Lecture 4
The Divide-and-Conquer Design Paradigm

View in slide-show mode
Reminder: Merge Sort

Input array A

Divide

Conquer

Combine

sort this half

sort this half

merge two sorted halves
The Divide-and-Conquer Design Paradigm

1. **Divide** the problem (instance) into subproblems.

2. **Conquer** the subproblems by solving them recursively.

3. **Combine** subproblem solutions.
Example: Merge Sort

1. **Divide**: Trivial.
2. **Conquer**: Recursively sort 2 subarrays.
3. **Combine**: Linear-time merge.

\[T(n) = 2 T(n/2) + \Theta(n) \]

- # subproblems
- subproblem size
- work dividing and combining
Master Theorem: Reminder

\[T(n) = aT\left(\frac{n}{b}\right) + f(n) \]

Case 1:

\[\frac{n^{\log_b a}}{f(n)} = \Omega(n^\varepsilon) \]

\[T(n) = \Theta(n^{\log_b a}) \]

Case 2:

\[\frac{f(n)}{n^{\log_b a}} = \Theta(\log^k n) \]

\[T(n) = \Theta\left(n^{\log_b a \log^{k+1} n}\right) \]

Case 3:

\[\frac{n^{\log_b a}}{f(n)} = \Omega(n^\varepsilon) \]

\[T(n) = \Theta(f(n)) \]

and \[af(n/b) \leq cf(n) \] for \(c < 1 \)
Merge Sort: Solving the Recurrence

$$T(n) = 2 \ T(n/2) + \Theta(n)$$

- \(a = 2, \ b = 2, \ f(n) = \Theta(n), \ n^{\log_b a} = n\)

Case 2:

$$\frac{f(n)}{n^{\log_b a}} = \Theta(\lg^k n)$$

$$T(n) = \Theta(n^{\log_b a} \ lg^{k+1} n)$$

holds for \(k = 0\)

$$T(n) = \Theta(n \ lg n)$$
Binary Search

Find an element in a sorted array:

1. **Divide**: Check middle element.
2. **Conquer**: Recursively search 1 subarray.
3. **Combine**: Trivial.

Example: Find 9

```
3  5  7  8  9  12  15
```
Binary Search

Find an element in a sorted array:

1. **Divide**: Check middle element.
2. **Conquer**: Recursively search 1 subarray.
3. **Combine**: Trivial.

Example: Find 9

```
3  5  7  8  9  12  15
```
Binary Search

Find an element in a sorted array:
1. **Divide**: Check middle element.
2. **Conquer**: Recursively search 1 subarray.
3. **Combine**: Trivial.

Example: Find 9

```
3  5  7  8  9  12  15
```
Binary Search

Find an element in a sorted array:

1. **Divide**: Check middle element.
2. **Conquer**: Recursively search 1 subarray.
3. **Combine**: Trivial.

Example: Find 9
Binary Search

Find an element in a sorted array:

1. **Divide**: Check middle element.
2. **Conquer**: Recursively search 1 subarray.
3. **Combine**: Trivial.

Example: Find 9

3 5 7 8 9 12 15
Binary Search

Find an element in a sorted array:

1. **Divide**: Check middle element.
2. **Conquer**: Recursively search 1 subarray.
3. **Combine**: Trivial.

Example: Find 9

3 5 7 8 9 12 15
Recurrence for Binary Search

\[T(n) = 1 \cdot T(n/2) + \Theta(1) \]

- # subproblems
- subproblem size
- work dividing and combining
Binary Search: Solving the Recurrence

\[T(n) = T(n/2) + \Theta(1) \]

\[a = 1, \quad b = 2, \quad f(n) = \Theta(1), \quad n^{\log_b a} = n^0 = 1 \]

Case 2:

\[\frac{f(n)}{n^{\log_b a}} = \Theta(\lg^k n) \]

\[T(n) = \Theta(n^{\log_b a} \lg^{k+1} n) \]

holds for \(k = 0 \)

\[T(n) = \Theta(\lg n) \]
Problem: Compute a^n, where n is a natural number

```
Naive-Power (a, n)

    powerVal ← 1
    for i ← 1 to n
        powerVal ← powerVal . a
    return powerVal
```

What is the complexity? $T(n) = \Theta(n)$
Powering a Number: Divide & Conquer

Basic idea:

\[a^n = \begin{cases}
 a^{n/2} \cdot a^{n/2} & \text{if } n \text{ is even} \\
 a^{(n-1)/2} \cdot a^{(n-1)/2} \cdot a & \text{if } n \text{ is odd}
\end{cases} \]
Powering a Number: Divide & Conquer

\[
\text{POWER} \ (a, \ n) \\
\text{if} \ n = 0 \ \text{then return} \ 1 \\
\text{else if} \ n \text{ is even then} \\
\quad \text{val} \leftarrow \text{POWER} \ (a, \ n/2) \\
\quad \text{return} \ \text{val} \times \text{val} \\
\text{else if} \ n \text{ is odd then} \\
\quad \text{val} \leftarrow \text{POWER} \ (a, \ (n-1)/2) \\
\quad \text{return} \ \text{val} \times \text{val} \times a
\]
Powering a Number: Solving the Recurrence

\[T(n) = T(n/2) + \Theta(1) \]

\[a = 1, \quad b = 2, \quad f(n) = \Theta(1), \quad n^{\log_b a} = n^0 = 1 \]

Case 2:

\[\frac{f(n)}{n^{\log_b a}} = \Theta(\lg^k n) \]

\[T(n) = \Theta(n^{\log_b a} \lg^{k+1} n) \]

holds for \(k = 0 \)

\[T(n) = \Theta(\lg n) \]
Matrix Multiplication

Input: $A = [a_{ij}]$, $B = [b_{ij}]$. \\
Output: $C = [c_{ij}] = A \cdot B$. \\
$c_{ij} = \sum_{1 \leq k \leq n} a_{ik} \cdot b_{kj}$
Standard Algorithm

for \(i \leftarrow 1 \) to \(n \)

 do for \(j \leftarrow 1 \) to \(n \)

 do \(c_{ij} \leftarrow 0 \)

 for \(k \leftarrow 1 \) to \(n \)

 do \(c_{ij} \leftarrow c_{ij} + a_{ik} \cdot b_{kj} \)

Running time = \(\Theta(n^3) \)
Matrix Multiplication: Divide & Conquer

IDEA: **Divide** the \(n \times n \) matrix into

2x2 matrix of \((n/2)\times(n/2)\) submatrices

\[
\begin{pmatrix}
 c_{11} & c_{12} \\
 c_{21} & c_{22}
\end{pmatrix}
= \begin{pmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
\end{pmatrix}
\cdot
\begin{pmatrix}
 b_{11} & b_{12} \\
 b_{21} & b_{22}
\end{pmatrix}
\]

\[c_{11} = a_{11} b_{11} + a_{12} b_{21}\]
Matrix Multiplication: Divide & Conquer

IDEA: Divide the n x n matrix into

2x2 matrix of (n/2)x(n/2) submatrices

\[
\begin{pmatrix}
 c_{11} & c_{12} \\
 c_{21} & c_{22}
\end{pmatrix} = \begin{pmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
\end{pmatrix} \cdot \begin{pmatrix}
 b_{11} & b_{12} \\
 b_{21} & b_{22}
\end{pmatrix}
\]

\[c_{12} = a_{11}b_{12} + a_{12}b_{22}\]
Matrix Multiplication: Divide & Conquer

IDEA: **Divide** the n x n matrix into

2x2 matrix of (n/2)x(n/2) submatrices

\[
\begin{pmatrix}
 c_{11} & c_{12} \\
 c_{21} & c_{22}
\end{pmatrix} =
\begin{pmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
\end{pmatrix} \cdot
\begin{pmatrix}
 b_{11} & b_{12} \\
 b_{21} & b_{22}
\end{pmatrix}
\]

\[
c_{21} = a_{21}b_{11} + a_{22}b_{21}
\]
Matrix Multiplication: Divide & Conquer

IDEA: **Divide** the $n \times n$ matrix into

2x2 matrix of $(n/2) \times (n/2)$ submatrices

\[
\begin{pmatrix}
 c_{11} & c_{12} \\
 c_{21} & c_{22}
\end{pmatrix}
= \begin{pmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
\end{pmatrix}
\cdot
\begin{pmatrix}
 b_{11} & b_{12} \\
 b_{21} & b_{22}
\end{pmatrix}
\]

\[c_{22} = a_{21}b_{12} + a_{22}b_{22}\]
Matrix Multiplication: Divide & Conquer

\[
\begin{pmatrix}
 c_{11} & c_{12} \\
 c_{21} & c_{22}
\end{pmatrix} = \begin{pmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
\end{pmatrix} \cdot \begin{pmatrix}
 b_{11} & b_{12} \\
 b_{21} & b_{22}
\end{pmatrix}
\]

- \(c_{11} = a_{11} b_{11} + a_{12} b_{21} \)
- \(c_{12} = a_{11} b_{12} + a_{12} b_{22} \)
- \(c_{21} = a_{21} b_{11} + a_{22} b_{21} \)
- \(c_{22} = a_{21} b_{12} + a_{22} b_{22} \)

8 mults of \((n/2)\times(n/2)\) submatrices
4 adds of \((n/2)\times(n/2)\) submatrices
Matrix Multiplication: Divide & Conquer

\begin{verbatim}
MATRIX-MULTIPLY(A, B)

// Assuming that both A and B are nxn matrices

if n = 1 then return A * B
else

 partition A, B, and C as shown before

 c_{11} = MATRIX-MULTIPLY(a_{11}, b_{11}) + MATRIX-MULTIPLY(a_{12}, b_{21})
 c_{12} = MATRIX-MULTIPLY(a_{11}, b_{12}) + MATRIX-MULTIPLY(a_{12}, b_{22})
 c_{21} = MATRIX-MULTIPLY(a_{21}, b_{11}) + MATRIX-MULTIPLY(a_{22}, b_{21})
 c_{22} = MATRIX-MULTIPLY(a_{21}, b_{12}) + MATRIX-MULTIPLY(a_{22}, b_{22})

return C
\end{verbatim}
Matrix Multiplication: Divide & Conquer Analysis

\[T(n) = 8 \ T(n/2) + \Theta(n^2) \]

- 8 recursive calls
- Each subproblem has size \(n/2 \)
- Submatrix addition
Matrix Multiplication: Solving the Recurrence

\[T(n) = 8 \ T(n/2) + \Theta(n^2) \]

\[a = 8, \quad b = 2, \quad f(n) = \Theta(n^2), \quad n^{\log_b a} = n^3 \]

\[\frac{n^{\log_b a}}{f(n)} = \Omega(n^{\epsilon}) \]

Case 1:

\[T(n) = \Theta(n^{\log_b a}) \]

\[T(n) = \Theta(n^3) \]

No better than the ordinary algorithm!
Matrix Multiplication: Strassen’s Idea

Compute c_{11}, c_{12}, c_{21}, and c_{22} using 7 recursive multiplications
Matrix Multiplication: Strassen’s Idea

\[P_1 = a_{11} \times (b_{12} - b_{22}) \]
\[P_2 = (a_{11} + a_{12}) \times b_{22} \]
\[P_3 = (a_{21} + a_{22}) \times b_{11} \]
\[P_4 = a_{22} \times (b_{21} - b_{11}) \]
\[P_5 = (a_{11} + a_{22}) \times (b_{11} + b_{22}) \]
\[P_6 = (a_{12} - a_{22}) \times (b_{21} + b_{22}) \]
\[P_7 = (a_{11} - a_{21}) \times (b_{11} + b_{12}) \]

Reminder: Each submatrix is of size \((n/2) \times (n/2)\)

Each add/sub operation takes \(\Theta(n^2)\) time

Compute \(P_1..P_7\) using 7 recursive calls to matrix-multiply

How to compute \(c_{ij}\) using \(P_1..P_7\)?
Matrix Multiplication: Strassen’s Idea

\[P_1 = a_{11} \cdot (b_{12} - b_{22}) \]
\[P_2 = (a_{11} + a_{12}) \cdot b_{22} \]
\[P_3 = (a_{21} + a_{22}) \cdot b_{11} \]
\[P_4 = a_{22} \cdot (b_{21} - b_{11}) \]
\[P_5 = (a_{11} + a_{22}) \cdot (b_{11} + b_{22}) \]
\[P_6 = (a_{12} - a_{22}) \cdot (b_{21} + b_{22}) \]
\[P_7 = (a_{11} - a_{21}) \cdot (b_{11} + b_{12}) \]

\[c_{11} = P_5 + P_4 - P_2 + P_6 \]
\[c_{12} = P_1 + P_2 \]
\[c_{21} = P_3 + P_4 \]
\[c_{22} = P_5 + P_1 - P_3 - P_7 \]

7 recursive multiply calls
18 add/sub operations

Does not rely on commutativity of multiplication
Matrix Multiplication: Strassen’s Idea

\[P_1 = a_{11} \times (b_{12} - b_{22}) \]
\[P_2 = (a_{11} + a_{12}) \times b_{22} \]
\[P_3 = (a_{21} + a_{22}) \times b_{11} \]
\[P_4 = a_{22} \times (b_{21} - b_{11}) \]
\[P_5 = (a_{11} + a_{22}) \times (b_{11} + b_{22}) \]
\[P_6 = (a_{12} - a_{22}) \times (b_{21} + b_{22}) \]
\[P_7 = (a_{11} - a_{21}) \times (b_{11} + b_{12}) \]

E.g. Show that \(c_{12} = P_1 + P_2 \)

\[c_{12} = P_1 + P_2 \\
= a_{11}(b_{12} - b_{22}) + (a_{11} + a_{12})b_{22} \\
= a_{11}b_{12} - a_{11}b_{22} + a_{11}b_{22} + a_{12}b_{22} \\
= a_{11}b_{12} + a_{12}b_{22} \]
Strassen’s Algorithm

1. **Divide**: Partition A and B into \((n/2) \times (n/2)\) submatrices. Form terms to be multiplied using + and −.

2. **Conquer**: Perform 7 multiplications of \((n/2) \times (n/2)\) submatrices recursively.

3. **Combine**: Form C using + and − on \((n/2) \times (n/2)\) submatrices.

Recurrence: \(T(n) = 7 \ T(n/2) + \Theta(n^2)\)
Strassen’s Algorithm: Solving the Recurrence

$$T(n) = 7 \ T(n/2) + \Theta(n^2)$$

$$a = 7, \quad b = 2, \quad f(n) = \Theta(n^2), \quad n^{\log_b a} = n^{\lg 7}$$

Case 1: $$\frac{n^{\log_b a}}{f(n)} = \Omega(n^\epsilon)$$

$$T(n) = \Theta(n^{\log_b a})$$

$$T(n) = \Theta(n^{\lg 7})$$

Note: $$\lg 7 \approx 2.81$$
Strassen’s Algorithm

- The number 2.81 may not seem much smaller than 3

- But, it is significant because the difference is in the exponent.

- Strassen’s algorithm **beats** the ordinary algorithm on today’s machines for $n \geq 30$ or so.

- Best to date: $\Theta(n^{2.376...})$ (*of theoretical interest only*)
Problem: Embed a complete binary tree with n leaves into a 2D grid with minimum area.

Example:
Binary Tree Embedding

- Use divide and conquer

1. Embed the root node
2. Embed the left subtree
3. Embed the right subtree

What is the min-area required for n leaves?
Binary Tree Embedding

\[W(n) = 2W(n/2) + 1 \]
\[H(n) = H(n/2) + 1 \]

H(n/2)

H(n) = H(n/2) + 1

W(n/2)

W(n) = 2W(n/2) + 1
Binary Tree Embedding

- Solve the recurrences:
 \[W(n) = 2W(n/2) + 1 \]
 \[H(n) = H(n/2) + 1 \]

- \[W(n) = \Theta(n) \]
- \[H(n) = \Theta(\log n) \]

- \[\text{Area}(n) = \Theta(n \log n) \]
Binary Tree Embedding

Example:

W(n)

H(n)
Binary Tree Embedding: H-Tree

- Use a different divide and conquer method

1. Embed root, left, right nodes
2. Embed subtree 1
3. Embed subtree 2
4. Embed subtree 3
5. Embed subtree 4

What is the min-area required for n leaves?
Binary Tree Embedding: H-Tree

\[W(n) = 2W(n/4) + 1 \]

\[H(n) = 2H(n/4) + 1 \]
Binary Tree Embedding: H-Tree

- Solve the recurrences:
 \[W(n) = 2W(n/4) + 1 \]
 \[H(n) = 2H(n/4) + 1 \]

 \[W(n) = \Theta(\sqrt{n}) \]
 \[H(n) = \Theta(\sqrt{n}) \]

- Area(n) = \Theta(n)
Binary Tree Embedding: H-Tree

Example:

\[W(n) \]

\[H(n) \]
Correctness Proofs

- **Proof by induction** commonly used for D&C algorithms

- **Base case**: Show that the algorithm is correct when the recursion bottoms out (i.e., for sufficiently small \(n \))

- **Inductive hypothesis**: Assume the alg. is correct for any recursive call on any smaller subproblem of size \(k \) (\(k < n \))

- **General case**: Based on the inductive hypothesis, prove that the alg. is correct for any input of size \(n \)
Example Correctness Proof: Powering a Number

\[\text{POWER} \ (a, \ n) \]

\[
\begin{align*}
\text{if } n &= 0 \text{ then return } 1 \\
\text{else if } n \text{ is even then} & \\
& \quad \text{val } \leftarrow \text{POWER} \ (a, \ n/2) \\
& \quad \text{return val } \times \text{val} \\
\text{else if } n \text{ is odd then} & \\
& \quad \text{val } \leftarrow \text{POWER} \ (a, \ (n-1)/2) \\
& \quad \text{return val } \times \text{val } \times a
\end{align*}
\]
Example Correctness Proof: Powering a Number

- **Base case**: \(\text{POWER}(a, 0) \) is correct, because it returns 1
- **Ind. hyp**: Assume \(\text{POWER}(a, k) \) is correct for any \(k < n \)
- **General case**:
 In \(\text{POWER}(a, n) \) function:

 If \(n \) is even:

 \[
 \text{val} = a^{n/2} \quad (\text{due to ind. hyp.})
 \]

 it returns \(\text{val} \).

 \[
 \text{val} = a^{n}
 \]

 If \(n \) is odd:

 \[
 \text{val} = a^{(n-1)/2} \quad (\text{due to ind. hyp.})
 \]

 it returns \(\text{val} \). \(\text{val} \cdot a = a^{n} \)

\(\Rightarrow \) **The correctness proof is complete**
Maximum Subarray Problem

- **Input**: An array of values
- **Output**: The contiguous subarray that has the largest sum of elements

Input array:

| 13 | -3 | -25 | 20 | -3 | -16 | -23 | 18 | 20 | -7 | 12 | -22 | -4 | 7 |

the maximum contiguous subarray
Maximum Subarray Problem: Divide & Conquer

- **Basic idea:**
 - **Divide** the input array into 2 from the middle
 - Pick the **best** solution among the following:
 1. The max subarray of the **left half**
 2. The max subarray of the **right half**
 3. The max subarray **crossing the mid-point**

Crosses the mid-point

Entirely in the left half

Entirely in the right half
Maximum Subarray Problem: Divide & Conquer

- **Divide**: Trivial (divide the array from the middle)
- **Conquer**: Recursively compute the max subarrays of the left and right halves
- **Combine**: Compute the max-subarray crossing the mid-point (can be done in $\Theta(n)$ time). Return the max among the following:
 1. the max subarray of the left subarray
 2. the max subarray of the right subarray
 3. the max subarray crossing the mid-point

See textbook for the detailed solution.
Conclusion

- Divide and conquer is just one of several powerful techniques for algorithm design.
- Divide-and-conquer algorithms can be analyzed using recurrences and the master method (so practice this math).
- Can lead to more efficient algorithms