1. Consider a relation R with five attributes $ABCDE$. You are given the following dependencies: $A \rightarrow B$, $BC \rightarrow E$, $ED \rightarrow A$.

1. List all keys for R.
2. Is R in 3NF?
3. Is R in BCNF?

2. Consider the following relation.

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>y_1</td>
<td>z_1</td>
</tr>
<tr>
<td>x_1</td>
<td>y_1</td>
<td>z_2</td>
</tr>
<tr>
<td>x_2</td>
<td>y_1</td>
<td>z_1</td>
</tr>
<tr>
<td>x_2</td>
<td>y_1</td>
<td>z_3</td>
</tr>
</tbody>
</table>

1. List all the functional dependencies that this relation instance satisfies.
2. Assume that the value of attribute Z of the last record in the relation is changed from z_3 to z_2. Now list all the functional dependencies that this relation instance satisfies.

3. Consider the following collection of relations and dependencies. Assume that each relation is obtained through decomposition from a relation with attributes $ABCDEFGHI$ and that all the known dependencies over relation $ABCDEFGHI$ are listed for each question. (The questions are independent of each other, obviously, since the given dependencies over $ABCDEFGHI$ are different.) For each (sub)relation: (a) State the strongest normal form that the relation is in. (b) If it is not in BCNF, decompose it into a collection of BCNF relations.

1. $R_1(A, B, C, D, E), A \rightarrow B, C \rightarrow D$
2. $R_2(A, B, F), AC \rightarrow E, B \rightarrow F$
3. $R_3(A, D), D \rightarrow G, G \rightarrow H$
4. $R_4(D, C, H, G), A \rightarrow I, I \rightarrow A$
5. $R_5(A, I, C, E)$
4. Suppose that we have the following three tuples in a legal instance of a relation schema \(S \) with three attributes \(ABC \) (listed in order): \((1,2,3), (4,2,3), \) and \((5,3,3)\).

1. Which of the following dependencies can you infer does not hold over schema \(S \)?

 (a) \(A \to B \), (b) \(BC \to A \), (c) \(B \to C \)

2. Can you identify any dependencies that hold over \(S \)?

5. Suppose you are given a relation \(R \) with four attributes \(ABCD \). For each of the following sets of FDs, assuming those are the only dependencies that hold for \(R \), do the following: (a) Identify the candidate key(s) for \(R \). (b) Identify the best normal form that \(R \) satisfies (1NF, 2NF, 3NF, or BCNF). (c) If \(R \) is not in BCNF, decompose it into a set of BCNF relations that preserve the dependencies.

 1. \(C \to D, C \to A, B \to C \)
 2. \(B \to C, D \to A \)
 3. \(ABC \to D, D \to A \)
 4. \(A \to B, BC \to D, A \to C \)
 5. \(AB \to C, AB \to D, C \to A, D \to B \)

6. Suppose you are given a relation \(R(A, B, C, D) \). For each of the following sets of FDs, assuming they are the only dependencies that hold for \(R \), do the following: (a) Identify the candidate key(s) for \(R \). (b) State whether or not the proposed decomposition of \(R \) into smaller relations is a good decomposition and briefly explain why or why not.

 1. \(B \to C, D \to A \); decompose into \(BC \) and \(AD \).
 2. \(AB \to C, C \to A, C \to D \); decompose into \(ACD \) and \(BC \).
 3. \(A \to BC, C \to AD \); decompose into \(ABC \) and \(AD \).
 4. \(A \to B, B \to C, C \to D \); decompose into \(AB \) and \(ACD \).
 5. \(A \to B, B \to C, C \to D \); decompose into \(AB, AD \) and \(CD \).