
Agility and Architecture: Why and

How They can Coexist?

M. Ali Babar

IT University of Copenhagen, Denmark

Keynote, Third Turkish Software Architecture Conference

Ankara, Turkey, November 4, 2010

Background Brief

M. Ali Babar

Associate Professor @ ITU

PhD in CSE, University of New South Wales

Work History:

ITU, CPH: 2009 …

Lero, Ireland: 2007 – 2009

NICTA, Australia: 2003 - 2007

JRCASE, Macquarie University: 2001 – 2003

Various industrial roles in IT: Prior to 2001

Research in software architecture,

Service Orientation, Cloud Computing, and

Software Development Paradigm

http://malibabar.wordpress.com

http://www.google.dk/imgres?imgurl=http://www.travel-images.com/finland.gif&imgrefurl=http://www.travel-images.com/finland.html&h=332&w=542&sz=2&tbnid=br-H747AMHZW5M:&tbnh=81&tbnw=132&prev=/images?q=finland&zoom=1&q=finland&hl=da&usg=__zmgqqgg8RqgxOCPA_AM1dvHk3D8=&sa=X&ei=3HPJTPCICoSWOonphaEB&ved=0CDUQ9QEwBA
http://www.google.dk/imgres?imgurl=http://www.travel-images.com/finland.gif&imgrefurl=http://www.travel-images.com/finland.html&h=332&w=542&sz=2&tbnid=br-H747AMHZW5M:&tbnh=81&tbnw=132&prev=/images?q=finland&zoom=1&q=finland&hl=da&usg=__zmgqqgg8RqgxOCPA_AM1dvHk3D8=&sa=X&ei=3HPJTPCICoSWOonphaEB&ved=0CDUQ9QEwBA
http://malibabar.wordpress.com/

ITU, CPH

Today’s Talk

• What is Agility?

• Perceptions about architecture

• What is architecture?

• Why do we combine agile and architecture?

• Lessons from two case studies

• Some practical points on integration

• Take-Away – one thought

– Agility and architecture:

A match made in Heaven…broken on Earth?

Agility

• Agility is the ability to both create and

respond to change in order to profit in

a turbulent business environment.

• Characteristics of Agile development

– Iterative and incremental

– Small releases

– Release plan/feature backlog

– Iteration plan/task backlog

– Collocation

Jim Highsmith (2002)

Sanjiv Augustine (2004)

Agile Manifesto

We are uncovering better ways of developing software

by doing it and helping others do it. Through this work

we have come to value:

• Individuals and interactions over process and tools,

• Working software over comprehensive documents,

• Customer collaboration over contract negotiation,

• Responding to change over following a plan.

That is, while there is value in the items on the right, we

value the items on the left more

Source: http://www.agilemanifesto.org/

Perceptions about Architecture

• Architecture is Big Up Front Design (BUFD)

• Architecture means massive documentations

• Architecture doesn’t add value to customers

– You Ain't Gonna Need It (YANGI)

• Architect – Prescriptive guy

ArchitectureAgility

More Perceptions

What is Software Architecture?

• Architecture is the fundamental organization of a
system embodied in its components, their
relationships to each other and to the environment
and the principles guiding its design and evolution.
(IEEE1471 – 2000).

• A software system’s architecture is the set of
principal design decision made about the system
(Taylor, R., et al., 2010).

• Its all about design DECISIONS – bad, good and
better ones

• Context – good decisions may become the bad ones

Software architecture should

provide intellectual control

and specifications for

meaningful reasoning by

stakeholders

Architecture: Key Design Decisions

Location

sensing

technology

Location

sensing

technology

Location

sensing

technology

Location

sensing

technology

Location

sensing

technology

Location

sensing

technology

Location

sensing

technology

Location

sensing

technology

Location

sensing

technology

Time-ordered queue of

raw location objects

Time-ordered queue of

raw location objects

Acquisition

Collation of related

location objects

Collation of related

location objects

Collation of related

location objects

Query subsystemQuery subsystem

Collection

Monitoring

ApplicationApplication

App-specific

Monitor

Collection of unnamed

tracked entity

location objects

Collection of unnamed

tracked entity

location objects

Collection of named

tracked entity

location objects

Collection of named

tracked entity

location objects

Reusable

Monitor

Reusable

Monitor

Source: Cooney et al., 2007

Quotes from Agile Practitioners!!!

• “It seems that many agile method users misunderstand what

agile methods are, just ignore architecture, and jump onto

refactorying.” Satoshi Basaki

• “The YAGNI belief has led many agile team ultimately to a

point of failure by ignoring the architecture’s essential

elements.” Blair, Watt, Cull.

• “Architecture is just as IMPORTANT in XP projects as it is in

any software project. Part of the architecture is captured by

the system metaphore.” Kent Beck

• “Tension between agility and architecture might be FALSE

dichotomy.” Craig Larman

Augmenting XP: Why and How?

• Quality requirements

“A system isn’t certifiably secure unless it has been built with

a set of security principles in mind and has been audited by

a security expert. While compatible with XP these practices

have to be incorporated into the team’s daily work.” (Kent

Beck, 2004)

• Scaling XP

“With awareness and appropriate adaptations, XP does scale.

Some problems can be simplified to be easily handled by a

small XP team. For others, XP must be augmented. The

basic value and principles apply at all scales. The practices

can be modified to suit your situation.”

• Context based adaptation is INEVITABLE

How to combine Agility &

Architecture?

A Story….

• A market leader in financial products

& services

• Multiple development sites with

various development paradigms

• Agile adoption started in 2005

• Needed to combining plan driven

and agile in distributed arrangements

• Main motivation was increased

competition from other sites for

internal offshoring

Architecture Design

• Agile project apply two stages of design solutions:
– Draw HIGH LEVEL roadmap called Software Architecture

Overall Plan (SAOP)

– Developers look for flaws – design validation

• NO attention to quality attributes – rather use

– Re-factoring – for example improving performance

– Maintenance projects – can be up to 2 years!!!

• Upfront design – Something that would change later

• Main drivers - functionality, delivery time, budget

Architecture Documentation

• Before Agile
– Comprehensive documentation of architecture and design

– Minimum four weeks on specifications for a medium size project

• After Agile
– Drastic reduction in architectural documentation – ONLY SAOP

• Argument against documentation - Formal
documentation did not add much value to customers

• 30% - 40% reduction in documentation resources

• NO argumentation around and documentation of design
that may NOT be implemented later on

Sharing Design Decisions

• Before Agile
– Detailed architectural documentations and ARB meetings

• After Agile
– Wiki and design meetings for sharing design decisions

• Design decisions on Whiteboards until implemented

• Wiki is delivered with software release

• Wiki based sharing of design initially works but then
searching design decisions becomes cumbersome

• Tracking architectural decisions becomes hard

Agile Approaches – Positives

• Bringing developers EARLY in the design decisions

• Don’t spend HUGE AMOUNT of time discussing and
documenting solutions that may not be implemented

• Clear and agreed upon deliverables for KNOWN
delivery date and budget - small iterations

• Saving up to 30-40% resources on design documents

• EASILY and QUICKLY sharing design decisions and
knowledge through Wikis and design meetings

Agile Approaches – Negatives

• Implementing User Stories WITHOUT a good
knowledge of subsequent inter-dependencies

• Architecturally very RISKY for new projects when
potential solutions are NOT very well understood

• NO time for careful design or considering alternatives

• NO encouragement to focus on quality attributes

• Design knowledge remains with INDIVIDUALS

• Searching design decisions on Wiki can be
DIFFICULT

Challenges & Strategies!!!

Challenges and Strategies 1/2

• Incorrect prioritization of user stories (C)

• Involve architects and developers in feature analysis
workshop (S)

• Lack of time and motivation for considering design
choices (C)

• Combine zero feature release with Feature Analysis
Workshop (S)
– Zero feature release - Do architecturally focused work

without delivering any user-visible features

Challenges and Strategies 2/2

• Unknown domain and untried solutions (C)

• Apply hybrid approach (S)

• Pilot project for sorting out backlogs (S)

• Lack of focus on quality attributes (C)

• Make quality attributes a success factor (S)

• Link development and maintenance budgets (S)

• Lack of Skilled people (C)

Another Story….

• Security software leader

• Market of 90+ countries

• Agile transformation begin

in 2005

• Commonly held agile

beliefs couldn’t work!!!

• Introduced platform based

development for SPEED

• Agile & Product lines

Features &

resources

Agile Approaches in Product Lines

Exploration before agile product development

Product line platform

Agile product development

Product roadmaps

Technology roadmaps

The system structure

Back End

System

Symbian Client

Mobile

Windows Client

Plans for Sprint

Backlog

Agile research project

2 weeks’ Sprints

Code

conventions

Architectural overview

model

High-level skeleton

Layered architecture

Model-View-Controller

architecture

Sprint planningSprint pre-planning

Sprint Backlog

Sprint working

Sprint releasing

Internal

release

Feature

analysis

Integration document

Interfaces between

subsystems

Target domain analyses

Requirements from

the product manager

Release to

the customer

Refine

Use

Refine

Use
Use

Use

Prototype

Product Backlog

Feature

descriptions

Use

Use

Use

Common

components

Platform-specific

components

Use

Use

Key Practices

1/2

• Implementing features without up-front design

exploration Doesn’t work

• Research projects can discover potential problems

• Rotate staff between research and product projects

• Research projects are carried out using Agile

practices BUT no delivered functionality

– Shorter lengths of Sprints – 2 weeks

• Organize teams based on the use of platforms

Key Practices 2/2

• Establishing mutual trust between the lead architect

and a project architect is essential

• Use of “Daily Meetings” for architectural discussions

• Use high level architectural description for

subcontractors, new team members, big architectural

modifications, and developing new products

• Each of the platforms has its own confluence to share

architectural documents and knowledge

Communicating Architecture

• Communicating architectural knowledge is an integral

part of integrating product line and Agile practices

• All designers regularly read the overall architecture

and comments on debatable issues

• Every new designer is expected to read the whole lot

from the beginning to the end and all updates

• Sharing architectural knowledge by locating all

platforms’ teams very close to each other

A few more practical points

Architect: Role & Responsibilities

Institutionalized the

role of architect with

more focus on

facilitation & serving

An architect should know

how to sell a key design

decision to product

owners in conflicting

situations

An architect needs to

have good

understanding of

Agile approaches

Project architect should

know the overall

architecture, required

features, and

implementation status

Have multiple architects –
solution architect, software

architect and implementation
architect for certain kinds of

projects

Architect should
document/update and

communicate the
architecture

Users Stories….

User Stories + Quality Scenarios

Utility

Maintainability/

Modifiability/

Extensibility

Performance

Security

Usability

Integrating with other

systems

New browser

M1 (H, H): Add the ability to interact with a new university records system

(to validate the authenticity of a degree) within 2 week 2 people work

M2 (H, M): Add the ability for a financial institution to access QVS to

report the details of received payments within 2 weeks 2 people work

M3 (M, H): Add the ability to connect to DIMA and check working

visa conditions within 4 weeks 2 people work

M4 (M, L): Add support for a new browser within two weeks

Response Time

P1 (H, M): Users need to be able to register within 5

seconds during heavy load (e.g. 500 requests per second)

P2 (H, M): User should be able to a submit verification request

within 10 seconds during peak hours (e.g. 500 requests per second)

Throughput P3 (H, H): The system demand exceed initial planned capacity

Data confidentiality

Data integrity
S1 (H, L): The system must provide a secure mechanism to

allow users retrieve back the password

S2 (H, M): Customers sensitive information (e.g., Credit Card details)

should not be accessible even the web interface security is compromised

S3 (M, M): Ability to report audit trial of modifications and

users’ activities (e.g.: attempted access)

S4 (M, H): Ability to make online payment using commercial-grade

encryption mechanisms

Normal operations

Customization

U1 (M, L): Allow users to save work in progress information (e.g.

candidate information) so that work could be completed at different stages

without needing to complete the whole process at once.

U2 (H, M): Allow users to cancel work in progress (e.g. cancel

verification request after data entry and before submitting the request)

U4 (M, L): Ability to personalize the look and feel of the QVS web site

U5 (H, L): Ability to use the system without any assistance i.e.: the

system need to be easy to learn and use
Proficiency training

U3 (L, M): Requesting verification for multiple candidates with minimum data

entry (e.g.: select multiple candidates and request same verification services)

M1 (H, H): Add the ability to interact with a new

University record system to validate the

authenticity of a degree within 2-person day.

Exploit Scenarios & Patterns

• Scenarios are useful for evaluating multiple

quality attributes of software architecture

• Key scenarios can drive the evaluation

– describe the behavior of architecture

– set the context for particular quality attributes

• Knowledge of patterns is always handy for

quickly evaluating design alternatives

• lightweight and agile process

– Only two roles involved

– Repository of architectural knowledge

1 1
Proxy

service

Service

service

AbstractService

service

Client

Agile Evaluation of Architecture

Architect
Developer

Stakeholders

Step 4. Prototype

Step 5. Evaluate

quality attributes

DevelopmentArchitecting

Business goals

Step 1. Determine quality

attributes

Step 2. Generate key scenarios

Step 3. Determine architecture

Alternatives – patterns and tactics

Step 6. Discuss evaluation results

Get Stakeholders on Board Early

Design and Use Simple Templates

Agile Values and Architecture

XP values Architectural Approaches

Communication Facilitate stakeholders’ involvement at all

stages of development

Simplicity Coarse-grained design with only enough

architecting to ensure quality attributes

Feedback Architectural evaluation provides early

feedback on risky and non-risky decisions

Courage Foreseen changes can be planned and

incorporated in the design, risk avoidance

A Few Take-Aways!!!

• Understand the Context

• Clearly and Precisely define architecture

• Show architecture’s business value to product owner

• Communicate and coordinate through architecture

• Use Critical functionality to assess architecture

• Understand when to freeze the architecture

• Track unresolved architecture issue (backlog)

Acknowledgements

• Discussions with Philippe Kruchten and his writings and ideas
shared by Pekka Abrahamsson

• Collaboration with Minna Pikkarainen and Toumas Ihme of
VTT, Finland were the main sources of case studies

• Some ideas are formed based on the articles submitted to our
call to a special issue of IEEE Software and included in its final
publication in March/April, 2010.

References

• Abrahamsson, P., Ali Babar, M., Kruchten, P., Agility and Architecture: Can They Coexist?. IEEE
Software 27(2): 16-22 (2010).

• Faber, R., Architects as Service Providers. IEEE Software 27(2): 33-40, (2010).

• Madison, J., Agile Architecture Interactions. IEEE Software 27(2): 41-48, (2010).

• Blair, S., Watt, R., Cull, T., Responsibility-Driven Architecture. IEEE Software 27(2): 26-32, (2010).

• Ali Babar, M., An exploratory study of architectural practices and challenges in using agile software
development approaches. WICSA/ECSA 2009: 81-90.

• Ali Babar, M., Ihme, T., Pikkarainen, M., An industrial case of exploiting product line architectures in agile
software development. SPLC 2009: 171-179.

• Nord, R., Tomayko, J., Software Architecture-Centric Methods and Agile Development. IEEE Software
23(2): 47-53 (2006).

• Hofmeister, C., Kruchten, P., Nord, R., Obbink, H., Ran, A., America, P., A general model of software
architecture design derived from five industrial approaches. Journal of Systems and Software 80(1): 106-
126 (2007).

Thank You

M. Ali Babar

alibabar.m@gmail.com

Agile Response to Such Scenarios

Feature Analysis & Scenarios

Workshop

Build Architectural Competency

