
1

A Model Driven Approach for Automating Architecture Documentation

Process

Başak Çakar, Elif Demirli and Şadiye Kaptanoğlu

Department of Computer Engineering, Bilkent University

06800 Bilkent, Ankara, Turkey

{cakar, demirli, sadiye}@cs.bilkent.edu.tr

Abstract
 Software architecture documentation is a

heavyweight process since it involves development and

management of various documentation artifacts.

Architectural views and architecture description

languages (ADLs) are two examples of those artifacts

each of which presents mostly similar information in

different forms. So, there is a redundant documentation

effort when two models are developed separately. In

this paper, we present a model-driven approach for

automatically transforming architectural views to

AADL models. Architectural views that are defined

based on our proposed metamodel is transformed to

AADL model. In addition to elimination of redundant

documentation effort, this approach also enhances

architecture documentation process by ensuring

consistency among views and AADL models.

1. Introduction

Software architecture for a computing system

consists of the structure or structures of that system,

which comprise elements, the externally visible

properties of those elements, and the relationships

among them [1]. Documentation of software

architecture plays an important role since it facilitates

early communication of design decisions and system

analysis. A complete architecture description process is

involves various documentation activities.

Architectural view is one such type of

documentation. Since modern systems are too complex

to document and communicate with a single

architecture model, architectural view concept was

introduced. An architectural view is a description of

one aspect of a system‟s architecture. It represents a set

of system elements and relations associated with them

to support a particular concern [1]. Having multiple

views helps to separate the concerns and support the

modeling, communication and analysis of the software

architecture with different stakeholders.

In the literature, various multi-view approaches are

defined to document the architecture. For example,

Rational‟s Unified Process is based on Kruchten‟s 4+1

view approach which comprises logical, development,

process view and physical views [2]. The Siemens

Four Views model [3] is another example.

Current trend in architectural views is to enable

architects to produce whatever views are useful for the

system at hand. The Views and Beyond (V&B) is in

alignment with this trend. It is a multi-view approach

that views the system from three different viewtypes:

Module viewtype, component-and-connector (C&C)

viewtype and allocation viewtype.

Documenting the system from different views is

useful; however, a complete and unified description of

the architecture is also required. Architecture

description languages (ADLs) are used for this

purpose. They facilitate design, analysis and

documentation for the overall system. There are

various architecture description languages in the

literature. Each one is developed for different purposes.

AADL (Architecture Analysis and Design

Language) is a popular architecture description

language [4]. It provides formal modeling concepts for

the description and analysis of application systems.

The AADL includes software, hardware, and system

component abstractions to specify and analyze real-

time embedded systems. It allows mapping software

onto computational hardware elements [4].

Both ADL and architectural views are crucial in

architecture documentation process. They mostly

capture the same information; however, the

presentation of information is different. So, a

redundant work is done when two artifacts are

developed separately. Also, a considerable amount of

effort is required to keep the two documents consistent.

In this paper, we present a model-driven approach

for automating ADL document generation from

architectural views. The metamodel for architectural

views is developed for V&B approach. Then, model-

2

to-model transformation is applied using the existing

AADL metamodel. A model-to-text transformation is

also applied to present a textual specification of

architectural views.

The remainder of the paper is organized as follows:

Problem statement is presented in Section 2. Section 3

gives Domain Analysis for developing V&B

metamodel. Section 4 gives the grammar for the

designed domain specific language. The metamodel for

V&B approach is defined from scratch based on MOF

in Section 5. It presents abstract syntax, concrete

syntax, and static semantics for the domain and gives

an example model. In Section 6, the metamodel is

developed using UML profiling. Section 9 presents

lessons learned and conclusions.

2. Problem Statement

 Documenting software architectures is a heavyweight

task since it involves various activities. For example,

the architecture should be documented for different

views. However, a complete and unified description of

architecture is also required.

 In both view documents and architecture description

the same information is presented in different forms.

When they are done separately, there is some

redundant effort. In addition to this, it must be ensured

that the information presented in different

documentation artifacts is consistent. An additional

effort to keep the artifacts consistent is also required.

In order to reduce architecture documentation effort,

automatic transformation techniques should be applied.

3.1. Architectural Viewtypes and Styles

In order to document software architectures, three

kinds of viewtypes are defined in V&B approach. A

viewtype defines the element and relation types that

are used to describe the architecture of a software

system from a particular perspective [1]. In V&B

approach domain, there are three basic viewtypes:

module viewtype, component and connector viewtype,

and allocation viewtype.

Each of these viewtypes considers the architecture

from a different point of view. Module viewtype is

about how the system is structured as a set of

implementation units. So, a module is an

implementation unit of software that provides a

coherent unit of functionality [1]. Considering the

C&C viewtype, components and connectors are used to

describe the run-time behavior and interactions of a

software system. The allocation viewtype is used to

express the allocation of software elements to its

development and execution environments.

In addition to these three viewtypes, within each

viewtype there are commonly occurring forms and

variations. These are called architectural styles or

simply styles. A style is defined as a specialization of

elements and relationships, together with a set of

constraints on how they can be used [1]. There are a

number of predefined styles for each of the three

viewtypes defined above. For example, the styles of

the module view are: decomposition style uses style,

generalization style, and layers style. However, one

can also define a new style to satisfy the needs of

software project development and documentation.

3.2. Domain Concepts

Software architecture: software architecture of a

system is the structure or structures of the system

which comprise software components, or the

documentation of these.

Viewtype: a viewtype is the definition of element and

relation types that are used to describe the architecture

of a software system from a particular perspective.

There are three viewtypes according to V&B approach:

Module, C&C and Allocation.

Style: a style is a specialization of element types and

relation types along with any constraints. Each style

conforms to one viewtype. Any number of

architectural styles can be defined.

View: a view is a representation of the elements of a

system and their relations.

Element: an element of a system is the type of one of

the organizational units of the system used in the

documentation.

Relation: a relation is a pattern of interaction among

two or more elements.

Property: a property is an attribute of either an

element or a relation.

4. DSL Grammar

Domain specific language is used to represent

concepts and rules of a particular domain. In order to

describe domain concepts in a formal way BNF can be

used. Backus–Naur Form (BNF) is a formal notation

used to describe the syntax of a given language.

Figure 1 shows the mapping of the domain

concepts of Views and Beyond Approach to a domain

specific grammar in EBNF (Extended Backus–Naur

Forms) that is the extension of BNF. This EBNF

grammar can be interpreted as follows: our root

element is Architecture which has zero or more

ViewType. ViewType has a ViewTypeName and zero

or more Style and so on. In EBNF grammar non-

terminals consist of non-terminals and terminals.

3

Architecture ::= (Viewtype)*

Viewtype ::= ViewtypeName (Style)*

ViewtypeName ::= VTName

Style ::= StyleName Topology

(ArchitecturalElement)*

StyleName ::= String

Topology ::= String

ArchitecturalElement::=

ArchitecturalElementName (Property)* (Element

| Relation)

ArchitecturalElementName ::= String

Property ::= PropertyName PropertyValue

PropertyName ::= String

PropertyValue ::= String

Element ::= ElementName (Relation)*

ElementName ::= String

Relation ::= TargetElement

TargetElement ::= String

Figure 1. Domain specific grammar of V&B Approach.

5. Metamodel Based on MOF

One way to define a metamodel is using Meta

Object Facility (MOF) that is a language used to define

metamodels. Metamodel describes concepts that can be

used for modeling the model. A complete metamodel

consists of abstract syntax of the domain, concrete

syntax and static semantics. In this section we present

the metamodel of architectural views based on MOF-

from scratch. We used Eclipse Modelling Framework

(EMF) [5] TOPCASED [6] plug-in in order to

construct our metamodel. In the following subsections

we will explain the abstract syntax, concrete syntax,

static semantics and example models in detail.

5.1. Abstract Syntax

Abstract syntax consists of the concepts and

definition of a domain specific language. It represents

domain concepts and the relationship between these

concepts.

 In Figure 2, abstract syntax of architectural views is

shown. Main entity of the metamodel is Architecture.

It consists of zero or more Viewtype. Viewtype has

viewtype_name as an attribute which can be Module,

C&C or Allocation. Collection of Style conforms to

Viewtype. Attributes of Style are styleName and

topology that is used defines the constraints about

related Style. Each Style consists of zero or more

ArchitecturalElement. Each architectural element has

zero or more Property. ArchitecturalElement in the

style can be Element or Relation. According to this

model each Relation must be between two elements

which are source and target.

Figure 2. Metamodel based on MOF from scratch

4

5.2. Concrete Syntax

Concrete Syntax is realization of abstract syntax

and it can be visual or textual. The visual concrete

syntax of our metamodel is expressed in Figures 3 and

4. Visual concrete syntax shows how to represent

domain concepts which are in abstract syntax. Both

standard architectural views such as Module, C&C and

Allocation and new viewtypes can be built by using

our metamodel. Thus different concrete syntax can be

defined for each of them separately. We defined our

concrete syntax based on the three viewtypes of V&B

approach. We tried to use the common representation

of styles in these viewtypes which consists of basic

UML notations [1].

5.2.1. Module Viewtype

Figure 3 shows how to represent Element and

Property in module viewtype. In module view an

element can be a class, a package, a layer or any

decomposition of the code unit. ElementName and

ElementType enable to give name to element and to

define its type. In this figure we see that the given

element is a Module and its name is Database. By

using the property representation properties and their

values of related element are shown. In the example

property name is “VisibleTo” which shows Database

Module is visible to Implementation Module.

Figure 3. Representation of element and relation in

module viewtype

Figure 3 also shows the representation of relations

in module view. In module view there are three types

of relations which are composition, dependency and

generalization between elements.

5.2.2. C&C Viewtype

C&C viewtype provides to represent software

architecture from the perspective of its components

runtime interactions of principle units and its

connectors [7]. Figure 4 shows how to represent C&C

viewtype‟s elements and relations. In C&C viewtype

there are two types of element, Component and

Connector. Components are the principle processing

unit of the executing system and connectors shows the

interaction mechanism between components. Each

element has ports which provide interaction of

components and connectors through their interfaces

and define a set of operations and events that are

provided by the element and that are required from its

environment. There are two types of interfaces,

Required Interface and Provided Interface. A provided

interface is modeled using the lollipop notation and a

required interface is modeled using the socket notation.

Figure 4. Representation of Element and Relation in

C&C Viewtype

5.2.3. Allocation Viewtype

The allocation viewtype is used to show mapping

of the software architecture onto its environment which

can be hardware elements, file management or

organization team. Concrete syntax of allocation

viewtype differs too much compared to other

viewtypes. For each style such as Deployment Style,

Implementation Style and Work Assignment Style we

can define different concrete syntax. For simplicity and

understandability we prefer to define our concrete

syntax based on deployment style. In Deployment

Style software element that are elements from C&C

viewtype and environmental element (computing

hardware such as processor, memory, disk, etc.) are

used. “Allocated-to” and “Migrates-to” are used as

relation. Allocated-to shows on which physical

elements the software resides. Migrates-to shows the

relation from a software element on one processor to

the same software element on a different processor,

this relation indicates that a software element can move

from processor to another and it is used when the

allocation is dynamic [1]. Figure 5 shows how to

5

represent elements and relations of Deployment Style.

In the figure concrete syntax of software element is the

same with the concrete syntax of C&C viewtype

because Deployment Style uses C&C elements as

software element.

Figure 5. Representation of Element and Relation in

Allocation Viewtype

5.3. Static Semantics

The static semantics of the metamodel shown in

Figure 6 are presented in this section. In order to define

the static semantics we used object constraint language

(OCL). We have a limited list of well-formedness rules

as seen in Figure 6. The first three rules define the

uniqueness property of names. Viewtype name, style

name and element names should be unique in our

domain. Next rule states that a relation should always

occur between two different elements. An element

cannot have a relation to itself. The last rule indicates

that styles cannot be mixed for a specific viewtype. To

be more specific, one cannot use the architectural

elements defined in a style of one viewtype in a style

of another viewtype.

Figure 6. OCL rules for metamodel from viewtype

5.4. Example Model

Figure 7 shows the application of uses style on the

Crime Management System (CMS). CMS is an online

system that aims to enable collaboration among police

and citizens while fighting with crime. It is used by

citizens to make denouncements to the police and used

by police officers to properly report and manage crime,

to make crime analysis etc. The architecture of the

system is modeled with uses style in order to see which

modules use the others and thus make an incremental

development plan of the system.

The mapping between the defined abstract syntax

and the example model can be investigated on a

smaller example in Figure 8. The basic architectural

element used in this representation is module and it

expressed by UML package diagram notation. The

“Module” keyword written inside each unit

emphasized its type. It is defined by the name attribute

of the ArchitecturalElement abstraction in Figure 7.

The string before “Module” keyword is name of the

module. It is represented as the attribute of Element

class in the abstract syntax. In the example, we have

two modules: Statistics and Lost Citizen. The relation

6

Figure 7. A sample model for metamodel from scratch – Uses Style for Crime Management System

 between those modules is a uses relation. “uses”

keyword is expressed by name attribute of

ArchitecturalElement abstraction similarly to

“module”.

Figure 8. A simple example to uses relation

6. Metamodel Using UML Profiling

The second approach of defining a metamodel is

using an existing available metamodel and extending

its definition. In this section, we present the metamodel

for architectural views by extending the UML

metamodel. Although it is possible to make a

heavyweight extension, we preferred to develop a

lightweight extension of UML metamodel since the

resulting metamodel of a heavyweight extension is not

recognized by existing UML tools. In the following

subsections, the abstract syntax, concrete syntax, static

semantics and two example models are presented.

6.1. Abstract Syntax

The abstract syntax of our metamodel based on

UML profiling is seen in Figure 9. We performed a

UML 2.* lightweight extension. The basic domain

concepts identified in domain analysis are mapped to

UML concepts in this metamodel. By this way, we

extend existing UML concepts to satisfy the domain

concept requirements.

7

Figure 9. Metamodel based on UML profiling

The architecture concept is extended from UML

Package since it acts as a covering mechanism rather

than being a separate class with its own properties. The

viewtypes that constitute the architecture are extended

from UML Class. Moreover, the styles that reside in

the viewtype are also mapped to UML Class. Thus,

each style will have its own class and attributes. The

basic building blocks of styles are called architectural

elements and they are also mapped to UML class. In

our previous metamodel which was based on MOF

from scratch, architectural element was the

generalization of element and relation. In this

metamodel, architectural element stereotype is again a

generalization of element stereotype. However, relation

concept is mapped to UML Association which is a

more suitable UML concept to its behavior. Lastly,

property concept is extended from UML Property

metaclass which adds propertyName and

propertyValue attributes.

6.2. Concrete Syntax

In the previous section, we have used the extension

of an available metamodel method in order to create

architectural views metamodel. This extension

mechanism offers five kinds of concrete syntax

definitions based on UML‟s concrete syntax [8]. These

are simply: 1) showing as direct instance of metaclass,

2) using the name of metaclass as a stereotype, 3) using

an abbreviation by convention as stereotype, 4) using a

tagged value stating the metaclass, 5) creating an

individual graphical notation. Among these five

options, we see that option number three is the most

practical and used this option to create our concrete

syntax.

The concrete syntax for the metamodel created using

UML profiling is seen in Figure 10. In the figure it is

seen that a graphical notation very similar to UML is

used. For concepts extended from UML class we use

class notation together with a stereotype of

abbreviation by convention. In the figure, it is shown

for Element only. For the architecture concept which is

extended from UML Package, the same approach is

used. However, the property is shown as in the UML

concrete syntax. Lastly, relation concept is almost

same with the UML relation. Since we extended the

UML association, the relation types are same. In

addition, relation names should be written on the

relations together with multiplicities where necessary.

8

Figure 10. Concrete syntax for UML profiling based

metamodel.

6.3. Static Semantics
The static semantics of the metamodel is presented

in this section. In order to define static semantics with

UML profiling we use notes in the metamodel

description. The constraints are written in OCL and can

be seen below. As it is seen, most of the rules are same

with the previous rules which were defined for

metamodel from scratch. This is because we are at the

same domain. We needed to add additional rules

because with UML profiling the expressiveness of the

metamodel decreases. We add additional rules for

describing the relations between domain concepts. For

example, a style can belong to one viewtype only. In

addition, since the types of properties are not declared

for stereotypes, we defined rules for these. For

example, the target and source for a relation is of

Element type.

Static Semantics of Metamodel with UML Profiling

context Viewtype

inv: Viewtype::allInstances()-

>isUnique(viewtypeName)

context Style

inv: Style::allInstances()->isUnique(styleName)

context Element

inv: Element::allInstances()->isUnique(elementName)

context Relation

inv: self.source.elementName <>

self.target.elementName

context v1:Viewtype v2:Viewtype

inv: v1.styles->forAll (s1 |

v2.styles->forAll (s2 |

s1->elements->forAll (e1 |

s2-> elements->forAll (e2 |

e1.name = e2.name implies v1 = v2))))

context Viewtype

inv: self.viewtypeName = „Module‟ or

self.viewtypeName =

„ComponentAndConnector‟ or

self.viewtypeName = „Allocation‟

context Architecture

inv: self.viewtypes->size() = 3

context v1: Viewtype v2:Viewtype

inv: v1.styles->forAll (s1 |

v2.styles->forAll (s2 |

s1.styleName = s2.styleName implies v1=v2))

context Relation

inv: self.target->oclIsTypeOf (Element) and

 self.source-> oclIsTypeOf (Element)

context Architecture

inv: self.viewtypes->forAll (v1 | v1->oclIsTypeOf

(Viewtype))

context Viewtype

inv: self.styles->forAll (s1 | s1->oclIsTypeOf (Style))

context Style

inv: self.aelements->forAll (e1 |

e1->oclIsTypeOf (ArchitecturalElement))

6.4. Example Model

In Figure 11, the uses view that is shown in Figure

7 is re-modeled using the newly concrete syntax that

was created with UML profiling. The <<Element>>

stereotype shows that that unit is an element. In M2, it

is defined extending the UML Class object. It has a

name and also a name attribute. The second name here

implies the type of the unit such as module, package

etc. The dependency relations here are extended from

UML Association class. It has a name to describe the

relation which is “uses” in Figure 11.

9

Figure 11. A sample model for metamodel based on UML profiling – Uses Style for Crime Management System

7. Model-to-Model Transformation

 A model transformation takes as input a model

conforming to a given metamodel and produces as

output another model conforming to another given

metamodel. In this work, we defined rules for

transforming our models to AADL models. Thus, the

role of our model-to-model transformation is basically

mapping among models at different levels of

abstraction. We applied exogenous transformation

meaning that the two metamodels used in the

transformation are expressed in different languages.

 The AADL is a standard which provides formal

modeling concepts for the description and analysis of

application systems architecture in terms of distinct

components and their interactions. It includes software,

hardware, and system component abstractions to

mainly specify and analyze real-time embedded

systems, complex systems of systems, and specialized

performance capability systems, and map software

onto computational hardware elements [4].

 In the following two sub-sections, we present the

definition of our model-to-model transformation and

an example transformation.

7.1. Definition

 In order to define the model-to-model

transformation, we used our MOF from-scratch

metamodel, as source and the AADL (The Architecture

Analysis and Design Language) metamodel as target.

In our metamodel there are concepts such as

architecture, style, element, and relation which are nice

abstractions. Whereas, the AADL metamodel consists

of seven main concepts each of which are defined in a

separate metamodel definition file. The combination of

these sub-metamodels forms the metamodel which is a

highly complex structure.

10

For this work, we defined model-to-model

transformation rules for the Component-and-Connector

viewtype which has more similar concepts to AADL‟s

metamodel. We considered the predefined styles of this

viewtype which are listed in [1] as: pipe-filter style,

client-server style, peer-to-peer style, and etc. We

defined mappings and transformation rules considering

each of these styles and concepts defined in them. The

concept of these mappings can be seen in Table 1.

Table 1. Mapping of metamodels for transformation

Concepts

(our

metamodel)

Concepts

(AADL metamodel)

Architecture AadlSpec

Style AadlPackage

Element Component

(ProcessType, DataType, busType)

Relation Connection

Property Feature

 For example Architecture concept is mapped to

AadlSpec in AADL and its name is also transformed to

the name of AadlSpec name. The table does not show

the details of transformations, but it is for a general

idea of mapping. We defined rules considering the

different styles of Component-and-Connector

viewtype. For instance, Element is transformed to

Component with considerations on its name. If the

element name is “Pipe” or “Filter” the Component is of

processType, or if the element name is publish-

subscribe then it is transformed to Component of

busType.

7.2. Example

 In order to perform model-to-model transformation,

we created the model of “MergeAndSort” according to

our from-scratch metamodel. This model can be seen

in Figure 12. In this model, there are four elements of

type filter and four elements of type pipe. All these

elements have features which define the port used for

connection and communication. The source model

conforms to PipeAndFilter style of Component and

Connector viewtype. When we apply the developed

transformation to this source model, we get the target

model in Figure 14 which conforms to AADL

metamodel. This model is developed by using the

Eclipse plugin for AADL development. We give the

target model of transformation and this plugin

generates the concrete syntax representation of our

model. This is also a verification step since it generates

concrete syntax of valid input models only. From this

figure, we can see that the elements are mapped to

components according to their names. In this case both

pipes and filters are mapped to ProcessType

components. The ports of each component are also

shown in the concrete syntax.

Figure 12. Merge-and-Sort model in C&C view

Figure 13. Merge-and-Sort model with AADL

8. Model-to-Text Transformation

8.1. Definition

 Model-to-text transformation is a „special‟ case of

model-to-model transformation. It provides developers

to generate both code and non-code documents such as

documents and plays an important role in the Model-

Driven Software Development (MDSD). In our project

we prefer to transform our model into a text document

since in software development documenting textual

specifications is required for stakeholders and

development team. Thus generating textual

representation of architectural models automatically

provides more consistent and easy documentation.

 In this study we used openArchitectureWare (oAW)

as transformation engine. oAW consist of M2M

transformations, constraints checking, a workflow

engine, adapters for the XMI of a variety of UML

tools, EMF integration, Eclipse IDE integration as

well as a proven template language for code generation

11

called Xpand. oAW requires a metamodel and a model

which is formed based on that metamodel for

transformation. It first validates the model according to

predefined check rules that are defined by an OCL–like

language. A template file is written by Xpand in order

to define the format of output file by mapping model

elements to text segments and oAW generates the

target document by using this file. All of these are

stored in a workflow file that directs oAW engine by

instructing which tasks will be executed under which

configurations.

8.2. Example

 We used Uses Style for Crime Management System

Model (Figure 7) as an example and transform it to its

textual representation for documentation. In Figure 14,

template file of our transformation is seen and in

Figure 15 textual representation of the model in Figure

7 is shown as an output of model-to-text

transformation.

Figure 14. Textual Representation of Uses Style for Crime Management System

Figure 15. Textual Representation of Uses Style for Crime Management System

12

9. Lessons Learned and Conclusions

 In this section, we present the discussion of project

development together with lessons learned. During the

development of this work, we have gone through

several experiences. Most importantly, we have

examined the benefits and importance of MDSD. We

started with domain analysis which is a tough activity.

Then, we described the domain concepts in two ways:

defining a grammar and defining a metamodel. Thus,

we had the chance of comparing these two approaches.

In addition to this, for metamodeling, we followed two

procedures, one is from scratch and the other is UML

profiling. We again had the opportunity of comparing

these two approaches of metamodeling. We

experienced with current tools for metamodeling.

Lastly; we performed model-to-model and model-to-

text transformations by using our predefined

metamodel.

 The first step of this work was to perform a detailed

domain analysis and to identify domain concepts. We

realized that performing a good analysis of the domain

with considerable amount of time spent, and

identifying the domain concepts clearly, helps building

an accurate abstract syntax for the metamodel.

Furthermore, it decreases the possibility of errors in the

following phases.

 The second step of the project was to define a DSL

for the grammar. When we compare metamodel and

grammar, we observe that metamodels are more

understandable and suitable to express domain specific

concepts. Grammar is not as expressive as metamodels

for both visual and technical aspects. Relations

between concepts are not defined clearly in grammars.

In addition to this, in metamodel we can define

constraints by using OCL however in grammar we

cannot define constraints. We conclude that BNF is

insufficient and is a harder way to express the relations

between domain concepts.

 As stated in the previous paragraph, metamodeling is

a much more expressive and easy way of defining

domain concept and their relations. In fact, during the

development, we first created the abstract syntax of the

metamodel and then we defined the grammar using

this. In general, metamodeling based on MOF-from

scratch is a difficult activity; however, it was not that

difficult in our case since we had a small set of domain

concepts. It still has a disadvantage for small cases,

which is, it is not compatible with existing tools.

 Next, we experienced with metamodeling based on

UML profiling. For each concept in our domain, it was

not hard to find a corresponding UML concept. So this

approach is more efficient than from scratch case. This

is also the case for concrete syntax definition. There is

a well-defined concrete syntax for UML, thus we

reused it mostly and made small adjustments for our

case. There are also disadvantages that we faced with

this approach. It does not give flexibility while

defining the abstract syntax. Although this was not a

big problem in our case, it may be more important in

other domains.

 For the static semantics, we used OCL for definition

since UML is not enough. OCL is part of the UML

standard and it is easy with it to define constraints for

the metamodel which in turn increase the precision of

models. One interesting experience we faced was the

definition of topology concept in our domain. In

reality, topology defines the constraints of a viewtype

and its styles. We could define the constraints of

viewtypes in static semantics with OCL. However, the

constraints of styles which constitute topology reside

in M1 level and thus cannot be defined in static

semantics. By this observation, we conclude that

topology itself corresponds to static semantics of each

style defined and should be described by OCL. We did

not define a seperate OCL for topology but just

referred to it as a list of string values. One additional

problem with topology was the difficulty of showing it

in concrete syntax. We decided not to show it since it

would complicate the model.

 In the model-to model transformation part we used

ATL that is flexible language for defining

transformation rules and we transformed our model to

an AADL model. Model-to-model transformation is

complicated since there are endless variations of the

source and target metamodels. Before starting

implementation of the model-to-model transformation,

transformation rules defined clearly and in detail. Thus,

the source and target metamodel and semantics of

transformation should be known. The most difficult

part of the project is to analyze the internal structure of

AADL metamodel in order to map our metamodel to

AADL metamodel more accurately. In addition to this

our metamodel and AADL metamodel are quite

different and we faced problems about transforming

the information contained in our model to AADL

model.

 In the model-to model transformation part we used

ATL open-ArchirectureWare”. It is easier than model-

to-model transformation. It is more understandable and

simple and the tutorials of the tool are useful, although

full coverage is not provided. We encountered one

annoying problem is the untidy form of the output file.

The document generated from transformation in Xpand

is in an untidy form. To apply the correct indentation,

13

it requires hard work. So as to solve this problem, the

syntax of Xpand should be reorganized and updated.

In overall, most of the tools developed for MDSD are

still incubating (they are still under development),

since MDSD is relatively a new concept. And because

of this we suffered lack of documentation and

advanced examples about tools and transformation

languages.

 In conclusion, in this paper we have defined a

generic metamodel for defining architectural styles

based on V&B approach. Our metamodel is simple and

thus generic and extensible to use for various purposes.

We have firstly defined a metamodel from scratch

based on MOF. Although this is a heavyweight

approach, we did not have much difficulty with it

probably because of the simplicity of our metamodel.

Next, we have defined a metamodel with UML

profiling. UML profiling seems more favorable when

tool support is considered. At the end of our

experiment model-to-model and model-to-text

transformation is applied. In model-to-model

transformation we used AADL metamodel as target

and in model-to-text transformation we transform our

model to textual specification for documentation.

References

[1] P. Clements et al. Documenting Software Architectures:

Views and Beyond. Addison-Wesley, September 2002.

[2] P. Kruchten. The Rational Unified Process: An

Introduction,Second Edition. Addison-Wesley, Boston, MA,

USA, 2000.

[3] C. Hofmeister, R. Nord, and D. Soni. Applied Software

Architecture. Addison-Wesley, NJ, USA.

[4] P.H. Feiler, D.P. Gluch, J.J. Hudak.The Architecture

Analysis and Design Language (AADL): An Introduction.

Technical Note. CMU/SEI-2006-TN-011. February 2006.

 [5] Eclipse Modeling Framework.

http://www.eclipse.org/modeling/emf/

[6] TOPCASED.

http://www.topcased.org/

[7] D. Garlan, J. Ivers, P. Clements, R. Nord, B. Schmerl and

J. R. O. Silva. Documenting Component and Connector

Views with UML 2.0. Technical report, CMU/SEI-2004-TR-

008, Software Engineering Institute, 2004.

[8] T. Stahl, M. Voelter, and K. Czarnecki. Model-Driven

Software Development: Technology, Engineering,

Management. John Wiley & Sons, 2007.

http://www.eclipse.org/modeling/emf/
http://www.topcased.org/

