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Abstract
We propose and implement a sparse matrix-matrix multiplication (SpGEMM)
algorithm running on top of Accumulo’s iterator framework which enables high
performance distributed parallelism. The proposed algorithm provides write-locality
while ingesting the output matrix back to database via utilizing row-by-row parallel
SpGEMM. The proposed solution also alleviates scanning of input matrices mul-
tiple times by making use of Accumulo’s batch scanning capability which is used
for accessing multiple ranges of key-value pairs in parallel. Even though the use of
batch-scanning introduces some latency overheads, these overheads are alleviated by
the proposed solution and by using node-level parallelism structures. We also pro-
pose a matrix partitioning scheme which reduces the total communication volume and
provides a balance of workload among servers. The results of extensive experiments
performed on both real-world and synthetic sparse matrices show that the proposed
algorithm scales significantly better than the outer-product parallel SpGEMM algo-
rithm available in the Graphulo library. By applying the proposed matrix partitioning,
the performance of the proposed algorithm is further improved considerably.

Keywords Databases · NoSQL · Accumulo · Graphulo · Parallel and distributed
computing · Sparse matrices · Sparse matrix–matrix multiplication · SpGEMM ·
Matrix partitioning · Graph partitioning · Data locality

This work is partially supported by the Scientific and Technological Research Council of Turkey
(TUBITAK) under project EEEAG-115E512.

B Cevdet Aykanat
aykanat@cs.bilkent.edu.tr

Gunduz Vehbi Demirci
gunduz.demirci@cs.bilkent.edu.tr

1 Department of Computer Engineering, Bilkent University, Ankara, Turkey

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10619-019-07257-y&domain=pdf
http://orcid.org/0000-0002-4559-1321


Distributed and Parallel Databases

1 Introduction

Relational databases have long been used as data persisting and processing layer
for many applications. However, with the advent of big data, the need for storing
and processing huge volumes of information made relational databases an unsuit-
able choice for many cases. Due to the limitations of relational databases, several
NoSQL systems have emerged as an alternative solution. Today, big Internet com-
panies use their own NoSQL database implementations especially designed for their
own needs (e.g., Google Bigtable [1], Amazon Dynamo [2], Facebook Cassandra [3]).
Especially, the design of Google’s Bigtable has inspired the development of other
NoSQL databases (e.g., Apache Accumulo [4], Apache HBase [5]). Among them,
Accumulo has drawn much attention due to its high performance on ingest (i.e., writ-
ing data to database) and scan (i.e., reading data from database) operations, which
make Accumulo a suitable choice for many big data applications [6].

Solutions for big data problems generally involve distributed computation and need
to take the full advantage of data locality. Therefore, instead of using an external sys-
tem, performing computations inside a database system is a preferable solution [7].
One approach to perform big data computations inside a database system is using
NewSQL databases [8]. These type of databases seek solutions to provide scalability
of NoSQL systems while retaining the SQL guarantees (ACID properties) of rela-
tional databases. However, even though using a NewSQL database can be a good
alternative, some researchers take a different approach and seek solutions based on
performing big data computations inside NoSQL databases [7]. To that extent, the
Graphulo library [9] realizing the kernel operations of Graph Basic Linear Algebra
Subprogram (GraphBLAS) [10] in Accumulo NoSQL database is recently developed.
GraphBLAS is a community that specifies a set of computational kernels that can
be used to recast a wide range of graph algorithms in terms of sparse linear algebraic
operations. Therefore, realizing GraphBLAS kernels inside NoSQL databases enables
performing big data computations inside these systems, since many big data problems
involve graph computations [11].

One of the most important kernel operations in GraphBLAS specification is Sparse
Generalized Matrix Multiplication (SpGEMM). SpGEMM forms a basis for many
other GraphBLAS operations and used in a wide range of applications in big data
domain such as subgraph detection and vertex nomination, graph traversal and explo-
ration, community detection, vertex centrality and similarity computation [9,12,13].
An efficient implementation for SpGEMM in Accumulo NoSQL database is proposed
in [14]. The authors actually discuss two multiplication algorithms which are referred
to as inner-product and outer-product. Among the two algorithms, the outer-product
is shown to be more efficient, and therefore is included in Graphulo Library [9]. The
inner-product has the advantage of write-locality while ingesting the result matrix,
but has the disadvantage of scanning one of the input matrices multiple times. On
the other hand, the outer-product algorithm can not fully exploit write-locality, but
requires scanning both of the input matrices only once.

In this work, we focus on improving the performance of SpGEMM inAccumulo for
which we propose a new SpGEMM algorithm that overcomes the trade-offs presented
earlier. The proposed solution alleviates scanning of input matrices multiple times by
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making use of Accumulo’s batch-scanning capability which is used for accessing mul-
tiple ranges of key-value pairs in parallel. Even though the use of the batch-scanning
introduces some latency overheads, these overheads are alleviated by the proposed
solution and by using node-level parallelism structures. Moreover, the proposed solu-
tion provides write-locality while ingesting the result matrix and does not require
further computations when the result matrix need to be scanned, which was not the
case for the previously proposed SpGEMM algorithm in [14].

We also propose a matrix partitioning scheme that improves the performance of
the proposed SpGEMM algorithm via reducing the total communication volume and
providing a balance on the workloads of the servers. Since matrices in Accumulo can
only be partitioned according to sorted order of their rows and split points applied on
rows, we propose a method that reorders input matrices in order to achieve the desired
data distribution with respect to a precomputed partitioning. We cast the partitioning
of matrices as a graph partitioning problem for which we make use of a previously
proposed bipartite graph model in [15]. We propose a modification to this graph
model in order to better comply with the proposed SpGEMM iterator algorithm and
Accumulo’s own architectural demands.

Weconduct extensive experiments using 20 realisticmatrices collected fromvarious
domains and synthetic matrices generated by graph500 random graph generator [16].
On all test instances, the proposed algorithm significantly performs better than the
previously proposed solution without the use of any intelligent input matrix partition-
ing scheme. The performance of the proposed algorithm is improved even further with
the use of the proposed matrix partitioning scheme.

2 Background

2.1 Accumulo

Accumulo is a highly scalable, distributed key-value store built on the design
of Google’s Bigtable. Accumulo runs on top of Hadoop Distributed File Sys-
tem (HDFS) [17] to store its data and uses Zookeeper [18] to keep coordination among
its services. Data is stored in the form of key-value pairs where these key-value pairs
are kept sorted at all times to allow fast look up and range-scan operations. Keys con-
sist of five components namely as row, column family, column qualifier, visibility and
timestamp. Values can be considered as byte arrays and there is no restriction for their
format or size. These key-value pairs are kept sorted in ascending, lexicographical
order with respect to the key fields.

Accumulo groups key-value pairs into tables and tables are partitioned into tablets.
Tablets of a table are assigned to tablet servers by a master which stores all metadata
information and keeps coordination among tablet servers. Tables are always split on
row boundaries and all key-value pairs belonging to the same row are stored by the
same tablet server. This allows modifications to be performed atomically on rows by
the same server. All tables consist of one tablet when they are created for the first
time, and as the number of key-value pairs in a tablet reaches to a certain threshold,
the corresponding tablet is split into two tablets and one of these tablets is migrated to
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another server. It is also possible to manually add split points to a table to create tablets
a priori and assign them to servers. This eliminates the need of waiting the tablets to
split on their own and allows writing or reading data in parallel, which increases the
performance of ingest and scan operations.

Reading data on the client side can be performed using sequential-scanner or batch-
scanner capabilities of Accumulo. Sequential-scanning allows access to a range of
key-value pairs in sorted order, whereas batch-scanning allows concurrent access
to multiple ranges of key-value pairs in unsorted order. Similarly, writing data is
performed through using batch-writer which provides mechanisms to perform modi-
fications to tablets in parallel.

It is also possible to perform distributed computations inside Accumulo by using its
iterator framework. Iterators are configured on tables for specific scopes, and forms an
iterator tree according to their priority. After configured on tables, iterators are applied
in succession to the key-value pairs during scan or compaction times. Since a table
may consist of multiple tablets and span to multiple tablet servers, each tablet server
executes its own iterator stack concurrently, which provides a distributed execution.
Users can implement customized iterators that can be plugged into available iterator
tree on a table and obtain distributed parallelism by performing a batch-scan operation
over a range of key-value pairs. An iterator applied during a batch-scan operation is
executed on tablet servers that are spanned by the given range of key-value pairs.

2.2 Related work

Parallelization of SpGEMM operation on shared-memory architectures have been
extensively studied inmany researchworks [19–21].More recently,matrix partitioning
schemes that utilize spatial and temporal locality in row-by-row parallel SpGEMM
on many-core architectures are proposed in [22].

Several publicly available libraries exist to perform SpGEMM on distributed mem-
ory architectures [23,24]. Buluc and Gilbert [25] studies sparse SUMMA algorithm,
a message passing algorithm, which employs 2D block decomposition of matrices.
Akbudak and Aykanat [26] propose hypergraph models for outer-product message
passing SpGEMM algorithm to reduce communication volume and provide compu-
tational balance among processors. More recently, hypergraph and bipartite graph
models are proposed in [15] for outer-product, inner-product and row-by-row-product
formulations of message passing SpGEMM algorithms on distributed memory archi-
tectures.

Graphulo library1 [9] also provides a distributed SpGEMM implementation devel-
oped by Hutchison et al. [14], running on top of Accumulo’s iterator framework. The
method proposed in [14] utilizes the outer-product formulation of SpGEMM in the
form of C = AB. In this approach each column of A is multiplied by its correspond-
ing row of B (i.e., i th column of A is multiplied by i th row of B), and the resulting
matrices of partial products by such multiplications are summed to get the final matrix
C . To benefit from high performance attained by rowwise table accesses in Accumulo,

1 https://github.com/Accla/graphulo.
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AT and B are stored in separate tables (i.e., scanning columns of A corresponds to
scanning rows of AT ).

The SpGEMM algorithm proposed in [14] is executed by an iterator applied on a
batch-scan performed on the table storing matrix AT . Therefore, each tablet server
iterates through local rows of AT and scans the corresponding rows of B to perform
the outer-product operations between them. The required rows of B can be stored
locally as well as stored by other servers, since the AT and B matrices are stored as
separate tables and Accumulo may assign respective tablets to different servers even
the same split points are applied on these tables. If we assume that scanning rows of B
does not incur any communication costs (i.e., the respective tablets of AT and B are
co-located), writing the resulting C matrix back to the database still incurs significant
amount of communication costs in this approach. This is because, the partial result
matrices cannot be aggregated before being written back to the database and in the
worst case, a partial result matrix can have nonzero entries that should be broadcast to
almost all tablet servers available in the system, which may necessitate a tablet server
to communicate with all the other tablet servers during this phase. Because of these
reasons, writing phase of this outer-product SpGEMM algorithm becomes the main
bottleneck. Therefore, Hutchison et al. [14] discuss also an alternative approach and
propose an inner-product algorithm which requires scanning the whole B matrix for
each local row of A. Although this inner-product approach has the advantage of write-
locality, it is considered infeasible due to the necessity of scanning the whole B matrix
for each row of A. Therefore, the outer-product implementation of the SpGEMM is
included in the Graphulo library.

Our solution to perform SpGEMM in Accumulo differs from [14] in the way that
it provides the advantage of write-locality, similar to the one provided by the inner-
product approach, and alleviates scanning all rows of matrix B for each row of A by a
tablet server. To provide that, our solution makes use of Accumulo’s batch-scanning
capability which enables accessing to multiple rows of matrix B in parallel. However,
our approach suffers from the latency overheads introduced by performing a batch-
scan operation for each local row of A. As we discuss in the following sections, this
latency overhead can be hugely resolved by batch-processing of multiple local rows
of matrix A by tablet servers and using multi-threaded parallelism.

In our experimental framework, MPI-based distributed SpGEMM algorithms are
omitted due to the significant differences between MPI and Accumolo iterators, since
Accumulo’s architectural properties violates fairness of performance comparisons
between the proposed SpGEMM iterator algorithm and MPI-based algorithms. For
instance, (1) Accumulo provides fault-tolerance mechanisms which incur additional
computational overheads (e.g., disk accesses, data replication, cache updates etc.). (2)
In MPI-based implementations, input matrices are present in memory of processors
before performing communication and arithmetic operations, whereas in Accumulo,
input matrices may be present in disk as well. (3) Communication operations are per-
formed very differently in MPI and Accumulo: communication operations between
servers are performed in a streaming manner in Accumulo, whereas in MPI, commu-
nication operations are performed in synchronized steps.
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2.3 Graph partitioning

Let G = (V , E) denote an undirected graph where each vertex vi ∈ V is associated
with multiple weights of wc(vi ), for c = 1 . . .C , and each undirected edge (ui , v j ) ∈
E between vertices ui and v j is associated with a cost(ui , v j ). A K -way partition
Π = {V1, V2 . . . VK } of G is composed of mutually exclusive, non-empty subsets of
vertices Vk ⊂ V (i.e., Vk ∩ V� = ∅ if k �= � and Vk �= ∅ for each Vk ∈ Π) such that
the union of these subsets is V (i.e.,

⋃
Vk∈Π Vk = V ).

For a partitionΠ , theweightWc(Vk) of a part Vk ∈ Π is defined to be the sumof the
cth weights wc(vi ) of vertices in Vk (i.e., Wc(Vk) = ∑

vi∈Vk wc(vi )). The balancing
constraint over a partition Π is defined as

Wc(Vk) ≤ Wc
avg(1 + εc), ∀ Vk ∈ Π and c = 1 . . .C (1)

where Wc
avg = ∑

vi∈V wc(vi )/K and εc is the maximum allowed imbalance ratio for
the cth weight.

An edge (ui , v j ) ∈ E is said to be cut if its incident vertices ui and v j belong to
different parts and uncut otherwise. The cutsize χ(Π) of a partition Π is defined as

χ(Π) =
∑

(ui ,v j )∈EΠ
cut

cost(ui , v j ) (2)

where EΠ
cut is the set of cut edges under the partition Π .

The K-way multi-constraint graph partitioning problem [27,28] is an NP-Hard
problem which is defined as computing a K-way partition of G that satisfies the
balancing constraint according to Eq. (1) and minimizes the cutsize according to
Eq. (2). There exist efficient heuristic algorithms and tools producing quality results
for the multi-constraint graph partitioning problem [29,30].

3 Row-by-row parallel SpGEMM iterator algorithm

Iterators are the most convenient way to achieve distributed parallelism in Accumulo,
since they are concurrently executed by tablet servers on their locally stored data. The
proposed iterator algorithm is based on row-by-row parallel matrix multiplication and
data distribution.

3.1 Row-by-row parallel SpGEMM

We summarize the row-by-row SpGEMMwhich leads to row-by-row parallelization:
Given matrices A = (ai, j ), B = (bi, j ) and C = (ci, j ), the product C = AB is
obtained by computing each row ci,∗ as follows:

ci,∗ =
∑

ai, j∈ai,∗
ai, j b j,∗. (3)

Here, ai,∗, b j,∗ and ci,∗ denote the i th row, j th row and i th row of matrices A, B and
C , respectively. That is, each nonzero ai, j of row i of A is multiplied by all nonzeros of
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row j of B and each multiplication ai, j b j,k for a nonzero b j,k of row j of B produces
a partial result for the entry ci,k of row i of C .

Accumulo’s data model presents a natural way of storing sparse matrices in such
a way that each key-value pair stored in a table has row, column and value subfields
which can together store all the necessary information to represent a nonzero entry.
Therefore, tables can be seen as sparse matrices that are rowwise partitioned among
tablet servers, since tables are always split on row boundaries among tablet servers
and all key-value pairs belonging to the same row are always contained in the same
tablet server. Due to this correspondence between key-value pairs and nonzero entries,
and between tables and sparse matrices, we use these term pairs interchangeably.

Another important feature of Accumulo is that it builds row indexes on tables and
allows efficient lookup and scan operations on rows. However, scanning key-value
pairs in a column is impractical, because Accumulo does not keep a secondary index
on columns and this operation necessitates scanning all rows of a table. If both columns
and rows of a table need to be scanned, transpose of the table also need to be stored
in a separate table in Accummulo. For instance, the outer-product parallel SpGEMM
algorithm [14] needs to scan columns of matrix A for the multiplicationC = AB; and
therefore, keeps AT instead of A.

3.2 Iterator algorithm

Let matrices A, B and C are stored by K tablet servers where we denote the kth tablet
server by Tk for k = 1 . . . K . For now, also assume that these matrices are stored in
separate tables (e.g., matrix A is stored in table A).

Since these matrices are rowwise partitioned among tablet servers, also assume that
each tablet server Tk stores kth row blocks Ak , Bk and Ck of matrices A, B and C ,
respectively. Note that a row block of a matrix consists of a number of consecutive
rows of the respective matrix (e.g., Ak may consist of rows ai,∗, ai+1,∗, . . . , a j,∗).
Here, row blocks Ck and Ak are conformable, i.e., ci,∗ ∈ Ck iff ai,∗ ∈ Ak . Before
performing the computation C = AB, the matrix C can be thought of as an empty
table. In this setting, the proposed iterator algorithm should be configured on a batch-
scanner provided with a range covering all rows of matrix A (i.e., the entire range
of table A). Performing this batch-scan operation ensures that each tablet server Tk
concurrently executes the iterator algorithm on its local portion Ak of A.

After configured on the batch-scanner on matrix/table A, the proposed iterator
algorithm proceeds as follows: Each tablet server Tk iterates through its locally stored
rows of Ak and computes the corresponding rows ci,∗ according to Eq. 3. It is important
to note that Accumulo provides a programming framework that allows only iteration
through key-value pairs (i.e., nonzero entries); and therefore, we can assume that each
tablet server Tk is provided with a sorted stream of its local nonzero entries in Ak .
These nonzero entries are lexicographically sorted with respect to their first row and
then their column indices. Thus, during the scan of this stream, it is possible to scan all
nonzeros of Ak in row basis by keeping the nonzero entries belonging to the same row
in memory before proceeding to the next row. In this way, iterations can be considered
as proceeding rowwise in Ak .
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Algorithm 1 Iterator Algorithm
Require: Matrices A, B and C are distributed among K tablet servers.
Require: Local matrices Ak, Bk and Ck stored by server Tk.
Output: Arithmetic results are written back to Ck

1: procedure Iterator
2: Initialize a thread cache
3: Initialize sets Φ, B(Φ)
4: while source iterator has key-value pairs (i.e., ∃ai,j ∈ Ak) do
5: Iterate through all nonzero entries of ai,∗
6: for each ai,j ∈ ai,∗ do
7: if j �∈ B(Φ) then
8: B(Φ) = B(Φ) ∪ {j}
9: Φ = Φ ∪ {ai,∗}
10: if |B(Φ)| > threshold then
11: Execute multiply(Φ, B(Φ)) by a worker thread in the thread cache
12: Initialize new sets Φ, B(Φ)
13: Join with all threads in the thread cache
14: return

During the iteration of each row ai,∗ ∈ Ak , the computation of row ci,∗ necessitates
scanning rowb j,∗ for eachnonzeroai, j ∈ ai,∗ to performmultiplicationai, j b j,∗. Some
of these required rows of B are stored locally, whereas the remaining rows are stored by
other tablet servers. Therefore, to retrieve these B-matrix rows, Tk performs a batch-
scan operation providedwithmultiple ranges covering these required rows overmatrix
B. As mentioned earlier, Accumulo allows simultaneous access to multiple ranges of
key-value pairs via its batch-scanning capability. This operation provides an unsorted
stream of nonzero entries belonging to the required rows of B, because these nonzero
entries can be retrieved from remote servers in arbitrary order and batch-scan operation
does not guarantee any order on them. As these nonzero entries are retrieved, for each
retrieved nonzero b j,k of a required row b j,∗, the computation ci,k = ci,k +ai, j b j,k is
performed. The final row ci,∗ is obtained after the stream of nonzero entries belonging
to the required rows of B are all processed. The pseudocode implementation of the
proposed iterator algorithm is presented in Algorithm 1.

3.3 Communication and latency overheads

For each row of Ak , the tablet server Tk performs a batch-scan operation on multiple
ranges covering the required rows of B (i.e., ranges need to cover each row b j,∗ of
B for each nonzero ai, j ∈ ai,∗ of Ak). This operation necessitates Tk to perform one
lookup on the row index of B, which is stored by the master tablet server, in order to
determine the locations of the required B-matrix rows. After this lookup operation and
the servers storing these B-matrix rows are determined, data retrieval is performed via
communicating with multiple tablet servers in parallel.

This operation incurs significant latency overheads due to the lookups performed
on the master tablet server for each row ai,∗ ∈ Ak and establishing connections with
tablet servers storing required rows of B. Additionally, this approach may necessitate
redundant communication operations and increase the total communication volume
among tablet servers, since the same row of B may be retrieved multiple times by the
same tablet server for computing different rows of C . In other words, a tablet server
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Tk needs to retrieve row j of B for each row of Ak that has a nonzero at column j . For
instance, if Ak contains two nonzero entries ai,k and a j,k , then two different batch-scan
operations performed by Tk to compute rows ci,∗ and c j,∗ necessitates retrieval of the
same row bk,∗ twice.

In the proposed algorithm, the aforementioned shortcomings are alleviated by
processing multiple rows of A simultaneously. That is, a tablet server Tk iterates
through multiple rows in Ak and creates batches of rows to be processed together
before performing any computation or a batch-scan operation. Let Φ ⊆ Ak denote
such a batch that is generated by iterating through multiple rows and contains rows
ai,∗, ai+1,∗, . . . , a j,∗. Further, let B(Φ) denote an index set indicating the required
B-matrix rows to compute the corresponding rows ci,∗, ci+1,∗ . . . c j,∗ for the batch
Φ. The row indices in the set B(Φ) are determined as the union of indices of columns
on which rows in Φ have at least one nonzero. That is,

B(Φ) = {
j | ∃ai, j ∈ ai,∗ ∧ ai,∗ ∈ Φ

}
. (4)

By computing the set B(Φ), a single batch-scan operation can be performed for
multiple rows in Φ to retrieve all of the required rows of B at once instead of per-
forming separate batch-scans for each ai,∗ ∈ Φ. After performing a single batch-scan
over rows in B(Φ), the tablet server Tk is again provided with an unsorted stream
of nonzero entries belonging to the rows corresponding to row indices in B(Φ).
Each retrieved nonzero entry b j,k of a required row b j,∗ is then multiplied with each
nonzero entry in the j th column segment of Φ. Then, each partial result obtained
by multiplication ai, j b j,k is added to the entry ci,k ∈ ci,∗. That is, each nonzero
b j,k is multiplied by column j of Ak to contribute to the column j of Ck . So,
the local matrix multiplication algorithm performed by Tk is a variant of column-
by-column paralel SpGEMM although the proposed iterator algorithm utilizes the
row-by-row parallelization to gather the B-matrix rows needed for processing nonze-
ros in Ak .

Processing rows in Ak in batches significantly reduces the latency overheads and
communication volume among tablet servers, because both the number of lookup
operations and the redundant retrieval of rows of B are reduced by this approach.
Here, the size of a batch becomes an important parameter, since it directly affects the
number of lookup operations and the communication volume among tablet servers.
As the size of a batch increases, both the number of lookup operations and the total
communication volume among tablet servers decreases, since as more rows of Ak are
added to a single batch, it is more likely that nonzero entries belonging to different
A-matrix rows share the same column. However, the size of a batch is bounded by the
hardware specifications of tablet servers (i.e., total memory). In our experiments, we
determined the best suitable batch size by testing various values in our experimentation
environment.
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Fig. 1 Sample execution of the proposed iterator algorithm by a tablet server Tk . Batches Φ1 and Φ2 are
processed by two separate threads. Arrows indicate the required rows of matrix B by each worker thread

3.4 Thread level parallelism

Even though the batch processing of multiple rows of Ak by the tablet server Tk
significantly reduces the latency overheads, further enhancements for the proposed
iterator algorithm can be achieved via using node-level parallelism structures, such as
threads.

In a single-threaded execution, the main execution thread of Tk stays idle and
performs no computation by the time between initiating the batch-scan and the stream
of nonzero entries become ready to be processed during the processing of a batch Φ.
In order to avoid this idle time, we utilize a multi-threaded approach in which the main
thread assigns the task of processing the current batch Φ of Ak to a worker thread and
continues iterating through the remaining rows to prepare the next batch.Whenever the
main thread prepares the next batch, it assigns the task of processing this batch to a new
worker different than the previous worker(s). This multi-threaded execution enables
processing multiple batches of Ak concurrently by worker threads and thus achieving
node-level parallelism in a streaming manner. After a batch Φ is fully processed by a
worker thread, the resulting C-matrix rows are written back to database by the same
worker thread. This write operation will not incur communication if row blocks Ak

and Ck are stored by the same server.
In the proposed implementation, creating a new thread for each batchΦ also incurs

additional computational cost and latency. In this regard, wemake use of thread caches
which create new threads only if there is no available thread to process the current
batch (Java standard library also provides various thread caches/pools having different
implementation schemes). These thread caches create new threads only if necessary
and reuses them in order to alleviate the cost of creating new threads.

Figure 1 displays a sample execution of the proposed iterator algorithm by a tablet
server Tk . The main execution thread creates batches Φ1 and Φ2 and assigns them to
worker threads which then perform batch-scan operations to retrieve required rows of
B and compute {ai,∗B, ai+1,∗}B and {a j,∗B, a j+1,∗B}, respectively. For each batch,
the required rows of B are denoted by arrows pointing to the respective rows. For
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instance, the worker thread processing batch Φ1 needs to receive rows x , y and z
of matrix B, since rows ai,∗ and ai+1,∗ have nonzeros only in these three columns.
Similarly, the worker thread processing batch Φ2 concurrently performs a batch-scan
to retrieve rows y and z of matrix B. However, rows y and z need to be retrieved
by tablet server Tk twice, since each worker thread scans these rows separately. The
redundant retrieval of rows y and z increases the total communication volume, but can
be avoided by increasing the batch size. For instance, instead of processingΦ1 andΦ2
by separate threads, these batches can be merged into a single batch and processed by
the same thread. By this way, a single batch-scan can be performed to retrieve rows
by,∗ and bz,∗, and the redundant retrieval of rows y and z can be avoided.

3.5 Write-locality

To obtain write-locality during ingestion of rows in row block Ck , the responsibility
of storing Ck must be given to the same tablet server storing row block Ak , since rows
of Ck are locally computed on that server. However, if matrices A and C are stored as
two different tables, Accumulo can not guarantee that row blocks Ak andCk are stored
by the same tablet server, since Accumulo’s load balancer may assign corresponding
tablets to different servers according to the partition of key space. Therefore, creating
different tables for each matrix may necessitate redundant communication operations
during ingestion of the resulting matrix C .

To achieve write-locality discussed as above, we use a single table M instead of
three different tables for matrices A, B and C . This approach ensures that rows ai,∗,
bi,∗ and ci,∗ are stored by the same tablet server and these rows together belong to
i th row of table M . Here, it is worth to note that storing row bi,∗ along with rows
ai,∗ and ci,∗ is not necessary for the proposed iterator algorithm and matrix B can be
stored in a separate table. On the other hand, we preferred to store all three matrices
in a single table M due to the requirements of the input matrix partitioning scheme
discussed later in Sect. 4. To distinguish the nonzero entries of these matrices in table
M , we use the column family subfield of a key. However, scanning nonzero entries
of a specific row of a matrix necessitates scanning nonzero entries of other matrices
as well, since i th row of M contains nonzero entries of rows ai,∗, bi,∗ and ci,∗. This
inefficiency can be resolved with the use of locality groups which directs Accumulo
to separately store the key-value pairs belonging to different column families. That
is, even rows ai,∗, bi,∗ and ci,∗ belong to the same row of M and stored by the same
tablet server, these rows are separately stored on disk. This allows scanning a range
of key-value pairs belonging to the same column family without accessing key-value
pairs belonging to the other column families.

Keeping matrices A, B andC under different column families and defining locality
groups for these matrices in table M creates an illusion of three different tables being
stored in a single table. It is still possible to perform batch-scan over rows of A and B
separately without accessing nonzero entries of each other. For instance, the proposed
SpGEMM iterator algorithm can be configured on a batch-scanner, given the range
covering column family of A, on table M . Each tablet server is still provided with a
sorted stream of nonzero entries in Ak and nothing need to bemodified in the proposed
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iterator algorithm. The only difference is the range provided for the batch-scanner on
table M .

In Fig. 2, the contents of table M are displayed for a sample SpGEMM instance,
in which two tablet servers are used and a split point 3 is configured on table M . The
nonzeros of the first three rows are stored in Tablet 1, whereas the others are stored in
Tablet 2. Although the figure shows nonzero entries belonging to different matrices are
placed one after each other and kept in lexicographically sorted order,these nonzero
entries are stored separately on disk and it is possible to scan any row of a matrix in
table M without redundantly accessing nonzero entries of other matrices. However, if
the table M is scanned without specifying any column family, all nonzero entries are
retrieved in this order.

3.6 Implementation

In Algorithms 1 and 2, we present the pseudocode of our implementation for the
proposed solution. Algorithm 1 is the main iterator algorithm executed by the main
thread running on each tablet server Tk . The main thread iterates through rows in Ak

and prepares batches of rows of matrix A and assigns these batches to worker threads
to perform multiplication and communication operations. Algorithm 2 is executed by
the worker threads to process a given batch Φ.

Accumulo iterators are Java classes that implement SortedKeyValueIterator (SKVI)
interface which tablet servers load and execute during scanning or compaction phases
on tablets of a table. In order to have custom logic inside Accumulo iterators, a Java
class that implements SKVI interface should be written. These iterators are added to
iterator trees of tables according to their priority, and the output of an iterator is used
as the input of the next iterator whose priority is less than the previous. Therefore, the
source of an iterator can be Accumulo’s own data sources as well as another iterator
having higher priority in the iterator tree. We implemented our algorithm in the seek()
method of SKVI, which is the first method executed by the iterator after initialized by
the tablet server (i.e., Algorithm 1 is executed in the seek() method).

In Algorithm 1, the main iterator thread starts with initializing a thread cache and
two sets Φ and B(Φ). For the thread cache, we use Java’s own cached thread pool
implementation. The set Φ is represented with a two dimensional hash-based table
which is available in Google Guava Library [31]. The table data structure supports
efficient access to its cells since it is backed with a two dimensional hash-map (i.e.,
accessing to any cell in the table is performed in constant time). The set B(Φ) is a
typical list data structure and used to keep distinct column indices of nonzero entries
in the current batch Φ.

After the initialization step, the main thread starts iterating through the rows in
local portion Ak of matrix A. As each row ai,∗ ∈ Ak is retrieved, it is included into
the current batch Φ until the batch-size threshold is reached. The set B(Φ) is used
to keep distinct column indices of nonzero entries encountered so far in the current
batch. These column indices correspond to the rows of B that are required to perform
all the multiplications for the batch Φ. These operations are carried out between lines
4 to 12 in Algorithm 1.
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Algorithm 2 Multiplication Algorithm
1: procedure Multiply(Φ,B(Φ))
2: Perform batch-scan on matrix B over rows bj,∗ for each j ∈ B(Φ)
3: Initialize an empty ci,∗ for each ai,∗ ∈ Φ
4: for each retrieved nonzero bj,k ∈ bj,∗ for a j ∈ B(Φ) do
5: for each entry ai,j ∈ Φ do
6: ci,k = ci,k + ai,j ∗ bj,k

7: for each computed ci,∗ do
8: Add ci,∗ to batch-writer queue
9: return

In the proposed algorithm, we define the batch size threshold in terms of the number
of distinct column indices of the nonzero entries in Φ (i.e., the size of the batch is
|B(Φ)|). In this way, we try to increase the number of nonzeros that share the same
column indices in Φ and therefore reduce the redundant retrieval of B-matrix rows as
much as possible. For instance, if two distinct rows ai,∗ and a j,∗ have nonzero entries
in common column indices and these rows are processed in different batches, then the
same B-matrix rows corresponding to these column indices need to be redundantly
retrieved for each of these batches by the same tablet server. In a different perspective,
if a row of Ak introduced toΦ does not increase the batch size, then all of its nonzeros
must share the same column indices with the rows added to Φ earlier. Hence, by
increasing the batch size threshold, the likelihood of reducing redundant retrieval of
B-matrix rows is possible. For example, in one extreme, if the whole Ak is processed
in a single batch, then there will be no redundant communication, since each required
B-matrix row need to be retrieved only once. Here, if the batch size is set to a large
number, the level of concurrency may degrade in a tablet server, since fewer batches
and threads will be generated and all CPU cores may not be efficiently utilized. On the
other hand, if the batch size is set to a small number, the number of lookups and the
total communication volume will increase. The size of the current batch is controlled
in line 10 of Algorithm 1.

After the current batch Φ is prepared, Algorithm 2 provided with the parameters Φ

and B(Φ), is executed on a worker thread chosen from the thread cache. Communica-
tion and multiplication operations for the batch Φ are handled by this worker thread.
In Algorithm 2, the worker thread first initializes a batch-scanner on matrix B and
provides this scanner with a range covering all rows b j,∗ for each j ∈ B(Φ).

After performing the batch-scan operation, the worker thread initializes data struc-
tures representing C matrix rows to be computed. To represent an empty ci,∗ row,
we again make use of the two dimensional hash-based table data structure, which
was previously used to represent the batchΦ. As mentioned earlier, this data structure
enables efficient access to its entries (i.e., each nonzero ci, j ) and allows us to efficiently
combine partial results contributing to the same entries of matrix C , as performed in
line 6 of Algorithm 2.

In line 7, a batch-writer is initialized after computing row ci,∗ for each row ai,∗ ∈ Φ.
In the for-loop between lines 8 and 9, each computed row ci,∗ is added to batch-writer
queue buffer via a mutation object and written back to the database (i.e., to the i th row
of table M under the respective column family for matrix C). As mentioned earlier,
these operations do not necessitate any communication operations and can be locally
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performed due to the usage of a single table M and the write-locality achieved through
this approach.

In Algorithm 1, the execution of the main thread continues until each row ai,∗ ∈ Ak

is processed. In line 13, themain threadwaits for theworker threads in the thread cache
to join. Upon joining with all threads, the iterator algorithm finishes and the resulting
matrix C is available in table M . It is important to note that to scan the final matrix C ,
there is no need to apply a summing-combiner or another iterator, as was not the case
in the algorithm previously proposed in [14].

The computational complexity of Algorithm 1 depends on the number of nonzero
arithmetic operations f lops(A · B) required to perform the multiplication C = AB
where f lops(A · B) = ∑

i
∑

ai j∈ai,∗ nnz(b j,∗). Insert and lookup operations per-
formed on data structures Φ and B(Φ) can be performed in constant time, since
these data structures are 2-dimensional hash-map-based table and hash-map-based
set data structures, respectively. Elements in B(Φ) can be traversed in time linear
time to the number of elements in this data structure. Assuming that the perfect
workload load balance is achieved, each server approximately performs f lops(A·B)

K
nonzero arithmetic operations. Therefore, if the multi-threaded execution is not
enabled, computation time of Algorithm 1 can be given as Θ(

f lops(A·B)
K ), since

the term f lops(A·B)
K dominates other hidden factors associated with the number of

local nonzero entries Ak , Bk and Ck on each server Tk . For the communication
complexity, each server, in the worst case, may communicate with all other tablet
servers and receive O(

f lops(A·B)
K ) nonzero entries of matrix B, since the number

of nonzero entries retrieved can not be higher than the number nonzero arithmetic
operations performed by a tablet server (i.e., at most, one B-matrix entry can be
retrieved for each nonzero arithmetic operation). The communication cost of Algo-
rithm 1 isO(ts(K − 1) + tw

f lops(A·B)
K ) where ts and tw denotes per-message latency

and per-word bandwidth costs, respectively. Therefore, the parallel execution time of
Algorithm 1 can be given as O(ts K + (1 + tw)

f lops(A·B)
K ).

4 Partitioningmatrices

Here, we adapt the bipartite graph model recently proposed in [15] for row-by-
row parallelization SpGEMM on distributed memory architectures. In this model,
the SpGEMM instance C = AB is represented by the undirected bipartite graph
G = (VA ∪ VB, E). The vertex sets VA and VB represent the rows of A and B matri-
ces, respectively. That is, VA contains vertex ui for each row i of A and VB contains
vertex v j for each row j of B.

A K-way vertex partition of G

Π(V ) =
{
V 1 = V 1

A ∪ V 1
B, V 2 = V 2

A ∪ V 2
B, . . . , V K = V K

A ∪ V K
B

}

is decoded as a mapping of rows of input matrices to tablet servers as follows: ui ∈ V k
A

and v j ∈ V �
B correspond to assigning row-i of A and row- j of B to tablet servers Tk and
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T�, respectively. Here, a vertex ui also represents row ci,∗, since the tablet server that
owns row ai,∗ is given the responsibility of computing and storing row ci,∗. Therefore,
a partition obtained over rows of A also determines the partition of rows of C .

Through our experimentation and analysis over the proposed iterator algorithm,
we observed that the numbers of nonzero entries stored for each of the A, B and C
matrices by a server are better measures than the number of floating-point operations
performed for representing the associated computational load. That is, nonzero entries
of each of the matrices A, B and C should be evenly distributed in order to achieve a
workload balance among servers. Therefore, we assume that row i of A and row j of
B respectively incur the computational loads of nnz(ai,∗) and nnz(b j,∗) to the servers
they are assigned to. Here, nnz(·) denotes the number of nonzeros in a row. Note that
storing row i of C also incurs the computational load of nnz(ci,∗), because writing
nonzero entries of output matrix C may require more computation time as compared
to the scanning entries of input matrices.

Instead of estimating the relative computational loads associated with individual
nonzeros of input and output matrices, we propose a three constraint formulation in
which we associate three weights with each vertex as follows:

w1(ui ) = nnz(ai,∗), w2(ui ) = 0, w3(ui ) = nnz(ci,∗), ∀ui ∈ VA

w1(v j ) = 0, w2(v j ) = nnz(b j,∗), w3(v j ) = 0, ∀v j ∈ VB

This 3-constraint partitioning captures maintaining a balanced distribution of nonzero
entries of all matrices A, B and C among tablet servers. We should note here that the
bipartite graph model given here differs from the model given in [15] because of this
multi-constraint formulation.

In order to compute w3
i of vertex vi , we need to know the total number of nonzero

entries in row ci,∗ before partitioning, which necessitates performing a symbolic mul-
tiplication. This symbolicmultiplication can be efficiently performed for just one time,
using the proposed SpGEMM algorithm without adopting any partitioning scheme.

In graph G, there exists an undirected edge (ui , v j ) ∈ E that connects vertices
ui ∈ VA and v j ∈ VB for each nonzero ai, j ∈ A. We associate each edge (ui , v j )

with a cost equal to the number of nonzeros in the respective row j of B, i.e.,

cost(ui , v j ) = nnz(b j,∗)

This edge-cost definition refers to the amount of communication volume to incur if
row i of A and row j of B are assigned to two different tablet servers.

In a given partition Π , uncut edges do not incur any communication. Cut edge
(ui ∈ V k

A, v j ∈ V �
B) refers to the fact that tablet server T� stores row j of B, whereas

tablet server Tk stores row i of A and is responsible of computing row i of C . Hence,
this cut edge will incur the transfer of B matrix row b j,∗ from tablet server T�. Thus,
the partitioning objective of minimizing the cutsize according to Eq. (2) relates to
minimizing the total communication volume that will be incurred due to the transfer
of B-matrix rows. However, the cutsize overestimates the total communication volume
in some cases: Consider two cut-edges (ui ∈ V k

A, v j ∈ V �
B) and (uh ∈ V k

A, v j ∈ V �
B)

which are incident to the same vertex v j . These two cut-edges show the need of tablet
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server Tk to retrieve row j of B for computing rows h and i of C . The cutsize incurred
by these cut-edges according to Eq. 2 will be equal to cost(ui , v j ) + cost(uh, v j ) =
2nnz(b j,∗). However, tablet server Tk may process rows h and i of matrix A in a
single-batch, which causes Tk to retrieve row j of B only once, thus necessitating a
communication volume of only nnz(b j,∗) rather than 2nnz(b j,∗).

In general, consider a B-matrix row vertex that has d neighbors (A-matrix row
vertices) in Vk . The cutsize definition encodes this situation as incurring a communi-
cation volume of d × nnz(b j,∗); however, the actual communication volume will vary
between nnz(b j,∗) and d × nnz(b j,∗), depending on the number distinct batches of
Tk that require row j of B. For example in Fig. 1, the degree of B-matrix row vertex
vy is 3 and its weight is nnz(by,∗) = 3. The cutsize encodes the total communication
volume as 9. However, row y of B will be retrieved from the respective server to Tk
only once for each of the two batchesΦ1 andΦ2, thus the total communication volume
will be 6 instead of 9.

Accumulo partitions tables into tablets via split points defined over row keys. For
instance, if the split points a, b, c are applied on table M , rows of matrices A, B and C
will be distributed to intervals [0, a], (a, b], (b, c], (c,∞]. For instance, if a row index
i ∈ [0, a], than rows ai,∗, bi,∗ and ci,∗ will be stored by the tablet server responsible
for storing interval [0, a].

For a given partition Π of G, the desired data distribution of matrices A, B and C
can only be achieved by reordering these matrices in table M and applying a set of
proper split points. That is, the sorted order of the new row indices of matrices A, B
and C , together with the set of split points, ensure Accumulo to automatically achieve
the desired data distribution. So, a given partition Π is decoded as inducing a partial
reordering on the rows of the matrices as follows: C-/A-matrix rows corresponding
to the vertices in V k+1

A are reordered after the rows corresponding to the vertices in
V k
A and B-matrix rows corresponding to the vertices in V k+1

B are reordered after the
rows corresponding to the vertices in V k

B . The row ordering obtained by this method
is referred to as a partial ordering; because rows corresponding to the vertices in a
part are reordered arbitrarily. Then the split points are easily determined on the part
boundaries of row blocks according to Π .

The size of the proposed bipartite graph model is linear in the number of rows,
columns and nonzero entries of matrix A ∈ R

m×n , since there exist a vertex vi for
each row ai,∗, a vertex v j for each row b j,∗ and an edge for each nonzero entry ai, j in
matrix A. So the topology of the bipartite graph can be built inΘ(m+n+nnz(A)) time.
The first and second weights (w1(vi ) and w2(vi )) of vertices can be determined from
input matrices in Θ(nnz(A) + nnz(B)) time. Computing the third weight (w3(vi ))
of vertices necessitates the symbolic multiplication of input matrices A and B (since
w3(vi ) = nnz(ci,∗)). Hence, the complexity of building the proposed graph model is
Θ( f lops(A · B) + m + n + nnz(A) + nnz(B)). On the other hand, complexity of
the partitioning phase depends on the partitioning tool. In [32], complexity of Metis
is reported as Θ(V + E + K log K ) where V (= m + n) is number of vertices,
E (= nnz(A)) is number of edges in a graph and K is the number of parts. The
running time of the partitioning phase becomes Θ(m + n + nnz(A) + K log K ) thus
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leading to overall running time complexity of Θ( f lops(A · B) +m + n + nnz(A) +
nnz(B) + K log K ) = Θ( f lops(A · B) + K log K ).

5 Experimental evaluation

We compare the performance of the proposed SpGEMM iterator algorithm (RRp)
against the baseline algorithm (BL) [14], which is currently available in the Graphulo
Library, on a fully distributed Accumulo cluster. We also evaluate the performance
of the graph partitioning-based RRp (gRRp), where the input and output matrices are
reordered using the partitioning scheme proposed in Sect. 4. We use the state-of-the-
art graph partitioning tool Metis to partition the graph model in gRRp. We set the
maximum load imbalance ε = 0.005 and performed edge cut minimization. We used
both realistic and synthetically generated sparse matrices as SpGEMM instances in
our experiments.

5.1 Datasets

Table 1 displays properties of matrices used in the experiments. These matrices are
included in our dataset since they arise in various real-world applications and also
used in recent research works [21,22,33,34].

We performed our experiments in two different categories: In the first category, a
sparse matrix is multiplied with itself (i.e., C = AA), and in the second category, two
different conformable sparsematrices aremultiplied (i.e.,C = AB). The first category
C = AA arises in graph applications such as finding all-pairs-shortest paths [35], self
similarity joins and summarization of sparse dataset [36,37]. The second categoryC =
AB is a more general case and especially arise in applications such as collaborative
filtering [38] and similarity joins of two different sparse datasets [37].

The C = AA category contains 13 sparse matrices all selected from UFL sparse
matrix collection [39]. As seen in Table 1 all of these matrices contain more than 100K
rows.

The C = AB category contains seven SpGEMM instances. The SpGEMM
instances amazon0302 and amazon0312 are used for collaborative filtering in recom-
mendation systems [38]. In these instances, A matrices represent similarities of items
and B matrices represent preferences of users and synthetically generated following
the approach in [22], where the item preferences of users follow Zipf distribution. The
SpGEMM instances boneS01, cfd2, offshore and shipsec5 are used during the setup
phase of Algebraic multigrid methods (AMG) [40]. In these instances, A matrices
are selected from UFL and their corresponding interpolation operators are generated
as the B matrices by using a tool2 in [40] (matrices with suffix ”.P” in Table 1).
The last SpGEMM instance contains two conformable matrices thermomech_dK and
thermomech_dM.

TheC = AB category also contains four SpGEMMinstanceswhose A and Bmatri-
ces are synthetically generated by using the Graph500 power law graph generator [16].

2 https://github.com/pyamg/pyamg.
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Table 1 Dataset properties

Matrix Number of Number of nonzeros

in a row in a column

Rows Columns Nonzeros Avg Max Avg Max

C = AA

2cubes_sphere 101,492 101,492 1,647,264 16 31 16 31

filter3D 106,437 106,437 2,707,179 25 112 25 112

598a 110,971 110,971 1,483,868 13 26 13 26

torso2 115,967 115,967 1,033,473 9 10 9 10

cage12 130,228 130,228 2,032,536 16 33 16 33

144 144,649 144,649 2,148,786 15 26 15 26

wave 156,317 156,317 2,118,662 14 44 14 44

majorbasis 160,000 160,000 1,750,416 11 11 11 18

scircuit 170,998 170,998 958,936 6 353 6 353

mac_econ_fwd500 206,500 206,500 1,273,389 6 44 6 47

offshore 259,789 259,789 4,242,673 16 31 16 31

mario002 389,874 389,874 2,101,242 5 7 5 7

tmt_sym 726,713 726,713 5,080,961 7 9 7 9

C = AB

cfd2 (A) 123,440 123,440 3,087,898 25 30 25 30

cfd2.P (B) 123,440 4825 528,769 4 10 110 181

boneS01 (A) 127,224 127,224 6,715,152 53 81 53 81

boneS01.P (B) 127,224 2,394 470,235 4 10 196 513

shipsec5 (A) 179,860 179,860 10,113,096 56 126 56 126

shipsec5.P (B) 179,860 2959 541,099 3 13 183 456

thermomech_dK (A) 204,316 204,316 2,846,228 14 20 14 20

thermomech_dM (B) 204,316 204,316 1,423,116 7 10 7 10

offshore (A) 259,789 259,789 4,242,673 16 31 16 31

offshore.P (B) 259,789 9893 1,159,999 4 13 117 221

amazon0302 (A) 262,111 262,111 1,234,877 5 5 5 420

amazon0302-user (B) 262,111 50,000 576,413 2 302 12 27

amazon0312 (A) 400,727 400,727 3,200,440 8 10 8 2747

amazon0312-user (B) 400,727 50,000 882,813 2 1, 675 18 38

C = AB (graph500)

scale = 15 (A) 32,768 32,768 441,173 13 5942 13 2067

(B) 32,768 32,768 441,755 13 5976 13 2041

scale = 16 (A) 65,536 65,536 909,301 13 9719 13 3273

(B) 65,536 65,536 909,854 13 9670 13 3407

scale = 17 (A) 131,072 131,072 1,864,398 14 15, 643 14 5227

(B) 131,072 131,072 1,864,338 14 15, 743 14 5301

scale = 18 (A) 262,144 262,144 3,806,212 14 25, 332 14 8303

(B) 262,144 262,144 3,804,831 14 25, 324 14 8277
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These synthetic matrices are previously used in [14] to evaluate the performance of
the BL algorithm.We also use this tool with the same set of parameters. The tool takes
two parameters, referred to as scale and edge-factor, and produces square matrices
with 2scale rows and edge-factor × 2scale nonzero entries. We fix edge-factor to 16
as in [14] and set scale = 15, 16, 17, 18 to generate four different sized SpGEMM
instances (e.g., for scale = 15 we generate two different square matrices A and B
with 215 rows and 16 × 215 nonzero entries).

5.2 Accumulo cluster

The cluster we used in our experiments consists of 12 nodes and these nodes are
connected via DGS-3120-24TC ethernet switch. Each node has two Intel-Xeon-E5-
2690-v4 processors each of which consists of 14 cores and is able to run 28 threads
concurrently. Additionally, each node has 256 GB main memory in addition to its
16 TB local storage. We designate two of these nodes as control nodes on which we
run ZooKeeper, HDFS NameNode, Accumulo master, garbage collector and moni-
tor processes. The remaining nodes are used as worker nodes and run only HDFS
DataNode and Accumulo tablet server processes. In order to conduct strong scalabil-
ity analysis, we run BL, RRp and gRRp algorithms for all SpGEMM instances on
K = 2, 4, 6, 8 and 10 tablet servers.

5.3 Evaluation framework

To measure the running time of BL, we first ingest input matrices A and B as separate
tables, then we define split points that distribute rows of matrices to tablet servers
evenly. By this partitioning, the first K − 1 tablet servers are assigned �n/K � rows (n
being the number of rows of a matrix) and the last tablet server is assigned all the
remaining rows. The Graphulo library does not support any other load balancing
scheme other than defining split points on rows as performed in our implementation,
and this approach is also followed in [14]. After ingesting the A and B matrices, we
call the SpGEMM routine provided by Graphulo library from a client process running
on one of the control nodes. We measure the running time of BL as the total time the
corresponding routine takes within the client process.

To measure the running time of RRp, we ingest matrices A and B in a single table
M and we define split points on table M to evenly distribute rows of M among tablet
servers, as done in BL. After this operation, we call the proposed SpGEMM routine
within a client process running on one of the control nodes and measure the total
running time of the multiplication operation. In this routine, the proposed iterator is
applied on a batch-scanner which is provided with a range covering all rows of A
under the column family of table M . The running time of gRRp is measured similarly.

The running times of all algorithms are obtained by averaging 5 successive runs.
These times cover the entire process of performing multiplications of matrices A and
B and writing the resulting matrix C back to database. However, in BL, outer-product
results that contribute to the same nonzero entries of C are not combined/summed
before beingwritten back to tableC . Summations of these partial results are performed
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by applying a scanning-time summing-combiner on table C . Therefore, to obtain the
final matrix C in parallel by all tablet servers, a batch-scan operation covering all
rows of matrix C need to be performed. On the other hand, the C matrices computed
by RRp and gRRp do not require applying a summing-combiner or performing any
further computations, since all partial results contributing to the same nonzero entries
of C are already combined/summed before being written back to the database. This
difference violates the fairness of the comparisons made among the algorithms, since
BL performs less computation than both RRp and gRRp during SpGEMM operations.
In this regard, we also compare the time required to scan the C matrices produced by
all algorithms and include in our experimental results. In order to get scanning times,
we performed a batch-scan operation covering all rows of C , after performing the
SpGEMM operation on matrices A and B, and measure the time required to receive
all the nonzero entries of C by the client process running on one of the control nodes.

5.4 Experimental results

Table 2 displays the measured running times of BL, RRp and gRRp to perform
SpGEMM instances on K = 2, 4, 6, 8 and 10 tablet servers. The rows entitled as
“norm avgs wrto BL” display the geometric means of the ratios of the running times
of RRp and gRRp to those of BL in the respective categories.

As seen in Table 2, in both C = AA and C = AB categories, RRp consistently
performs much better than BL on all test instances except for amazon0312 on K = 2
servers. Moreover, the performance improvement of RRp over BL increases with
increasing K . On average, in the C = AA category, RRp runs 1.75×, 2.56×, 2.85×,
3.33× and 3.44× faster than BL on K = 2, 4, 6, 8 and 10 tablet servers, respectively.
Similarly, these values become 2.50×, 3.70×, 3.80×, 4.34× and 4.34× in the C =
AB category. Additionally, we also observe that BL can not scale on some instances,
especially on scircuit and tmt_sym instances, where the running time of BL increases
as K increases from 8 to 10. However, RRp displays better scalability than BL, since
in all test cases the running time of RRp decreases with the increasing value of K .

The performance of RRp is further improved by gRRp on almost all SpGEMM
instances. On average, gRRp provides an improvement of 12% over RRp on K = 2
servers and this improvement significantly increases to 32% on K = 10 servers in the
C = AA category. In the C = AB category, gRRp performs 12% better than RRp on
K = 2 servers and this improvement slightly increases to 13% on K = 10 servers.
These results indicate that the graph partitioning approach increases the scalability of
RRp, since the decrease in the communication volume among tablet servers increases
the efficiency of parallel algorithm.

Figure 3a displays the average speedup curves for the multiplication phase over
each SpGEMM category. Speedup values on an SpGEMM instance are attained with
respect to the running time of BL for the same instance on K = 2 tablet servers.
In both categories, both RRp and gRRp scale linearly and display significantly better
scalability than BL. For example, on K = 10 servers, RRp and gRRp achieve speedup
values of 6.37 and 8.82 respectively, whereas BL achieves only 1.84 in the C = AA
category. Similarly, these speedup values become 11.50, 13.80 and 2.89 respectively
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(c) Speedup curves for the overall execution time.

Fig. 3 Average speedup curves of BL, RRp and gRRp with respect to the running time of BL on K = 2
tablet servers. a Multiplication phase. b Scanning phase. c Overall execution time

in theC = AB category. Additionally, as can be inferred from the speedup curves, the
efficiency of RRp is further increased by gRRp and higher speedup values are obtained
via intelligent partitioning of input matrices. As also seen in Fig. 3a, the performance
improvement of gRRp over RRp on the scalability is much more pronounced in the
C = AA category than in the C = AB category.

Table 3 displays the times required to scan C matrices produced by all algorithms
after they perform respective SpGEMM instances. As seen in the table, scanning
phase of BL requires significantly more time than those of RRp and gRRp due to the
summing-combiner applied on table C by Graphulo library. In the C = AA category,
on average, scanning phase of RRp and gRRp algorithms runs 1.55× and 1.78×
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faster than that of BL on K = 2 servers and this performance improvement increases to
2.85× and 3.33× on K = 10 servers, respectively. Similarly in theC = AB category,
scanning phase of RRp and gRRp runs 2.04× faster than that of BL on K = 2 servers
and this improvement increases to 3.33× on K = 10 servers, respectively.

Figure 3b displays the average speedup curves for the scanning phase over each
SpGEMM category. As seen in Fig. 3b, both RRp and gRRp displays significantly
better scalability than BL. Comparison of Fig. 3a and b show that the performance
improvement of gRRp over RRp is considerably less on the scanning phase than
the multiplication phase, as discussed earlier. This is because the scanning phase
involves communication only between the control server and tablet servers (i.e., no
communication among tablet servers) and the graph partitioning only encapsulates the
amount of communication volume during the multiplication phase. The considerable
performance improvement of gRRp over RRP in C = AA category can be attributed
to the fact that gRRp provides better nonzero distribution of C matrix among tablet
servers, due to the third constraint placed on vertices (i.e., thew3

i weight), as compared
to RRp, and therefore, achieves better load balance during the scan of C-matrix.

It is worth to mention that speedup values attained by BL in the scanning phase
decrease as the number of tablet servers increases in some cases (e.g., when the num-
ber of servers increases from 8 to 10 in Fig. 3b). This performance decrease can be
mainly attributed to the partitioning scheme used in BL where input matrices are
partitioned rowwise among servers without considering the workload associated with
these rows (i.e., each server is assigned �n/K � rows). However, the computational load
associated with each row may drastically deviate, since these rows, especially dense
rows, may necessitate many summing-combining operations due to the partial results
contributing to the same nonzero entries. Thus BL suffers from load imbalance due
to uneven nonzero entry distribution among tablet servers, leading to lower speedup
values.

Figure 3c displays the average speedup curves for the overall execution time (i.e. the
total time spent on multiplication plus scanning phases) of the SpGEMM operations.
As seen in Fig. 3c, both RRp and gRRp scales significantly better than BL in the total
execution time.

Figure 4 displays the variation of the running times of the multiplication phase of
all algorithms on K = 10 servers with increasing scale factor of SpGEMM instances
that are produced by the graph500 tool. This figure is included here in accordance
with the experimental results reported in [14]. As seen in the figure, both RRP and
gRRp perform significantly better than BL, whereas gRRp performs slightly better
than RRp.

5.5 Varying key-value size

In this section, we report the results of the experiments conducted to show the variation
of the performance improvement of gRRp over RRp with increasing key-value pair
sizes. For the previous experiments, we designate the sizes of row, column and value
fields of key-value pairs as 8 bytes each (i.e., the size of each nonzero is 24 bytes).
Hence, in order to obtain different sized key-value pairs for an SpGEMM instance,
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Fig. 4 Running times of BL, RRp and gRRp to perform SpGEMM instances, which are generated by
graph500 tool, on K = 10 tablet servers
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Fig. 5 Average speedupcurves ofRRpandgRRpwith varyingkey-value sizes. Speedupvalues are computed
with respect to the running times of RRp on K = 2 tablet servers

we keep the sizes of row and column fields fixed and set the size of the value field to
16, 32, 64 and 128-bytes. The scaler multiplication of two value fields is performed
via Java’s BigDecimal Class.

In Fig. 5, we plot the average speedup curves of RRp and gRRp, with different key-
value sizes, over each SpGEMMcategory. For each SpGEMM instance and value-field
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size, speedup values are computed with respect to the running time of RRp on K = 2
tablet servers. As seen in the figure, the performance improvement of gRRp over
RRp increases significantly for both categories with increasing key-value pair size.
For example, for the C = AA category on K = 10 servers, gRRp runs 1.58×, 1.83,
2.30 and 2.80× faster than RRp for value-field sizes of 16, 32, 64 and 128 bytes,
respectively. Similarly, for the C = AB category on K = 10 servers, gRRp runs
1.39×, 1.24×, 1.61× and 1.88× faster than RRp for value-field sizes of 16, 32, 64 and
128 bytes, respectively. This increase in the performance improvement of gRRp over
RRp is because of the fact that the communication volume increases with increasing
value-field sizes and hence the improvements to be attained by graph partitioning,
which has the objective of minimizing total communication volume, become more
pronounced on the overall performance. So the preprocessing overhead is expected to
amortize in such applications, since the partitioning overhead is independent of the
sizes of key-value pairs.

6 Conclusion

We proposed an iterator algorithm to perform distributed SpGEMM in Accumulo
database. The proposed algorithm utilizes row-by-row parallel SpGEMM which
achieves write-locality during ingestion of the output matrix. However, this approach
necessitates performing multiple batch-scan operations, which introduces significant
latency overheads. These overheads are alleviated by performing local SpGEMM
operations via multiple batches and utilizing multi-threaded parallelism. Extensive
experiments performed on a wide range of realistic and synthetic SpGEMM instances
showed that the proposed algorithm outperforms the outer-product implementation
provided in the Graphulo library, by a large margin.

We also proposed a matrix partitioning scheme that reduces the total communica-
tion volumewhilemaintainingworkload balance among servers. The experiments also
showed that the proposed matrix partitioning scheme provides significant improve-
ments. The preprocessing overhead due to graph partitioning is expected to amortize
in applications that require repeated SpGEMMs involving input matrices having the
same sparsity patterns as well as applications that have large key-value sizes. The
latter is because of the fact that the partitioning overhead is independent of the sizes
of key-value pairs, whereas communication-volume overhead increases with increas-
ing sizes of key-value pairs thus increasing the performance improvement attained by
using graph partitioning.

The proposed SpGEMM algorithm adopts 1D matrix partitioning scheme in which
matrices are rowwise partitioned among tablet servers. However, 1D algorithms face
communication bottleneckswhen the number of tablet servers increases, since the total
communication volume and the number of messages need to be handled by a single
server may drastically increase. In order to address this issue, as a future work, we
will also investigate 2D matrix partitioning schemes in which matrices are partitioned
both rowwise and column-wise among servers.

Iterative methods to solve problems such as sparse non-negative matrix fac-
torization [41–44] heavily depend on repeated sparse matrix and low-rank matrix
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multiplication. We observed significant computational and latency overheads during
repeated invocation of iterator algorithms in Accumulo. Therefore, we are planning
to investigate potential performance enhancements to the proposed SpGEMM iterator
algorithm for efficient use in such cases.

Acknowledgements The numerical calculations reported in this paper were fully performed at TUBITAK
ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).
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