
Data-Parallel Web Crawling Models?

Berkant Barla Cambazoglu, Ata Turk, and Cevdet Aykanat

Department of Computer Engineering, Bilkent University
06800, Ankara, Turkey

{berkant,atat,aykanat}@cs.bilkent.edu.tr

Abstract. The need to quickly locate, gather, and store the vast amount
of material in the Web necessitates parallel computing. In this paper,
we propose two models, based on multi-constraint graph-partitioning,
for efficient data-parallel Web crawling. The models aim to balance the
amount of data downloaded and stored by each processor as well as
balancing the number of page requests made by the processors. The
models also minimize the total volume of communication during the link
exchange between the processors. To evaluate the performance of the
models, experimental results are presented on a sample Web repository
containing around 915,000 pages.

1 Introduction

During the last decade, an exponential increase has been observed in the amount
of the textual material in the Web. Locating, fetching, and caching this con-
stantly evolving content, in general, is known as the crawling problem. Currently,
crawling the whole Web by means of sequential computing systems is infeasible
due to the need for vast amounts of storage and high download rates. Further-
more, the recent trend in construction of cost-effective PC clusters makes the
Web crawling problem an appropriate target for parallel computing.

In Web crawling, starting from some seed pages, new pages are located using
the hyperlinks within the already discovered pages. In parallel crawling, each
processor is responsible from downloading a subset of the pages. The processors
can be coordinated in three different ways: independent, master-slave, and data-

parallel. In the first approach, each processor independently traverses a portion of
the Web and downloads a set of pages pointed by the links it discovered. Since
some pages are fetched multiple times, in this approach, there is an overlap
problem, and hence, both storage space and network bandwidth are wasted. In
the second approach, each processor sends its links, extracted from the pages it
downloaded, to a central coordinator. This coordinator, then assigns the collected
URLs to the crawling processors. The weakness of this approach is that the
coordinating processor becomes a bottleneck.

Our focus, in this work, is on the third approach. In this approach, pages are
partitioned among the processors such that each processor is responsible from

? This work is partially supported by The Scientific and Technical Research Council
of Turkey (TÜBİTAK) under project EEEAG-103E028.

C. Aykanat et al. (Eds.): ISCIS 2004, LNCS 3280, pp. 801–809, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

802 Berkant Barla Cambazoglu et al.

fetching a non-overlapping subset of the pages. Since some pages downloaded by
a processor may have links to the pages in other processors, these inter-processor
links need to be communicated in order to obtain the maximum page coverage
and to prevent the overlap of downloaded pages. In this approach, each processor
freely exchanges its inter-processor links with the others.

The page-to-processor assignment can be hierarchical or hash-based. The
hierarchical approach assigns pages to processors according to the domain of
URLs. This approach suffers from the imbalance in processor workloads since
some domains contain more pages than the others. In the hash-based approach,
either single pages or sites as a whole are assigned to the processors. This ap-
proach solves the load balancing problem implicitly. However, in this approach,
there is a significant communication overhead since inter-processor links, which
must be communicated, are not considered while creating the page-to-processor
assignment.

The page-to-processor assignment problem has been addressed by a number
of authors. Cho and Garcia-Molina [3] used the site-hash-based assignment tech-
nique with the belief that it will reduce the number of inter-processor links when
compared to the page-hash-based assignment technique. Boldi et al. [2] applied
the consistent hashing technique, a method assigning more than one hash values
for a site, in order to handle the failures among the crawling processors. Teng et
al. [7] used a hierarchical, bin-packing-based page-to-processor assignment ap-
proach. In this work, we propose two models based on multi-constraint graph
partitioning for load-balanced and communication-efficient parallel crawling.

The rest of the paper is organized as follows. In Section 2, the proposed paral-
lel crawling models are presented. In Section 3, we provide some implementation
details about our parallel Web crawler. In Section 4, experimental results are
presented. Finally, we conclude in Section 5.

2 Web Graph Partitioning

2.1 Graph Partitioning Problem

An undirected graph G = (V , E) [1] is defined as a set of vertices V and a set
of edges E . Every edge eij ∈ E connects a pair of distinct vertices vi and vj .
Multiple weights w1

i , w2
i , . . . , wM

i may be associated with a vertex vi∈V . A cost
cij is assigned as the cost of an edge eij ∈E .

Π ={V1,V2, . . . ,VK} is said to be a K-way partition of G if each part Vk is a
nonempty subset of V , parts are pairwise disjoint, and the union of the K parts
is equal to V . A partition Π is said to be balanced if each part Vk satisfies the
balance criteria

W m
k ≤ W m

avg(1 + ε), for k=1, 2, . . . , K and m=1, 2, . . . , M. (1)

In Eq. 1, each weight W m
k of a part Vk is defined as the sum of the weights

wm
i of the vertices in that part. W m

avg is the weight that each part should have
in the case of perfect load balancing. ε is the maximum imbalance ratio allowed.

Data-Parallel Web Crawling Models 803

In a partition Π of G, an edge is said to be cut if its pair of vertices fall into
two different parts and uncut otherwise. The cutsize definition for representing
the cost χ(Π) of a partition Π is

χ(Π) =
∑

eij∈E

cij . (2)

After these definitions, the K-way, multi-constraint graph partitioning prob-
lem [5,6] can be stated as the problem of dividing a graph into two or more parts
such that the cutsize is minimized (Eq. 2) while the balance criteria (Eq. 1) on
the part weights is maintained. This problem is known to be NP-hard.

2.2 Page-Based Partitioning Model

A major assumption in our models is that the crawling system runs in sessions.
Within a session, if a page is downloaded, it is not downloaded again, that is,
each page can be downloaded just once in a session. The crawling system, after
downloading enough number of pages, decides to start another download session
and recrawls the Web. For efficient crawling, our models utilize the information
(i.e., the Web graph) obtained in the previous crawling session and provide a
better page-to-processor mapping for the following crawling session. We assume
that between two consecutive sessions, there are no drastic changes in the Web
graph (in terms of page sizes and the topology of the links).

We describe our parallel crawling models on the sample Web graph displayed
in Figure 1. In this graph, which is assumed to be created in the previous crawling
session, there are 7 sites. Each site contains several pages, which are represented
by small squares. The directed lines between the squares represent the hyperlinks
between the pages. There may be multi-links (e.g., (i1, i3)) and bidirectional links
between the pages (e.g., (g5, g6)). In the figure, inter-site links are displayed as
dashed lines. For simplicity, unit page sizes and URL lengths are assumed.

In our page-based partitioning model, we represent the link structure between
the pages by a page graph Gp = (Vp, Ep). In this representation, each page pi

corresponds to a vertex vi. There exists an undirected edge eij between vertices
vi and vj if and only if page pi has a link to page pj or vice versa. Multi-links
between the pages are collapsed into a single edge. Two weights w1

i and w2
i are

associated with each vertex vi. The weight w1
i of vertex vi is equal to the size (in

bytes) of page pi, and represents the download and storage overhead for pi. The
weight w2

i of vertex vi is equal to 1, and represents the overhead for requesting
pi. The cost cij of an edge eij ∈Ep is equal to the total string length of the links
(pi, pj) and (pj , pi) (if any) between pages pi and pj . This cost corresponds to
the volume of communication performed for exchanging the links between pages
pi and pj in case pi and pj are mapped to different processors.

In a K-way partition Πp =(Vp
1 ,Vp

2 , . . . ,Vp
K) of the page graph Gp, each vertex

part Vp
k corresponds to a subset Pk of pages to be downloaded by processor Pk.

That is, every page pi∈Pk, represented by a vertex vi∈Vp
k , is fetched and stored

by processor Pk. In this model, maintaining the balance on part weights W 1
k and

804 Berkant Barla Cambazoglu et al.

���

���

���

���

�
	
� �

���

� �

� 	

 	

 �

 �
� �

��� ���

��	
���

� �

 �
� 	

��� ������� ���������! #"!� ��$#%&� "('
)
�

)�	

) �

)�*

+ 	

+,�

+-�

+,* +-�

. � ������� /
010
/
���1� 230
4

56� ���7��� -8:9(8#� /:0�;<=� ������� >#8�?�010�� 230
4

@A� ������� $#4�0:B1� 0:'(/

CD� ������� 4��E23'(019F0�GH"!� 230
4

I-� ���7��� �� #"(�!�J� 230
4

� �

� �

+ �

)
�

� *

�A*

� �

) �

 *

�
�� * ���

Fig. 1. An example to the graph structure in the Web

W 2
k (Eq. 1) in partitioning the page graph Gp, effectively balances the download

and storage overhead of processors as well as the number of page download
requests issued by processors. Minimizing the cost χ(Πp) (Eq. 2) corresponds
to minimizing the total volume of inter-processor communication that will occur
during the link exchange between processors.

Figure 2 shows a 3-way partition for the page graph corresponding to the
sample Web graph in Figure 1. For simplicity, unit edge costs are not displayed.
In this example, almost perfect load balance is obtained since weights (for both
weight constraints) of the three vertex parts Vp

1 , Vp
2 , and Vp

3 are respectively 14,
13, and 14. Hence, according to this partitioning, each processor Pk, which is
responsible from downloading all pages pi ∈ Pp

k , is expected to fetch and store
almost equal amounts of data in the next crawling session. In Figure 2, dotted
lines represent the cut edges. These edges correspond to inter-processor links,
which must be communicated. In our example, χ(Πp)=8, and hence, the total
volume of link information that must be communicated is 8.

2.3 Site-Based Partitioning Model

Due to the enormous size of the Web, the constructed page graph may be huge,
and hence it may be quite costly to partition it. For efficiency purposes, we also
propose a site-based partitioning model, which considers sites instead of pages
as the atomic tasks for assignment. We represent the link structure between

Data-Parallel Web Crawling Models 805

2
2

2
2

2

KML

K�N

KMO

PRQ
P!S

PTL

U Q

U L

U O
V O

KXW KMY

KZQ P3O

U S
V Q

[�Q

[\S

[1O

[\] [1N

V S

V L

[#L
KX]

U]

KXS

^ L

^ Q ^ O

_RN

_!L

_�]_RO

^]

^ S

_�S

_ Q

`bac

` ad

` ae

P!WP!] P3N

Fig. 2. A 3-way partition for the page graph of the sample Web graph in Figure 1

the pages by a site graph GS = (VS, ES). All pages belonging to a site Si are
represented by a single vertex vi∈VS. The weights w1

i and w2
i of each vertex vi

are respectively equal to the total size of the pages (in bytes) and the number
of pages hosted by site Si. There is an edge eij between two vertices vi and vj if
and only if there is at least one link between any pages px∈Si and py∈Sj . The
cost cij of an edge eij ∈ES is equal to the total string length of all links (px, py)
and (py, px) between each pair of pages px∈Si and py ∈Sj . All intra-site links,
i.e., the links between the pages belonging to the same site, are ignored.

In a K-way partition ΠS =(VS
1 ,VS

2 , . . . ,VS
K) of graph GS, each vertex part VS

k

corresponds to a subset Sk of sites whose pages are to be downloaded by processor
Pk. Balancing the part weights (Eq. 1) and minimizing the cost (Eq. 2) has the
same effects with those in the page-based model.

Figure 3 shows a 2-way partition for the site graph corresponding to the
sample Web graph in Figure 1. Vertex weights are displayed inside the circles,
which represent the sites. Part weights are W 1

1 = W 2
1 = 17 and W 1

2 = W 2
2 = 24

for the two parts VS
1 and VS

2 , respectively. The cut edges are displayed as dotted
lines. The cut cost is χ(Πp)=1+1+3=5. Hence, according to this partitioning,
the total volume of communication for the next crawling session is expected to
be 5.

3 Implementation Details

We developed a data-parallel crawling system, which utilizes the proposed mod-
els. The crawler is implemented in C using MPI libraries for message passing.

806 Berkant Barla Cambazoglu et al.

8

4
5

5

7

6

6

2
3

1

1
3

2

1
1

3

3

f

g h
i7jk

i jl

m
n

o

p

Fig. 3. A 2-way partition for the site graph of the sample Web graph in Figure 1

In our parallel crawling system, each crawling processor uses synchronous I/O
and concurrently crawls the set of pages it is responsible from. Processors run
several threads to fetch data from multiple servers simultaneously. Threads per-
form three different tasks: domain name resolution, page download, and URL
extraction from downloaded pages. Intermediate data such as downloaded URLs,
page-content hashes, and resolved DNS entries, which must be stored in memory,
are kept in dynamic trie data structures. FIFO queues are used for coordinating
the data flow between threads of a processor.

As explained in Section 2, the page-to-processor assignment is determined
using page- or site-based partitioning models prior to the crawling process. The
state-of-the-art graph partitioning tool MeTiS [4] is used for partitioning the
constructed page and site graphs. The resulting part vectors are replicated at
each processor. Whenever a URL which has not been crawled yet is discovered,
the processor responsible from the URL is located by the part vector. If a newly
found URL which is not listed in the part vector is discovered, the discovering
processor becomes responsible from crawling that URL.

4 Experimental Results

In the experiments, the multi-constraint, multi-level k-way partitioning algo-
rithm of MeTiS is used. The imbalance tolerance is set to 5% for both weight
constraints. Due to the randomized nature of the algorithms, experiments are
repeated 8 times, and the average values are reported. Results are provided
for load imbalance values in storage and page request amounts of processors
as well as the total volume of inter-processor communication in link exchange.
We compared the proposed models with the hash-based assignment techniques.
Experiments are conducted on the K values 8, 16, 24, 32, 40, 48, 56, and 64. As
the test dataset, the sample (8 GB) Web collection provided by Google Inc. [8]

Data-Parallel Web Crawling Models 807

Table 1. The load imbalance values in storage amounts of processors

Page-based Site-based
K GP-based Hash-based GP-based Hash-based

8 3.31 1.04 4.59 15.32
16 4.02 1.73 4.72 22.94
24 4.44 1.88 4.74 30.15
32 4.66 2.53 4.75 36.61
40 4.68 2.64 4.76 41.22
48 4.69 2.93 4.76 44.59
56 4.76 3.70 4.76 52.73
64 4.76 3.84 4.76 54.19

is used. This collection contains 913, 570 pages and 15, 820 sites. Average vertex
degrees are respectively 4.9 and 10.5 for the page and site graphs created.

Table 1 displays the load imbalance values observed in storage amounts
of processor for the graph-partitioning-based (GP-based) and hash-based tech-
niques. Table 2 shows the imbalance values observed for the number of page
download requests issued by processors. Experiments on page-based assignment
show that the hash-based approach performs slightly better than our GP-based
model in balancing both the storage overhead and the number of page down-
load requests. In site-based assignment, the GP-based model outperforms the
hash-based approach, whose imbalance rates deteriorate with increasing K val-
ues. This is basically due to the high variation in the sizes of the sites in the
dataset used. Since solution space is more restricted in the site graph, the site-
based GP model produces slightly inferior load imbalance rates compared to the
page-based GP model.

Table 3 presents the total volume of link information that must be communi-
cated among the processors for different techniques. As expected, an increasing

Table 2. The load imbalance values in page requests made by processors

Page-based Site-based
K GP-based Hash-based GP-based Hash-based

8 3.44 0.78 4.57 3.84
16 4.01 1.15 4.75 6.17
24 4.50 1.40 4.75 7.03
32 4.68 1.56 4.75 8.89
40 4.74 1.66 4.76 10.78
48 4.74 1.95 4.76 12.16
56 4.76 2.09 4.76 13.49
64 4.76 2.34 4.76 13.73

808 Berkant Barla Cambazoglu et al.

Table 3. The total volume of communication (in bytes) during the link exchange

Page-based Site-based
K GP-based Hash-based GP-based Hash-based

8 64,489 5,306,461 131,129 1,001,602
16 69,643 5,685,823 151,264 1,070,871
24 71,385 5,811,600 163,454 1,095,860
32 75,285 5,875,123 180,751 1,108,891
40 82,038 5,912,733 187,987 1,114,957
48 80,038 5,938,494 193,011 1,117,739
56 92,947 5,956,059 213,642 1,122,955
64 92,467 5,969,393 234,272 1,126,470

trend is observed in communication volumes as K increases. Site-based hashing
results in around 5 times less communication than page-based hashing. This is
due to the fact that many inter-processor links are eliminated since sites act
as clusters of pages, and almost 4 out of 5 page links turn out to be an intra-
processor link when site-based hashing is employed.

According to Table 3, the proposed GP-based models perform much bet-
ter in minimizing the total communication volume. However, in contrast to the
hash-based techniques, the site-based GP model causes an increase in the com-
munication volume. This can be explained by the sparsity of our dataset and
the simpler (relative to the page graph) site graph topology which causes a re-
duction in the solution space. Due to the sparsity of our dataset, there are many
pages which do not link each other although they are associated with the same
site. By working on the coarser site graph, the MeTiS graph partitioning tool
fails to utilize the good edge cuts that cross across the sites (e.g., in Figure 2,
pages y1, y2, y3, and y4 are mapped to Vp

1 while y5, y6, and y7 are mapped to
Vp

3). Consequently, the site-based GP model results in partitions with higher cut
costs and hence communication volumes.

5 Conclusion

In this paper, we presented two models, based on multi-constraint graph parti-
tioning, for data-parallel Web crawling. Compared to the hash-based assignment
techniques, the proposed models produced similar load imbalance values for stor-
age overheads and page download requests of processors while producing superior
results in minimizing the total volume of communication in inter-processor link
exchange. Currently, we are about to start a large crawl of the Web using the
developed parallel Web crawler on a 48-node PC cluster. This will allow us to
repeat the experiments presented in this paper on a larger collection of pages
and verify the validity of our theoretical results in practice.

Data-Parallel Web Crawling Models 809

References

1. Berge, C.: Graphs and hypergraphs. North-Holland Publishing Company (1973)
2. Boldi, P., Codenotti, B., Santini, M., Vigna, S.: Ubicrawler: A scalable fully dis-

tributed Web crawler. In: Proceedings of AusWeb02, the Eighth Australian World
Wide Web Conference. (2002)

3. Cho J., Garcia-Molina, H.: Parallel crawlers. In: Proceedings of the 11th World
Wide Web conference (WWW11), Honolulu, Hawaii. (2002) 124–135

4. Karypis, G., Kumar, V.: MeTiS: A software package for partitioning unstructured
graphs, partitioning meshes and computing fill-reducing orderings of sparse matri-
ces. Technical Report, University of Minnesota (1998)

5. Karypis, G., Kumar, V.: Multilevel k-way partitioning scheme for irregular graphs.
Journal of Parallel and Distributed Computing 48(1) (1998) 96–129

6. Schloegel, K., Karypis, G., Kumar, V.: Parallel multilevel algorithms for multi-
constraint graph partitioning. In: Proceedings of the 6th International Euro-Par
Conference on Parallel Processing. (2000) 296–310

7. Teng, S., Lu, Q., Eichstaedt, M., Ford, D., Lehman, T.: Collaborative Web crawl-
ing: Information gathering/processing over Internet. In: 32nd Hawaii International
Conference on System Sciences. (1999)

8. http://www.google.com/

http://www.google.com/

	Introduction
	Web Graph Partitioning
	Graph Partitioning Problem
	Page-Based Partitioning Model
	Site-Based Partitioning Model

	Implementation Details
	Experimental Results
	Conclusion

