
 

 

Abstract—I implement a Cloud Simulation suggested by 

Dobashi et al. at [1]. In this work, they propose a simulation 

process that results binary output of volumetric data, which is 

then smoothed using gaussian filter and rendered. 

I. INTRODUCTION 

HIS report is a detailed presentation of achieved research 

on a Simple, Efficient Method for Realistic Animation of 

Clouds[1]. Fig. 1 shows a final result of this research. 

 First, the details of Simulation Method that is introduced by 

Dobashi et al. are described. Then Rendering Method of the 

simulation is discussed. The report is concluded by showing 

the final results of final-state of the implementation. Sections 

II, III, and IV, which explain the theory behind 

implementation, are adapted from [3]. 

II. BASIC IDEA 

In the implementation, I followed the same approach that of 

Dobashi et al.’s. The method consists of two processes, 

simulation and rendering. As shown in Fig. 2(a), the simulation 

space is a cellular automaton. At each cell, there are three 

binary properties; vapor/humidity (hum), clouds (cld), and 

phase transition (act). Cloud simulation is realized by 

 
 

applying some transition rules based on those properties at 

each frame.  

 

 
What is obtained from this simulation is just binary 

representation of each cell either having a cloud or not having 

a cloud. Therefore, a smoothing operation is needed before 

the rendering process as shown in Fig. 2(b). After the 

smoothing is done the scene is rendered using volume 

rendering techniques. 

III. SIMULATION METHOD 

It can be said that simulation method has two level of 

hierarchy. The overall shapes of the clouds are controlled 

using ellipsoids and the dynamics like cloud particle 

generation and extinction are controlled using cellular 

automaton representation. 

A. Growth Simulation 

As mentioned at Basic Idea, the cells in the automaton have 

three variables, hum, act and cld. For simplicity, the 
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Fig. 2. An overview of Dobashi et al.’s method 

 

 

 

 
 

Fig. 1. A final result from the project. 

 

 



 

simulation space is aligned with xyz axes. Each represents 

vapor, phase transition factor and cloud respectively. hum=1 

means that the vapor amount is enough to form cloud, act=1 

means the phase transition from vapor to water ready to occur 

and cld=1 means the cell has cloud particle. With the light of 

these explanations, the transition rules are as follows. 
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where fact(i,j,k) is a binary function and its computed 

according to adjacent cells’ act values. fact(i,j,k) is as follows.  
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Beginning from initial status, cloud growth is simulated 

using Eqs. (1) through (4). 

B. Cloud Extinction 

Problem with Growth Simulation transitions is when a 

cloud is formed at a cell it never extinct. So, an extinction 

algorithm is also needed for a realistic simulation. The 

proposed method by Dobashi et al. is as follows. First three 

probabilities are assigned to each cell; pext, phum and pact. Then 

a random number, rnd (0 ≤ rnd ≤ 1) is generated, and cld, hum 

and act variables are changed according to this random 

number. The methods for those transitions are as follows. 
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The overall of shape of clouds can be adjusted by 

manipulating those probabilities accordingly. Some usage of 

this phenomenon is mentioned at Controlling Cloud Motion 

Using Ellipsoids. 

C. Advection by Wind 

The cloud motion under wind is another important deal of 

cloud simulation. To simulate it, simply a transition rule 

which shifts all cld, hum and act variables toward wind 

direction is enough. For simplicity, Dobashi et al. assumed 

wind always blows toward x-axis direction. Also since the 

wind speed varies at different heights, a velocity function 

v(zk), which depends on the z-coordinate of a cell (i,j,k) is 

proposed. The transition rules are as follows: 
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Unfortunately, advection by wind aspect of the simulation 

is not implemented at final project. But, as can be seen from 

those equations, it is really easy to add that feature into 

simulation method with a few lines of codes. 

D. Fast Simulation Using Bit Field Manipulation 

Functions 

Since each variable is a binary number, they can be 

represented by one bit each. So to reduce the computational 

overhead, instead of using char for each variable, by using 

unsigned long values, thirty-two cells can be grouped into one 

variable. Then by applying bitwise boolean functions, thirty-

two cells can be processed at the same time. 

In the final implementation of cloud simulation, fast 

simulation techniques that are discussed here are omitted for 

two reasons; the aimed simulation is not real-time, and even 

without the fast simulation techniques, the simulation step 

takes nearly no time, compared to rendering. 

E. Controlling Cloud Motion Using Ellipsoids 

As mentioned at Cloud Extinction, the animator can control 

the overall shape of clouds by manipulating probability 

values. Ellipsoids are good candidates for this control. They 

can be used to simulate air parcels which have a higher 

probability of cloud generation at their centers and cloud 

extinctions at their edges. This means having higher phum and 

pact at ellipsoid’s center than at its edges. Inversely, pext should 

be lower at the center than the edges. 

The wind effect can also be simulated for those ellipsoids. 

By simply moving the ellipsoids position with respect to wind, 

while shifting the variables as described at Advection by Wind, 

a good wind simulation can be achieved. 

IV. RENDERING METHOD 

The method which is followed for rendering is described at 

this section. First the cloud density distribution will be 

calculated using binary results of the simulation. Then, instead 

of implementing the method introduced by Dobashi et al., 

calculated density grid will simply be fed to PovRay tool, 

which will handle the final volume rendering.  

A. Continuous Density Distribution Calculation 

The density distribution that comes from simulation results 

is binary, unlike the continuous case of real world. Therefore 

using Gaussian Filtering a smoothing should be performed. 

For each cell (i,j,k), corresponding density value is calculated 

for each time step ti using following equation: 
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Where w is the Gaussian weight function and i0, j0, k0, t0 are 

the window sizes of this Gaussian. It should be noted that time 

variant is also included in the smoothing since the distribution 

of cloud particles with respect to time is also discrete. I have 

used Matlab for this 4D Gaussian filtering job. First a 4D 



 

Gaussian Kernel with window size 5 is created. And then, this 

window is convolved over density distribution. 

As far as I understand, those cells of the automaton could 

both represent a pixel or a set of pixels for the scene. In the 

latter case, an interpolation for actual pixel values will also be 

needed. In the implementation, 32x32x32x30 density 

distribution (the last term is time) is interpolated to a final 

volume of 125x125x125x291 using interp methods of Matlab. 

B. Volume Rendering using PovRay 

The Persistence of Vision Raytracer (PovRay) [4] is a high-

quality; totally free tool for creating stunning three-

dimensional graphics. 

Although, another tool PBRT was initially proposed for 

rendering job at [3], but further investigation revealed PovRay 

is both more suitable and easy to learn tool for rendering 

process. So, after density distribution is calculated, PovRay is 

used to render the scene. The tricky part of this job was to 

learn how to set PovRay variables to end up with a realistic 

scene. Fortunately, throughout the research, I have found a 

sample configuration for cloud rendering at [5]. Using their 

scene with some modification, a realistic rendering of clouds 

is achieved as already seen at Fig. 1. 

At PovRay, a scene with a simple sun and a sky sphere is 

set up first. Then, density data which is saved as .df3 format 

after Continuous Density Distribution Calculation is rendered 

with scattering. Radiosity is enabled for this rendering process 

as well (see Appendix A, B). 

V. RESULTS 

A. Simulation 

All simulation details explained at this report is 

implemented; except for Advection by Wind and Fast 

Simulation Using Bit Field Manipulation Functions. The 

results of the simulation can be seen at Fig. 3.  

One extension of Dobashi et al.’s work is about the 

probability distributions’ of cld, hum and act variables. I want 

to achieve a complete simulation, starting from a cloud’s 

initial creation to the extinction. Therefore, rather than having 

constant probabilities over time, I have changed them so that 

as time pass, the extinction probabilities increased, inversely 

the humidity probabilities dropped resulting in a complete 

extinction. This approach gave fairly good simulation of a 

cloud’s life. 

One difficulty that is faced during simulation 

implementation is about those probability values. To have a 

good simulation, they must be calibrated very carefully. After 

some experiments, I followed the default values proposed by 

Dobashi et al. So, phum, pact, and pcld, values are 0.1, 0.001 and 

0.1 respectively, at the centers of ellipsoids.   

The simulation step that is implemented runs fast. For a 

cellular automaton of size 32x32x32, and a time-step size of 

30, the overall execution time is ~0 min. 

B. Smoothing 

Smoothing and expansion is implemented at Matlab. For 

smoothing, a 4D gaussian kernel is used. One difficulty of this 
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Fig. 3. Final State of Implementation.  

Both growth and extinction is occurring. 

Particles are forming with respect to ellipsoid shapes. 

Rendering is done using radiosity and scattering. 

 
 

 

   
Fig. 4. Gaussian Kernel: Low Amplitude (0.03) vs. Normal Amplitude (1) 

 
 

 



 

smoothing process is to adjust a proper amplitude value for 

the kernel. Initially, I was trying to adjust the amplitude (of 

0.03) so that all values in the kernel window will sum up to 1. 

But this amplitude resulted in very hazy clouds, almost like 

fog (see Fig. 4). So, after some further experiments, I found 

that the ideal amplitude for gaussian filtering is 1. 

Because of the enormity of the matrix (32x32x32x30), this 

smoothing process takes up to 1 hour on a PC with 1.83 GHz 

C2Duo Processor and 2Gb of Ram. 

C. Rendering 

As explained rendering is done using PovRay. In the 

PovRay scene that is used, overall radiosity as well with 

scattering for clouds is enabled. The scene is composed by 

multiple occurrences of the same volumetric data at different 

positions. To further increase the randomness, the initial and 

ending time-steps of those occurrences are also different than 

each other. 

As an extension to those, also a turbulence function is 

applied top of density volume data. It is as easy as a one-line 

code in PovRay, yet it is really effective. Resulting final 

rendering after turbulence is applied can be seen at Fig. 5. 

As can be guessed, the rendering process is the most time 

consuming step of cloud simulation. On the same PC with 

1.83 GHz C2Duo Processor and 2Gb of Ram, rendering a 

sequence of 291 frames takes up to 4 hours. 

VI. CONCLUSION 

Final state of the implementation satisfies my desires. 

Though, I didn’t have a chance to implement an advection by 

wind behavior, the rendering of clouds is far better than my 

expectations. Also, I am very pleased with the ease of use of 

the implementation. I have created bunch of batch files, which 

helps user along the whole simulation process.  

As I always do, I want to conclude the paper by showing 

some results of the work. Please find them below. 

APPENDIX 

A. PovRay Radiosity 

global_settings { 

    assumed_gamma 1 

    max_trace_level 256 

    #if (RadOK=1) 

        radiosity { 

            count 10 

            recursion_limit 1 

            low_error_factor .5  

            gray_threshold 0.0   

            minimum_reuse 0.015  

            brightness 1 

            adc_bailout 0.01/2 

        } 

    #end 

} 

B. PovRay Cloud Object 

#declare Cloud1=box{-0.5,0.5  

texture{ 

pigment{Clear} 

finish{ambient 0 diffuse 0} 

} 

    hollow 

    interior{ 

      media{ 

         scattering{1,C_Sun*0.006  

extinction 0.25} 

intervals Intervals 

          density{ 

             density_file df3 "x.df3" 

                    turbulence Turbulence 

                    lambda 3 

                    interpolate 1 

                    translate -0.5 

                    scale <1,-1,1> 

             } 

          } 

       } 

       scale <4/3,1,1> 

    } 
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Fig. 5. Clouds with no turbulence vs. with turbulence. 

 
 

 



 

 
a. Time Step = 10 

 

 
c. Time Step = 110 

 

 
e. Time Step = 210 

 
b. Time Step = 60 

 

 
d. Time Step = 160 

 

 
f. Time Step = 260 

 

Fig. 6. Life span of a scene with clouds. 


