used to render the scene. The tricky part of this job was to

learn how to set PovRay variables to end up with a realistic

scene. Fortunately, throughout the research, I have found a

sample configuration for cloud rendering at [5]. Using their

scene with some modification, a realistic rendering of clouds

is achieved as already seen at Fig. 1.

At PovRay, a scene with a simple sun and a sky sphere is

set up first. Then, density data which is saved as .df3 format

after Continuous Density Distribution Calculation is rendered

with scattering. Radiosity is enabled for this rendering process

as well (see Appendix A, B).

V. RESULTS

A. Simulation

All simulation details explained at this report is

implemented; except for Advection by Wind and Fast

Simulation Using Bit Field Manipulation Functions. The

results of the simulation can be seen at Fig. 3.

One extension of Dobashi et al.’s work is about the

probability distributions’ of cld, hum and act variables. I want

to achieve a complete simulation, starting from a cloud’s

initial creation to the extinction. Therefore, rather than having

constant probabilities over time, I have changed them so that

as time pass, the extinction probabilities increased, inversely

the humidity probabilities dropped resulting in a complete

extinction. This approach gave fairly good simulation of a

cloud’s life.

One difficulty that is faced during simulation

implementation is about those probability values. To have a

good simulation, they must be calibrated very carefully. After

some experiments, I followed the default values proposed by

Dobashi et al. So, phum, pact, and pcld, values are 0.1, 0.001 and

0.1 respectively, at the centers of ellipsoids.

The simulation step that is implemented runs fast. For a

cellular automaton of size 32x32x32, and a time-step size of

30, the overall execution time is ~0 min.

B. Smoothing

Smoothing and expansion is implemented at Matlab. For

smoothing, a 4D gaussian kernel is used. One difficulty of this

 (a) ti=10 (b) ti=20 (c) ti=30

Fig. 3. Final State of Implementation.

Both growth and extinction is occurring.

Particles are forming with respect to ellipsoid shapes.

Rendering is done using radiosity and scattering.

Fig. 4. Gaussian Kernel: Low Amplitude (0.03) vs. Normal Amplitude (1)

smoothing process is to adjust a proper amplitude value for

the kernel. Initially, I was trying to adjust the amplitude (of

0.03) so that all values in the kernel window will sum up to 1.

But this amplitude resulted in very hazy clouds, almost like

fog (see Fig. 4). So, after some further experiments, I found

that the ideal amplitude for gaussian filtering is 1.

Because of the enormity of the matrix (32x32x32x30), this

smoothing process takes up to 1 hour on a PC with 1.83 GHz

C2Duo Processor and 2Gb of Ram.

C. Rendering

As explained rendering is done using PovRay. In the

PovRay scene that is used, overall radiosity as well with

scattering for clouds is enabled. The scene is composed by

multiple occurrences of the same volumetric data at different

positions. To further increase the randomness, the initial and

ending time-steps of those occurrences are also different than

each other.

As an extension to those, also a turbulence function is

applied top of density volume data. It is as easy as a one-line

code in PovRay, yet it is really effective. Resulting final

rendering after turbulence is applied can be seen at Fig. 5.

As can be guessed, the rendering process is the most time

consuming step of cloud simulation. On the same PC with

1.83 GHz C2Duo Processor and 2Gb of Ram, rendering a

sequence of 291 frames takes up to 4 hours.

VI. CONCLUSION

Final state of the implementation satisfies my desires.

Though, I didn’t have a chance to implement an advection by

wind behavior, the rendering of clouds is far better than my

expectations. Also, I am very pleased with the ease of use of

the implementation. I have created bunch of batch files, which

helps user along the whole simulation process.

As I always do, I want to conclude the paper by showing

some results of the work. Please find them below.

APPENDIX

A. PovRay Radiosity

global_settings {

 assumed_gamma 1

 max_trace_level 256

 #if (RadOK=1)

 radiosity {

 count 10

 recursion_limit 1

 low_error_factor .5

 gray_threshold 0.0

 minimum_reuse 0.015

 brightness 1

 adc_bailout 0.01/2

 }

 #end

}

B. PovRay Cloud Object

#declare Cloud1=box{-0.5,0.5

texture{

pigment{Clear}

finish{ambient 0 diffuse 0}

}

 hollow

 interior{

 media{

 scattering{1,C_Sun*0.006

extinction 0.25}

intervals Intervals

 density{

 density_file df3 "x.df3"

 turbulence Turbulence

 lambda 3

 interpolate 1

 translate -0.5

 scale <1,-1,1>

 }

 }

 }

 scale <4/3,1,1>

 }

REFERENCES

[1] Dobashi, Y., Kaneda, K., Yamashita, H., Okita, T., and Nishita, T. 2000.

A simple, efficient method for realistic animation of clouds.

In Proceedings of the 27th Annual Conference on Computer Graphics

and interactive Techniques International Conference on Computer

Graphics and Interactive Techniques. ACM Press/Addison-Wesley

Publishing Co., New York, NY, 19-28.

[2] Pharr, M. and Humphreys, G. 2004 Physically Based Rendering: from

Theory to Implementation. Morgan Kaufmann Publishers Inc.

[3] Yildiz, C., A Progress Report on a Simple, Efficient Method for

Realistic Animation of Clouds.

[4] The Persistence of Vision Raytracer, http://www.povray.org/

[5] Oyonale - 3D art and graphic experiments, Cloud (POV-Ray)

http://www.oyonale.com/modeles.php?page=36

Fig. 5. Clouds with no turbulence vs. with turbulence.

a. Time Step = 10

c. Time Step = 110

e. Time Step = 210

b. Time Step = 60

d. Time Step = 160

f. Time Step = 260

Fig. 6. Life span of a scene with clouds.

