Self-Indexing Inverted Files
for Fast Text Retrieval

by Alistair Moffat, Justin Zobel

Onur Tasar, Murat Yusuf Taze

1/23

Overview

. Background Information

. Query Processing — Boolean and Ranking
. Compression

. Motivation

. Fast Inverted Index

. Skipping

. Implementation, Experimental Results

. Conclusion

Indexes

Indexes are data structures designed to make search
faster

. Text search has unique requirements, which leads to
unigque data structures

Most common data structure Is inverted index

- general name for a class of structures

- “Inverted” because documents are associated with
words, rather than words with documents

Inverted Index

Each index term Is associated with an inverted list

Contains lists of documents, or lists of word
occurrences in documents, and other information

Each entry is called a posting

The part of the posting that refers to a specific
document or location is called a pointer

Each document in the collection is given a unigue
number

Lists are usually document-ordered (sorted by

document number)
4/23

Example “Collection”

Tropical fish include fish found in tropical environments
around the world, including both freshwater and salt water
species.

Fishkeepers often use the term tropical fish to refer only
those requiring fresh water, with saltwater tropical fish re-
ferred to as marine fish.

Tropical fish are popular aquarium fish, due to their often
bright coloration.

In freshwater fish, this coloration typically derives from iri-
descence, while salt water fish are generally pigmented.

Four sentences from the Wikipedia entry for tropical fish
5/23

Example “Inverted Index”

and only

aguarium pigmented

are popular

[~]

around refer

as

Simple Inverted rch

Index derives

due

referred
requiring
salt

saltwater

[~

species

term

the

their
this

those

to

environments
fish
fishkeepers

[+]
[+

found
fresh

freshwater tropical

[o][es]

[+]
[+

from typically

generally use

in water

[~]
[+2]
[~]

while
with

world

include
including

EREEREERREERNERENRNREEE

iridescence
marine

often

HNEERESEENEREEREEEEEEEEE

[¢]

Example “Inverted Index”

Inverted Index
with counts

* supports better
ranking algorithms

and
aguarium
are

around

as

both
bright
coloration
derives
due
environments
fish
hshkeepers
found

fresh
freshwater
from
generally
in

include
including
iridescence
marine

often

o
[

>
—

1:2

2:3] [3:2] [4:2]

AR Fiol | el ol Rl ol 1 el | R [R2M0 Rl [0
iy | g iy | iy | U | (g | g |y | Uy | iy | iy | et

=
—_

Lo
—

W
—

only
plgmented
popular
refer
referred
requiring
salt
saltwater
species
term

the

their

this
those

to
tropical
typically
use
water
while
with

world

I I M I S S M N =S R R et T L e T et L R T LS R R R S I
e e e e e e S B W S e e | | | e e | e | e | W | e |

=
—_

3
—_

b || —
W
[

&
—_
i
—_

Example “Inverted Index”

b
[]
B3|

marine

—|
—|
s

Lo
o
o
[R)
)
—
[wn)

Inverted Index i

are

with positions

as

often

only

W
[F)
N
-
.
o
T
=

—_
e
=
—_
(=)

plgmented

[N
[}
—
o
.

popular

—_
—
o

o
)

both
bright

coloration

LN p p 9] rts derives

due

1 1 environments species
prOXImIty matCheS fish |12 ||14 ‘ ‘2,7 ‘ ‘2,18| |2,23| term
‘3,2 ‘ ‘3,6 | |4,3 | the
4,13 their
this

those

to

refer

[}
—
—
QL\D
H
w

referred

Lo

=
%
s
[w §

[N
—
%]

requiring

Qo | =
~1|| ™=
[T
— | =
S| S
.."';
i
—

—_
[e.¢]
—

—
o0

o
e

—
—
=

“M
i

Lo
o

[N
T
e

e

fishkeepers

e
—

found
fresh

freshwater

(]

| D

all o
o] wo

|| e

|
| [217] 3,1 |

| D
—| oo

tropical

=] =] b2 —

S |t |
= || o
=
o

=

=

from typically

Nas
—
a8
b

O]

use
water | L17][2,14] [4,12]
while
with

world

generally

—_
[=>)
=
—_

m

include

—_
o
Nl
—
=

—
L.
b
o
—
T

including

i
[l
—
—
—

iridescence

Information Retrieval

. Two main mechanisms for retrieving documents

- Boolean Queries

. a set of query terms connected by the logical
operators AND, OR, and NOT

- Range Queries
. matching an informal query to the documents

. allocating scores to documents according to their
degree of similarity to the query

Query Processing

. Inverted lists are read from disk

. the lists are merged,

. taking the intersection of the sets of document numbers for
AND operations, the union for OR, and the complement for

NOT

Example

Loy (5,8,12,13,15, 18,23, 28, 29, 40, 60)
Tecompression” (10,11,12, 13, 28,29, 30, 36, 60, 62, 70)
Talgorithm” (13,44, 48,51, 55, 60,93) ,

. their conjunction are documents 13 and 60

- Terms are connected by AND operator.

Ranking vs Boolean

More memory Is required because in a ranked query there are
usually many candidates

- In a conjunctive Boolean guery the answers lie in the
Intersection of the inverted lists, but in a ranked query, they
lie in the union

- In a conjunctive Boolean query, the number of candidates
need never be greater than the frequency of the least
common query term

More time Is required because conjunctive Boolean queries
typically have a small number of terms, perhaps 3-10, whereas
ranked queries usually have far more

Compression

. for space efficiency, the inverted lists are stored
compressed

For example, the list
5,8, 12, 13, 15, 18, 23, 28, 29, 40, 60
corresponding d-gaps:

5,3,4,1,2,3,5,5,1, 11, 20 (good for variable-length
encoding)

. Without compression, an inverted file can easily be as
large or larger than the text it indexes

13/23

Compression

. Advantage

— net space reduction of as much as 80% of the inverted
file size

. Disadvantage

— even with fast decompression it involves a substantial
overhead on processing time

Motivation

Problem: How to reduce these space and time costs If we
compress indexes.

. Solution: A mechanism called Self-Indexing

For typical conjunctive Boolean gueries processing time is
reduced by a factor of about five.

. the overhead in terms of storage space is small, typically
under 25% of the inverted file, or less than 5% of the
complete stored retrieval system

FAST INVERTED FILE PROCESSING

Skipping

Consider the set of (d, fa)

<3, 1><8, 1><12, 2><13, 3><15, 1><18, 1>...

.Stored as d-gaps:
<5, 1><3, 1><4, 2><1, 3><2, 1><3, 1>...

16/23

Skipping continued

Synchronization points

Skip over every three pointers:

. <<5, a2>><5, 1><3, 1><4, 2><<13,a3>><1,3>
<2,1><3,1>...

. Still redundancy, code differently:

. <<5 a2>><1><3, 1><4, 2><<8, a3-a2>><3>
<2,1><3,1>...

. FInd the correct block

Implementation

Storage
Let L be the value of k

Size of skipped inverted files for a dataset becomes:

Size of Skipped Inverted Files

Parameter

No Skipping

1
10

100
1,000
10,000
100,000

Implementation

Performance on Boolean Queries

10.0 —
. w3 MO SKIPPING
] —o— L=t
i —0— L=100

—a&— L=10,000

CPU time (sec)

Number of terms

Implementation

Ranked Queries

. Any document containing any of the terms is considered
as a candidate.

. We need to restrict the number of accumulators

. Two algorithms:

. Quit

. Continue

Experimental Result

Top 200 documents are returned

40 -

] 00000007 -

re

----- £ continue, no skipping
—&— continue, L=100,000
—0— continue, L=10,000
—0— continue, L=1,000

CPU Time (sec)

array

LI II L] L) lllrl'll

1 1000000
Number of accumulators, k

Conclusions

Advantages:
. CPU time Is reduced

. Only compressing the pointers save the space but
Increase the processing time

. The idea can be applied to both the boolean gqueries and
the ranked queries

References

. Addison Wesley, 2008

G. Salton. Automatic Text Processing: The
Transformation, Analysis, and Retrieval of Information

by Computer. Addison-Wesley, Reading,
Massachusetts, 1989.

G. Salton and M.J. McGilll. Introduction to Modern
Information Retrieval. McGraw-Hill, New York, 1983.

