

IEEE Std 1016-1998

(Revision of
IEEE Std 1016-1987)

IEEE Recommended Practice for
Software Design Descriptions

Sponsor

Software Engineering Standards Committee
of the
IEEE Computer Society

Approved 23 September 1998

IEEE-SA Standards Board

Abstract:

The necessary information content and recommendations for an organization for Software
Design Descriptions (SDDs) are described. An SDD is a representation of a software system that is used as
a medium for communicating software design information. This recommended practice is applicable to
paper documents, automated databases, design description languages, or other means of description.

Keywords:

software design, software design description, software life cycle process

The Institute of Electrical and Electronics Engineers, Inc.
345 East 47th Street, New York, NY 10017-2394, USA

Copyright © 1998 by the Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 4 December 1998. Printed in the United States of America.

Print:

ISBN 0-7381-1455-3 SH94688

PDF:

ISBN 0-7381-1456-1 SS94688

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written
permission of the publisher.

IEEE Standards

 documents are developed within the IEEE Societies and the Standards Coordinating Committees of
the IEEE Standards Association (IEEE-SA) Standards Board. Members of the committees serve voluntarily and
without compensation. They are not necessarily members of the Institute. The standards developed within IEEE
represent a consensus of the broad expertise on the subject within the Institute as well as those activities outside of
IEEE that have expressed an interest in participating in the development of the standard.

Use of an IEEE Standard is wholly voluntary. The existence of an IEEE Standard does not imply that there are no other
ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEEE
Standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change
brought about through developments in the state of the art and comments received from users of the standard. Every
IEEE Standard is subjected to review at least every five years for revision or reaffirmation. When a document is more
than five years old and has not been reaffirmed, it is reasonable to conclude that its contents, although still of some
value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the
latest edition of any IEEE Standard.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation
with IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, together with
appropriate supporting comments.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to
specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate
action to prepare appropriate responses. Since IEEE Standards represent a consensus of all concerned interests, it is
important to ensure that any interpretation has also received the concurrence of a balance of interests. For this reason,
IEEE and the members of its societies and Standards Coordinating Committees are not able to provide an instant
response to interpretation requests except in those cases where the matter has previously received formal
consideration.

Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE-SA Standards Board
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331
USA

Authorization to photocopy portions of any individual standard for internal or personal use is granted by the Institute
of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance Center.
To arrange for payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 222 Rosewood
Drive, Danvers, MA 01923 USA; (978) 750-8400. Permission to photocopy portions of any individual standard for
educational classroom use can also be obtained through the Copyright Clearance Center.

Note: Attention is called to the possibility that implementation of this standard may require use of subject matter
covered by patent rights. By publication of this standard, no position is taken with respect to the existence or
validity of any patent rights in connection therewith. The IEEE shall not be responsible for identifying patents for
which a license may be required by an IEEE standard or for conducting inquiries into the legal validity or scope of
those patents that are brought to its attention.

Copyright © 1998 IEEE. All rights reserved.

iii

Introduction

(This introduction is not a part of IEEE Std 1016-1998, IEEE Recommended Practice for Software Design Descriptions.)

Purpose

This recommended practice specifies the necessary information content and recommends an organization for Software
Design Descriptions (SDDs). This document does not explicitly support, nor is it limited to, any particular software
design methodology or descriptive technology. It will guide the production of anything from paper design documents
to an automated database of design information. For an organization in the process of developing a design description
standard, use of this document will help the new standard meet the needs of all of its users. For an organization with a
mature design description standard, it should prove useful in evaluating and modifying that standard in light of the
informational and organizational needs of the design description user community.

This practice can be applied to commercial, scientific, and military software. Applicability is not restricted by size,
complexity, or criticality of the software. This practice considers both the software and its system operational
environment. It can be used where software is the system or where software is part of a larger system that is
characterized by hardware and software components and their interfaces.

Overview

This document consists of six clauses. Clause 1 defines the scope of the recommended practice and Clause 2
references other standards that should be followed when applying this practice. Clause 3 provides definitions of terms
within the context of the practice. Clause 4 places the SDD into the framework of the software development life cycle.
Clause 5 describes the minimum information that shall be included in an SDD and Clause 6 gives a recommended
organization for SDDs. Annex A shows a sample table of contents for an SDD. Annex B provides guidelines for using
this standard to meet the requirments of IEEE/EIA 12207.1-1997, IEEE/EIA Guide for Information Technology—
Software life cycle processes—Life cycle data.

Audience

This document is intended for those in technical and managerial positions who prepare and use SDDs. It will guide a
designer in the selection, organization, and presentation of design information. It will help standards developers ensure
that a design description is complete, concise, and well organized.

SDDs play a pivotal role in the development and maintenance of software systems. During its lifetime, a given design
description is used by project managers, quality assurance staff, configuration managers, software designers,
programmers, testers, and maintainers. Each of these users has unique needs, both in terms of required design
information and optimal organization of that information. Hence, a design description must contain all the design
information needed by those users.

Terminology

This recommended practice follows the

IEEE Standards Style Manual

. In particular, the word

shall

 and the imperative
form identify mandatory material within the recommended practice. The words

should

,

might

, and

may

 identify
advisory material.

Limitations

This standard assumes a functional decomposition approach to design understanding. This may limit its utility with
object-oriented approaches.

iv

Copyright © 1998 IEEE. All rights reserved.

History

The project authorization request (PAR) for development of this recommended practice was approved by the IEEE
Standards Board on 22 September 1983. Modification of the authorization request to change the title and scope was
approved on 13 March 1986. A series of 10 meetings were held within the United States and internationally between
March 1983 and March 1986. These meetings produced the draft submitted for balloting in April 1986. The first
edition of this recommended practice was approved by the IEEE Standards Board on 12 March 1987 and reaffirmed on
2 December 1993. The PAR for this revision, which added a new Annex B, was approved by the IEEE Standards Board
on 16 September 1997.

Suggestions for the improvement of this practice will be welcome. They should be sent to

Secretary
IEEE-SA Standards Board
Institute of Electrical and Electronics Engineers, Inc.
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331

Original contributors

This document was originally developed by the Software Design Description Working Group of the Software
Engineering Standards Subcommittee of the IEEE Computer Society. The Software Design Description Working
Group Steering Committee had the following members:

H. Jack Barnard

, Chair

James A. Darling

, Vice Chair

Robert F. Metz

, Secretary

Chris Beall
Patricia Cox
Leo Endres

H. Gregory Frank
Manoochehr Ghiassi
Daniel E. Klingler

John McArdle
Arthur L. Price
Basil Sherlund

The Software Design Description Working Group had the following members:

Frank Ackerman
Jim Anderson
Sandro Bologna
Fletcher Buckley
Lori J. Call
Wan P. Chiang
François Coallier
Cliff Cockerham
Patricia W. Daggett
Jim DeLeo
Cammie Donaldson
Euiar Dragstedt
Laurence E. Fishtahler
David Gelperin

Yair Gershkovitch
Tom Gilb
Shirley A. Gloss-Soler
Larry J. Hardouin
Fredrick Ho
David M. Home
William S. Junk
Laurel Kaleda
Tom Kurihara
Jim Lemmon
F. C. Lim
Oyvind Lorentzen
Bert Martin
Lindsay McDermid
Glen Meldrum

Walter Merenda
Randy Peterson
Robert Poston
Ian C. Pyle
Ann S. Ping
Hans Schaefer
David Schultz
David Siefert
Peter Smith
Richard H. Thayer
T. H. Tse
David Weiss
Charles J. Wertz
G. Robert Zambs

Copyright © 1998 IEEE. All rights reserved.

v

The following persons were on the balloting committee of the 1998 revision of the recommended practice:

Syed Ali
Theodore K. Atchinson
Mikhail Auguston
Robert E. Barry
H. Ronald Berlack
Richard E. Biehl
Sandro Bologna
Juris Borzovs
Kathleen L. Briggs
M. Scott Buck
Michael Caldwell
James E. Cardow
Enrico A. Carrara
Lawrence Catchpole
Keith Chan
Antonio M. Cicu
Theo Clarke
Sylvain Clermont
Rosemary Coleman
Virgil Lee Cooper
W. W. Geoff Cozens
Paul R. Croll
Patricia W. Daggett
Gregory T. Daich
Taz Daughtrey
Bostjan K. Derganc
Perry R. DeWeese
James Do
Evelyn S. Dow
Carl Einar Dragstedt
Charles Droz
Sherman Eagles
Leo Egan
Richard L. Evans
Richard E. Fairley
John W. Fendrich
Jay Forster
Richard C. Fries
Roger U. Fujii
Adel N. Ghannam
Marilyn Ginsberg-Finner
John Garth Glynn
Julio Gonzalez-Sanz

L. M. Gunther
David A. Gustafson
Jon D. Hagar
John Harauz
Herbert Hecht
William Hefley
Manfred Hein
Mark Heinrich
Debra Herrmann
Umesh P. Hiriyannaiah
John W. Horch
Peter L. Hung
George Jackelen
Frank V. Jorgensen
Vladan V. Jovanovic
William S. Junk
Ron S. Kenett
Judith S. Kerner
Robert J. Kierzyk
Shaye Koenig
Thomas M. Kurihara
John B. Lane
J. Dennis Lawrence
Randal Leavitt
Fang Ching Lim
William M. Lively
Dieter Look
John Lord
Stan Magee
David Maibor
Harold Mains
Robert A. Martin
Tomoo Matsubara
Mike McAndrew
Patrick D. McCray
Sue McGrath
Jacques Meekel
James Bret Michael
Alan Miller
Celia H. Modell
James W. Moore
Pavol Navrat

Myrna L. Olson
Indradeb P. Pal
Alex Polack
Peter T. Poon
Lawrence S. Przybylski
Kenneth R. Ptack
Ann E. Reedy
Annette D. Reilly
Dennis Rilling
Andrew P. Sage
Helmut Sandmayr
Stephen R. Schach
Norman Schneidewind
David J. Schultz
Lisa A. Selmon
Robert W. Shillato
David M. Siefert
Carl A. Singer
Nancy M. Smith
Luca Spotorno
Julia Stesney
Fred J. Strauss
Sandra Swearingen
Toru Takeshita
Richard H. Thayer
Booker Thomas
Patricia Trellue
Theodore J. Urbanowicz
Glenn D. Venables
Udo Voges
Ronald L. Wade
David D. Walden
Delores Wallace
William M. Walsh
John W. Walz
Camille S. White-Partain
Scott A. Whitmire
P. A. Wolfgang
Paul R. Work
Zhou Zhi Ying
Janusz Zalewski
Geraldine Zimmerman
Peter F. Zoll

vi

Copyright © 1998 IEEE. All rights reserved.

The final conditions for approval of this standard were met on 23 September 1998. This standard was conditionally
approved by the IEEE Standards Board on 16 September 1998, with the following membership:

Richard J. Holleman

, Chair

Donald N. Heirman

, Vice Chair

Judith Gorman

, Secretary

Satish K. Aggarwal
Clyde R. Camp
James T. Carlo
Gary R. Engmann
Harold E. Epstein
Jay Forster*
Thomas F. Garrity
Ruben D. Garzon
James H. Gurney

Jim D. Isaak
Lowell G. Johnson
Robert Kennelly
E. G. “Al” Kiener
Joseph L. Koepfinger*
Stephen R. Lambert
Jim Logothetis
Donald C. Loughry
L. Bruce McClung

Louis-François Pau
Ronald C. Petersen
Gerald H. Peterson
John B. Posey
Gary S. Robinson
Hans E. Weinrich
Donald W. Zipse

*Member Emeritus

 Kristin Dittmann

IEEE Standards Project Editor

Copyright © 1998 IEEE. All rights reserved.

vii

Contents

1. Scope...1

2. References ...1

3. Definitions...2

4. Considerations for producing an SDD ..2

4.1 Software life cycle ... 2
4.2 SDD within the life cycle... 2
4.3 Purpose of an SDD... 2

5. Design description information content ..3

5.1 Introduction .. 3
5.2 Design entities.. 3
5.3 Design entity attributes .. 3

6. Design description organization..5

6.1 Introduction .. 5
6.2 Design views .. 6

Annex A (Informative) Sample table of contents for an SDD...10

Annex B (Informative) Guidelines for compliance with IEEE/EIA 12207.1-1997...11

Copyright © 1998 IEEE. All rights reserved.

1

IEEE Recommended Practice for
Software Design Descriptions

1. Scope

This is a recommended practice for describing software designs. It specifies the necessary information content, and
recommended organization for a Software Design Description (SDD). An SDD is a representation of a software
system that is used as a medium for communicating software design information.

The practice may be applied to commercial, scientific, or military software that runs on any digital computer.
Applicability is not restricted by the size, complexity, or criticality of the software.

This practice is not limited to specific methodologies for design, configuration management, or quality assurance. It is
assumed that the quality design information and changes to the design of description will be managed by other project
activities. Finally, this document does not support nor is it limited to any particular descriptive technique. It may be
applied to paper documents, automated databases, design description languages, or other means of description.

2. References

This standard shall be used in conjunction with the following publications:

IEEE Std 610.12-1990, IEEE Standard Glossary of Software Engineering Terminology.

1

IEEE Std 730-1998, IEEE Standard for Software Quality Assurance Plans.

IEEE Std 828-1998, IEEE Standard for Software Configuration Management Plans.

IEEE Std 830-1998, IEEE Recommended Practice for Software Requirements Specifications.

Freeman, P. and A. I. Wasserman,

Tutorial on Software Design Techniques.

 4th Edition, IEEE Computer Society Press,
Annotated Bibliography, pp. 715–718, 1983.

1

IEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-
1331, USA (http://standards.ieee.org/).

2

Copyright © 1998 IEEE. All rights reserved.

IEEE
Std 1016-1998 IEEE RECOMMENDED PRACTICE FOR

3. Definitions

The definitions listed here establish meaning in the context of this recommended practice. Definitions of other terms
used in this document can be found in IEEE Std 610.12-1990

2

.

3.1 design entity:

An element (component) of a design that is structurally and functionally distinct from other
elements and that is separately named and referenced.

3.2 design view:

A subset of design entity attribute information that is specifically suited to the needs of a software
project activity.

3.3 entity attribute:

A named characteristic or property of a design entity. It provides a statement of fact about the
entity.

3.4 software design description (SDD):

A representation of a software system created to facilitate analysis, planning,
implementation, and decision making. A blueprint or model of the software system. The SDD is used as the primary
medium for communicating software design information.

4. Considerations for producing an SDD

This clause provides information to be considered before producing an SDD. How the SDD fits into the software life
cycle, where it fits, and why it is used are discussed.

4.1 Software life cycle

The life cycle of a software system is normally defined as the period of time that starts when a software product is
conceived and ends when the product is no longer available for use. The life cycle approach is an effective engineering
management tool and provides a model for a context within which to discuss the preparation and use of the SDD.
While it is beyond the scope of this document to prescribe a particular standard life cycle, a typical cycle will be used
to define such a context for the SDD. This cycle is based on IEEE Std 610.12-1990 and consists of a concept phase,
requirements phase, design phase, implementation phase, test phase, installation and checkout phase, operation and
maintenance phase, and retirement phase.

4.2 SDD within the life cycle

For both new software systems and existing systems under maintenance, it is important to ensure that the design and
implementation used for a software system satisfy the requirements driving that system. The minimum documentation
required to do this is defined in IEEE Std 730-1998. The SDD is one of these required products. It records the result
of the design processes that are carried out during the design phase.

4.3 Purpose of an SDD

The SDD shows how the software system will be structured to satisfy the requirements identified in the software
requirements specification IEEE Std 830-1998. It is a translation of requirements into a description of the software
structure, software components, interfaces, and data necessary for the implementation phase. In essence, the SDD
becomes a detailed blueprint for the implementation activity. In a complete SDD, each requirement must be traceable
to one or more design entities.

2

Information on references can be found in Clause 2.

Copyright © 1998 IEEE. All rights reserved.

3

IEEE
SOFTWARE DESIGN DESCRIPTIONS Std 1016-1998

5. Design description information content

5.1 Introduction

An SDD is a representation or model of the software system to be created. The model should provide the precise
design information needed for planning, analysis, and implementation of the software system. It should represent a
partitioning of the system into design entities and describe the important properties and relationships among those
entities.

The design description model used to represent a software system can be expressed as a collection of design entities,
each possessing properties and relationships.

3

 To simplify the model, the properties and relationships of each design
entity are described by a standard set of attributes. The design information needs of project members are satisfied
through identification of the entities and their associated attributes. A design description is complete when the
attributes have been specified for all the entities.

5.2 Design entities

A

design entity

 is an element (component) of a design that is structurally and functionally distinct from other elements
and that is separately named and referenced.

Design entities result from a decomposition of the software system requirements. The objective is to divide the system
into separate components that can be considered, implemented, changed, and tested with minimal effect on other
entities.

Entities can exist as a system, subsystems, data stores, modules, programs, and processes; see IEEE Std 610.12-1990.
The number and type of entities required to partition a design are dependent on a number of factors, such as the
complexity of the system, the design technique used, and the programming environment.

Although entities are different in nature, they possess common characteristics. Each design entity will have a name,
purpose, and function. There are common relationships among entities such as interfaces or shared data. The common
characteristics of entities are described by design entity attributes.

5.3 Design entity attributes

A

design entity attribute

 is a named characteristic or property of a design entity. It provides a statement of fact about
the entity.

Design entity attributes can be thought of as questions about design entities. The answers to those questions are the
values of the attributes. All the questions can be answered, but the content of the answer will depend upon the nature
of the entity. The collection of answers provides a complete description of an entity.

The list of design entity attributes presented in this subclause is the minimum set required for all SDDs. The selection
of these attributes is based on three criteria:

a) The attribute is necessary for all software projects;
b) An incorrect specification of the attribute value could result in a fault in the software system to be developed;
c) The attribute describes intrinsic design information and not information related to the design process.

Examples of attributes that do not meet the second and third criteria are designer names, design status, and
revision history. This important process information is maintained by other software project activities as
described in IEEE Std 730-1998 and IEEE Std 828-1998.

3

The design description model is similar to an entity-relationship model, a common approach to information modeling.

4

Copyright © 1998 IEEE. All rights reserved.

IEEE
Std 1016-1998 IEEE RECOMMENDED PRACTICE FOR

All attributes shall be specified for each entity. Attribute descriptions should include references and design
considerations such as tradeoffs and assumptions when appropriate. In some cases, attribute descriptions may have the
value

none

. When additional attributes are identified for a specific software project, they should be included in the
design description. The attributes and associated information items are defined in 5.3.1 through 5.3.10.

5.3.1 Identification

The name of the entity.

 Two entities shall not have the same name. The names for the entities may be selected to
characterize their nature. This will simplify referencing and tracking in addition to providing identification.

5.3.2 Type

A description of the kind of entity.

The type attribute shall describe the nature of the entity. It may simply name the kind
of entity, such as subprogram, module, procedure, process, or data store. Alternatively, design entities may be grouped
into major classes to assist in locating an entity dealing with a particular type of information. For a given design
description, the chosen entity types shall be applied consistently.

5.3.3 Purpose

A description of why the entity exists.

 The purpose attribute shall provide the rationale for the creation of the entity.
Therefore, it shall designate the specific functional and performance requirements for which this entity was created;
see IEEE Std 830-1998. The purpose attribute shall also describe special requirements that must be met by the entity
that are not included in the software requirements specification.

5.3.4 Function

A statement of what the entity does.

The function attribute shall state the transformation applied by the entity to inputs
to produce the desired output. In the case of a data entity, this attribute shall state the type of information stored or
transmitted by the entity.

5.3.5 Subordinates

The identification of all entities composing this entity.

 The subordinates attribute shall identify the

composed of

relationship for an entity. This information is used to trace requirements to design entities and to identify parent/child
structural relationships through a software system decomposition.

5.3.6 Dependencies

A description of the relationships of this entity with other entities.

 The dependencies attribute shall identify the

uses

 or

requires the presence of

 relationship for an entity. These relationships are often graphically depicted by structure
charts, data flow diagrams, and transaction diagrams.

This attribute shall describe the nature of each interaction including such characteristics as timing and conditions for
interaction. The interactions may involve the initiation, order of execution, data sharing, creation, duplicating, usage,
storage, or destruction of entities.

5.3.7 Interface

A description of how other entities interact with this entity.

 The interface attribute shall describe the

methods

 of
interaction and the

rules

 governing those interactions. The methods of interaction include the mechanisms for invoking
or interrupting the entity, for communicating through parameters, common data areas or messages, and for direct
access to internal data. The rules governing the interaction include the communications protocol, data format,
acceptable values, and the meaning of each value.

Copyright © 1998 IEEE. All rights reserved.

5

IEEE
SOFTWARE DESIGN DESCRIPTIONS Std 1016-1998

This attribute shall provide a description of the input ranges, the meaning of inputs and outputs, the type and format of
each input or output, and output error codes. For information systems, it should include inputs, screen formats, and a
complete description of the interactive language.

5.3.8 Resources

A description of the elements used by the entity that are external to the design.

 The resources attribute shall identify
and describe all of the resources

external

 to the design that are needed by this entity to perform its function. The
interaction rules and methods for using the resource shall be specified by this attribute.

This attribute provides information about items such as physical devices (printers, disc-partitions, memory banks),
software services (math libraries, operating system services), and processing resources (CPU cycles, memory
allocation, buffers).

The resources attribute shall describe usage characteristics such as the process time at which resources are to be
acquired and sizing to include quantity, and physical sizes of buffer usage. It should also include the identification of
potential race and deadlock conditions as well as resource management facilities.

5.3.9 Processing

A description of the rules used by the entity to achieve its function.

 The processing attribute shall describe the
algorithm used by the entity to perform a specific task and shall include contingencies. This description is a refinement
of the function attribute. It is the most detailed level of refinement for this entity.

This description should include timing, sequencing of events or processes, prerequisites for process initiation, priority
of events, processing level, actual process steps, path conditions, and loop back or loop termination criteria. The
handling of contingencies should describe the action to be taken in the case of overflow conditions or in the case of a
validation check failure.

5.3.10 Data

A description of data elements internal to the entity.

The data attribute shall describe the method of representation,
initial values, use, semantics, format, and acceptable values of internal data.

The description of data may be in the form of a data dictionary that describes the content, structure, and use of all data
elements. Data information shall describe everything pertaining to the use of data or internal data structures by this
entity. It shall include data specifications such as formats, number of elements, and initial values. It shall also include
the structures to be used for representing data such as file structures, arrays, stacks, queues, and memory partitions.

The meaning and use of data elements shall be specified. This description includes such things as static versus
dynamic, whether it is to be shared by transactions, used as a control parameter, or used as a value, loop iteration count,
pointer, or link field. In addition, data information shall include a description of data validation needed for the process.

6. Design description organization

6.1 Introduction

Each design description user may have a different view of what are considered the essential aspects of a software
design. All other information is extraneous to that user. The proportion of useful information for a specific user will
decrease with the size and complexity of a software project. The needed information then becomes difficult or
impractical to extract from the description and impossible to assimilate. Hence, a practical organization of the
necessary design information is essential to its use.

6

Copyright © 1998 IEEE. All rights reserved.

IEEE
Std 1016-1998 IEEE RECOMMENDED PRACTICE FOR

This clause introduces the notion of

design views

 to aid in organizing the design attribute information defined in
Clause 5. It does not supplement Clause 5 by providing additional design information nor does it prescribe the format
or documentation practice for design views.

A recommended organization of design entities and their associated attributes are presented in this clause to facilitate
the access of design information from various technical viewpoints. This recommended organization is flexible and
can be implemented through different media such as paper documentation, design languages, or database management
systems with automated report generation, and query language access. A sample table of contents is given in Annex A
to illustrate how an access structure to a design description may be prepared.

6.2 Design views

Entity attribute information can be organized in several ways to reveal all of the essential aspects of a design. In so
doing, the user is able to focus on design details from a different perspective or viewpoint. A

design view

 is a subset of
design entity attribute information that is specifically suited to the needs of a software project activity.

Each design view represents a separate concern about a software system. Together, these views provide a
comprehensive description of the design in a concise and usable form that simplifies information access and
assimilation.

A recommended organization of the SDD into separate design views to facilitate information access and assimilation
is given in Table 1. Each of these views, their use, and representation are discussed in detail.

Table 1—Recommended design views

6.2.1 Decomposition description

6.2.1.1 Scope

The decomposition description records the division of the software system into design entities. It describes the way the
system has been structured and the purpose and function of each entity. For each entity, it provides a reference to the
detailed description via the identification attribute.

The attribute descriptions for identification, type, purpose, function, and subordinates should be included in this design
view. This attribute information should be provided for all design entities.

Design view Scope Entity attributes Example representations

Decomposition
description

Partition of the system into
design entities

Identification, type,
purpose, function,
subordinates

Hierarchical
decomposition diagram,
natural language

Dependency description Description of the
relationships among
entities and system
resources

Identification, type,
purpose, dependencies,
resources

Structure charts, data flow
diagrams, transaction
diagrams

Interface description List of everything a
designer, programmer, or
tester needs to know to use
the design entitites that
make up the system

Identification, function,
interfaces

Interface files, parameter
tables

Detail description Description of the internal
design details of an entity

Identification, processing,
data

Flowcharts, N-S charts,
PDL

Copyright © 1998 IEEE. All rights reserved.

7

IEEE
SOFTWARE DESIGN DESCRIPTIONS Std 1016-1998

6.2.1.2 Use

The decomposition description can be used by designers and maintainers to identify the major design entities of the
system for purposes such as determining which entity is responsible for performing specific functions and tracing
requirements to design entities. Design entities can be grouped into major classes to assist in locating a particular type
of information and to assist in reviewing the decomposition for completeness. For example, a module decomposition
may exist separately from a data decomposition.

The information in the decomposition description can be used by project management for planning, monitoring, and
control of a software project. They can identify each software component, its purpose, and basic functionality. This
design information together with other project information can be used in estimating cost, staff, and schedule for the
development effort.

Configuration management may use the information to establish the organization, tracking, and change management
of emerging work products; see IEEE Std 828-1998. Metrics developers may also use this information for initial
complexity, sizing, staffing, and development time parameters. The software quality assurance staff can use the
decomposition description to construct a requirements traceability matrix.

6.2.1.3 Representation

The literature on software engineering describes a number of methods that provide consistent criteria for entity
decomposition (see Freeman and Wasserman,

Tutorial on Software Design Techniques

). These methods provide for
designing simple, independent entities and are based on such principles as structured design and information hiding.
The primary graphical technique used to describe system decomposition is a hierarchical decomposition diagram. This
diagram can be used together with natural language descriptions of purpose and function for each entity.

6.2.2 Dependency description

6.2.2.1 Scope

The dependency description specifies the relationships among entities. It identifies the dependent entities, describes
their coupling, and identifies the required resources.

This design view defines the strategies for interactions among design entities and provides the information needed to
easily perceive how, why, where, and at what level system actions occur. It specifies the type of relationships that exist
among the entities such as shared information, prescribed order of execution, or well-defined parameter interfaces.

The attribute descriptions for identification, type, purpose, dependencies, and resources should be included in this
design view. This attribute information should be provided for all design entities.

6.2.2.2 Use

The dependency description provides an overall picture of how the system works in order to assess the impact of
requirements and design changes. It can help maintainers to isolate entities causing system failures or resource
bottlenecks. It can aid in producing the system integration plan by identifying the entities that are needed by other
entities and that must be developed first. This description can also be used by integration testing to aid in the
production of integration test cases.

6.2.2.3 Representation

There are a number of methods that help minimize the relationships among entities by maximizing the relationship
among elements in the same entity. These methods emphasize low module coupling and high module cohesion (see
Freeman and Wasserman,

Tutorial on Software Design Techniques

).

8

Copyright © 1998 IEEE. All rights reserved.

IEEE
Std 1016-1998 IEEE RECOMMENDED PRACTICE FOR

Formal specification languages provide for the specification of system functions and data, their interrelationships, the
inputs and outputs, and other system aspects in a well-defined language. The relationship among design entities is also
represented by data flow diagrams, structure charts, or transaction diagrams.

6.2.3 Interface description

6.2.3.1 Scope

The entity interface description provides everything designers, programmers, and testers need to know to correctly use
the functions provided by an entity. This description includes the details of external and internal interfaces not
provided in the software requirements specification.

This design view consists of a set of interface specifications for each entity. The attribute descriptions for
identification, function, and interfaces should be included in this design view. This attribute information should be
provided for all design entities.

6.2.3.2 Use

The interface description serves as a binding contract among designers, programmers, customers, and testers. It
provides them with an agreement needed before proceeding with the detailed design of entities. In addition, the
interface description may be used by technical writers to produce customer documentation or may be used directly by
customers. In the latter case, the interface description could result in the production of a human interface view.

Designers, programmers, and testers may need to use design entities that they did not develop. These entities may be
reused from earlier projects, contracted from an external source, or produced by other developers. The interface
description settles the agreement among designers, programmers, and testers about how cooperating entities will
interact. Each entity interface description should contain everything another designer or programmer needs to know to
develop software that interacts with that entity. A clear description of entity interfaces is essential on a multiperson
development for smooth integration and ease of maintenance.

6.2.3.3 Representation

The interface description should provide the language for communicating with each entity to include screen formats,
valid inputs, and resulting outputs. For those entities that are data driven, a data dictionary should be used to describe
the data characteristics. Those entities that are highly visible to a user and involve the details of how the customer
should perceive the system should include a functional model, scenarios for use, detailed feature sets, and the
interaction language.

6.2.4 Detailed design description

6.2.4.1 Scope

The detailed design description contains the internal details of each design entity. These details include the attribute
descriptions for identification, processing, and data. This attribute information should be provided for all design
entities.

6.2.4.2 Use

This description contains the details needed by programmers prior to implementation. The detailed design description
can also be used to aid in producing unit test plans.

Copyright © 1998 IEEE. All rights reserved. 9

IEEE
SOFTWARE DESIGN DESCRIPTIONS Std 1016-1998

6.2.4.3 Representation

There are many tools used to describe the details of design entities. Program design languages can be used to describe
inputs, outputs, local data and the algorithm for an entity. Other common techniques for describing design entity logic
include using metacode or structured English, or graphical methods such as Nassi-Schneidermann charts or
flowcharts.

10 Copyright © 1998 IEEE. All rights reserved.

IEEE
Std 1016-1998 IEEE RECOMMENDED PRACTICE FOR

Annex A
Sample table of contents for an SDD
(Informative)

The following example of a table of contents shows only one of many possible ways to organize and format the design
views and associated information presented in Clause 6 of this standard.

Figure A.1—Table of contents for an SDD

Copyright © 1998 IEEE. All rights reserved. 11

IEEE
SOFTWARE DESIGN DESCRIPTIONS Std 1016-1998

Annex B
Guidelines for compliance with IEEE/EIA 12207.1-1997
(Informative)

B.1 Overview

The Software Engineering Standards Committee (SESC) of the IEEE Computer Society has endorsed the policy of
adopting international standards. In 1995, the international standard, ISO/IEC 12207, Information technology—
Software life cycle processes, was completed. The standard establishes a common framework for software life cycle
processes, with well-defined terminology, that can be referenced by the software industry.

In 1995 the SESC evaluated ISO/IEC 12207 and decided that the standard should be adopted and serve as the
international basis for life cycle processes within the IEEE Software Engineering Collection. The IEEE adaptation of
ISO/IEC 12207 is IEEE/EIA 12207.0-1996. It contains ISO/IEC 12207 and the following additions: improved
compliance approach, life cycle process objectives, life cycle data objectives, and errata.

The implementation of ISO/IEC 12207 within the IEEE also includes the following:

 IEEE/EIA 12207.1-1997, IEEE/EIA Guide for Information Technology—Software life cycle processes—
Life cycle data;

 IEEE/EIA 12207.2-1997, IEEE/EIA Guide for Information Technology—Software life cycle processes—
Implementation considerations; and

 Additions to 11 SESC standards (i.e., IEEE Stds 730, 828, 829, 830, 1012, 1016, 1058, 1062, 1219, 1233, and
1362) to define the correlation between the data produced by existing SESC standards and the data produced
by the application of IEEE/EIA 12207.1-1997.

NOTE — Although IEEE/EIA 12207.1-1997 is a guide, it also contains provisions for application as a standard with specific
compliance requirements. This annex treats IEEE/EIA 12207.1-1997 as a standard.

In order to achieve compliance with both this standard and IEEE/EIA 12207.1-1997, it is essential that the user review
and satisfy the data requirements for both standards.

When this standard is directly referenced, the precedence for conformance is based upon this standard alone. When
this standard is referenced with the IEEE/EIA 12207.x standard series, the precedence for conformance is based upon
the directly referenced IEEE/EIA 12207.x standard, unless there is a statement that this standard has precedence.

B.1.1 Scope and purpose

Both this standard and IEEE/EIA 12207.1-1997 place requirements on an SDD. The purpose of this annex is to explain
the relationship between the two sets of requirements so that users producing documents intended to comply with both
standards may do so.

B.2 Correlation

This clause explains the relationship between this standard and IEEE/EIA 12207.0-1996 in the following areas:
terminology, process, and life cycle data.

B.2.1 Terminology correlation

The two standards, IEEE/EIA 12207.0-1996 and IEEE Std 1016-1998, make different assumptions about the
nomenclature describing the results of the design activity.

12 Copyright © 1998 IEEE. All rights reserved.

IEEE
Std 1016-1998 IEEE RECOMMENDED PRACTICE FOR

IEEE/EIA 12207.0-1996 takes a project management or acquisition view. It is characterized by names for each aspect
of the design and concern for levels of design. This leads in IEEE/EIA 12207.0-1996 to the following titles: Software
Design Description, Software Architecture Description, Software Interface Design Description, and Data Base Design
Description. IEEE/EIA 12207.0-1996 uses the term “software item” as the overall descriptor for a design and uses the
term “software unit” as the basic element of a design.

IEEE Std 1016-1998 separates how information of a design description is organized from how it is used. The design
description information consists of the following: introduction, design entities, and design entity attributes. IEEE Std
1016-1998 uses the term “design entity” for the basic element of a design. The design entity attributes are identity,
type, purpose, function, subordinates, dependencies, interface, resources, processing, and data. IEEE Std 1016-1998
uses the concept of “design views” to facilitate the access of design information from various technical viewpoints.
The design views are ways of viewing the design description information. The recommended design views are
decomposition description, dependency description, interface description, and detail description.

Within IEEE Std 1016-1998 a design entity could be used to capture an SDD, software architecture description,
software interface design description, or data base design description.

B.2.2 Process correlation

IEEE/EIA 12207.1-1997 is based on the life cycle view of IEEE/EIA 12207.0-1996. It has a strong process bias. It is
particularly focused toward acquisition and has detailed process requirements. In contrast, IEEE Std 1016-1998 places
no requirements on process. It does, however, make process assumptions. Its process focus is on achieving design
integrity.

B.2.3 Life cycle data correlation for SDDs

The information required in an SDD by this recommended practice and the information required in an SDD by IEEE/
EIA 12207.1-1997 are similar. It is reasonable to expect that a single document could comply with both standards. The
main difference is that this recommended practice prescribes an information model for relating the elements of a
design, while IEEE/EIA 12207.1-1997 does not. Details are provided in Clause B.3.

B.2.4 Life cycle data correlation between other data in IEEE/EIA 12207.1-1997 and
IEEE Std 1016-1998

Table B.1 correlates the life cycle data other than SDDs between IEEE/EIA 12207.1-1997 and IEEE Std 1016-1998.
It provides information to users of both standards.

Table B.1—Life cycle data correlation between other data in
IEEE/EIA 12207.1-1997 and IEEE Std 1016-1998

Information item(s)
IEEE/EIA 12207.0-

1996 subclause
Kind of

documentation
IEEE/EIA 12207.1-

1997 subclause

Corresponding
clause of

IEEE Std 1016-1998

Database design
description

5.3.5.3, 5.3.6.3,
5.3.7.1

Description 6.4 5, 6.2.1

Software architecture
description

5.3.5.1, 5.3.5.6 Description 6.12 5, 6.2.2

Software interface
design description

5.3.5.2, 5.3.6.2 Description 6.19 5, 6.2.3

Copyright © 1998 IEEE. All rights reserved. 13

IEEE
SOFTWARE DESIGN DESCRIPTIONS Std 1016-1998

B.3 Document compliance

This clause provides details substantiating a claim that an SDD complying with IEEE Std 1016-1998 may achieve
“document compliance” with the SDD prescribed in IEEE/EIA 12207.1-1997. The requirements for document
compliance are summarized in a single row of Table 1 of IEEE/EIA 12207.1-1997. That row is reproduced in Table B.2.

Table B.2—Summary of requirements for an SDD
excerpted from Table 1 of IEEE/EIA 12207.1-1997

The requirements for document compliance are discussed in the following subclauses:

 B.3.1 discusses compliance with the information requirements noted in column 2 of Table B.2 as prescribed
by 5.3.6.1 and 5.3.6.7 of IEEE/EIA 12207.0-1996.

 B.3.2 discusses compliance with the generic content guideline (the “kind” of document) noted in column 3 of
Table B.2 as a “description.” The generic content guidelines for a “description” appear in 5.1 of IEEE/EIA
12207.1-1997.

 B.3.3 discusses compliance with the specific requirements for an SDD noted in column 4 of Table B.2 as
prescribed by 6.16 of IEEE/EIA 12207.1-1997.

 B.3.4 discusses compliance with the life cycle data objectives of Annex H of IEEE/EIA 12207.0-1996 as
described in 4.2 of IEEE/EIA 12207.1-1997.

B.3.1 Compliance with information requirements of IEEE/EIA 12207.0-1996

The information requirements for an SDD are those prescribed by 5.3.6.1 and 5.3.6.7 of IEEE/EIA 12207.0-1996. The
requirements are substantively identical with those considered in B.3.3 of this recommended practice.

B.3.2 Compliance with generic content guidelines of IEEE/EIA 12207.1-1997

The generic content guidelines for a “description” in IEEE/EIA 12207.1-1997 are prescribed by 5.1 of IEEE/EIA
12207.1-1997. A complying description shall achieve the purpose stated in 5.1.1 and include the information listed in
5.1.2 of IEEE/EIA 12207.1-1997.

The purpose of a description is as follows:

IEEE/EIA 12207.1-1997, subclause 5.1.1: Purpose: Describe a planned or actual function, design,
performance, or process.

An SDD complying with IEEE Std 1016-1998 would achieve the stated purpose.

Any description complying with IEEE/EIA 12207.1-1997 shall satisfy the generic content requirements provided in
5.1.2 of that standard. Table B.3 of this recommended practice lists the generic content items and, where appropriate,
references the clause of this recommended practice that requires the same information. It may be concluded that the

Information
item(s)

IEEE/EIA
12207.0-1996

subclause
Kind of

documentation

IEEE/EIA
12207.1-1997

subclause References

Software design
description

5.3.6.1, 5.3.6.7 Description 6.16 IEEE Std 1016-1998;
IEEE Std 1016.1-1993;
EIA/IEEE J-STD 016-1995, G.2.4;
see also ISO/IEC 5806, 5807, 6593,
8631, 8790, and 11411 for guidance
on use of notations

14 Copyright © 1998 IEEE. All rights reserved.

IEEE
Std 1016-1998 IEEE RECOMMENDED PRACTICE FOR

information required by recommended practice is sufficient for compliance except as noted in the third column of
Table B.3.

This recommended practice makes the assumption that project-specific data would be contained in other records.
Examples of such data include the date of issue and status, issuing organization, and change history.

Table B.3—Coverage of generic description requirements by IEEE Std 1016-1998

B.3.3 Compliance with specific content requirements of IEEE/EIA 12207.1-1997

The specific content requirements for an SDD in IEEE/EIA 12207.1-1997 are prescribed by 6.16 of IEEE/EIA
12207.1-1997. A compliant SDD shall achieve the purpose stated in 6.16.1 and include the information listed in 6.16.3
of IEEE/EIA 12207.1-1997.

The purpose of the SDD is as follows:

IEEE/EIA 12207.1-1997, Clause 6.16.1: Purpose: Describe the design of a software item. Along with
the software architecture, it provides the detailed design needed to implement the software. It may be
supplemented by software item interface design and database design.

An SDD complying with IEEE/EIA 12207.1-1997 shall satisfy the specific content requirements provided in 6.16.3 of
that standard. Table B.4 of this recommended practice lists the specific content items and, where appropriate,
references the clause of this recommended practice that requires the same information. The third column lists
information that shall be added in order to comply with the generic content requirements.

IEEE/EIA 12207.1-1997
generic content

Corresponding clause of
IEEE Std 1016-1998

Additions to requirements of
IEEE Std 1016-1998

a) Date of issue and status — See note.

b) Scope (Suggested for inclusion in an SDD;
see Annex A,1.2 Scope)

Scope shall be provided for an SDD.

c) Issuing organization — See note.

d) References — References used in preparing the
SDD shall be included in an SDD.

e) Context 4. Considerations for producing a
software design description

A discussion of the context for the
SDD shall be included in an SDD.

f) Notation for description 6. Design description organization A discussion of the notation used for
the design descriptions shall be
included in an SDD.

g) Body 5. Design description information
content

—

h) Summary — A summary shall be provided for an
SDD.

i) Glossary — A glossary of terms used shall be
provided in an SDD.

j) Change history — See note.

NOTE — IEEE Std 1016-1998 assumes this data is present in project files; for example, configuration status data.

Copyright © 1998 IEEE. All rights reserved. 15

IEEE
SOFTWARE DESIGN DESCRIPTIONS Std 1016-1998

Table B.4—Coverage of specific plan requirements by IEEE Std 1016-1998

B.3.4 Compliance with life cycle data objectives

In addition to the content requirements, life cycle data shall be managed in accordance with the objectives provided in
Annex H of IEEE/EIA 12207.0-1996.

NOTE — The information items covered by this recommended practice include plans and provisions for creating software life
cycle data related to the basic “design data” in H.4 of IEEE/EIA 12207.0-1996. It provides for the following design data:
architecture, algorithms, design constraints, mapping to requirements, and key decision rationale.

IEEE/EIA 12207.1-1997
 specific content

Corresponding clauses of
IEEE Std 1016-1998

Additions to requirements of
IEEE Std 1016-1998

6.16.3 a) Generic description
information

— —

6.16.3 b) Description of how the
software item satisfies the software
requirements...

5.3.3 Purpose —

... , including algorithms …, 5.3.9 Processing —

… , data structures 5.3.10 Data —

6.16.3 c) Software item input/output
description;

5.3.7 Interface —

6.16.3 d) Static relationships of
software units;

5.3.5 Subordinates
5.3.6 Dependencies
5.3.8 Resources

—

6.16.3 e) Concept of execution, … 5.3.7 Interfaces
5.3.8 Resources

—

... including data flow ... 5.3.6 Dependencies —

... and control flow...; 5.3.6 Dependencies —

6.16.3 f) Requirements traceability,
...

5.3.3 Purpose
5.3.5 Subordinates

—

6.16.3 f) (i) Software component-
level requirements traceability

5.3.3 Purpose —

6.16.3 f) (ii) Software unit-level
requirements traceability

5.3.3 Purpose —

6.16.3 g) Rationale for software item
design

5.3.3 Purpose —

6.16.3 h) Reuse element
identification

— The reuse element identification
shall be included in the SDD.

6.16.4 b) Define types of errors and
their handling which are not
specified in the software
requirements

5.3.7 Interfaces
5.3.8 Resources
5.3.9 Processing

—

16 Copyright © 1998 IEEE All rights reserved

IEEE
Std 1016-1998

B.4 Conclusion

The analysis documented in this annex suggests that any SDD complying with this recommended practice and the
additions shown in Table B.3 and Table B.4 also complies with the requirements of an SDD in IEEE/EIA 12207.1-
1997. In addition, to comply with IEEE/EIA 12207.1-1997, an SDD shall support the life cycle data objectives of
Annex H of IEEE/EIA 12207.0-1996.

