
Model-driven development of

Flight Desk Displays

Cevahir TURGUT

Enver Veli ATABEK

Outline

 Introduction / Description of the Domain

 Domain Analysis/Domain Concepts

 Grammar

 Meta-modeling from Scratch

 Static Semantics

 Meta-modeling using Profiling at UML 2.*

 Model to Model Transformation: FDD to GMF

 Code Generation (FDD Model to C++/OpenGL)

 Discussion/Conclusion/Lessons Learned

Introduction

 What is Flight Deck Displays (FDD)?

 Display systems used at glass cockpits

 Avionics Area

 Safety critical software is needed and requested

 Software products of FDD are also at high safey-

critical level

 Why is this domain selected?

 Professional Experience on Domain at Work

 Suitable for MDSD Approach

Introduction

 Aim of FDD Modeling

 To increase productivity and produce easily

reusable SW

 Visual software development using visual model

elements of domain

 Code Generation from models

 To produce SW with reduced certification costs

 Code Generation conforms to standards (i.e. Khronos

OpenGL ES-SC 1.0

 Reduce maintenance costs

Description of the Domain

 What is glass cockpit? [3]

Description of the Domain

 Some glass cockpit screen shots

Description of the Domain

 Some glass cockpit screen shots

Description of the Domain

 FDD are for aircrafts (i.e. helicopters, airplanes)
 Interactions are done via glass cockpit systems

 What is Glass Cockpit?
 Interaction are done via electronic display systems

instead of old manual switches and indicators

 What is NOT Flight Deck Display?
 Graphical User Interface

 Just graphics

 Today’s new aircrafts are equipped with glass
cockpit systems

Domain Analysis/Domain Concepts

 Personal Professional Experiences
 Software Development/Verification Activities at Avionics

Domain more than two Avionics Projects

 FAA Guidelines
 FAA: Federal Aviation Administration [1]

 Mission of FAA: To provide the safest, most efficient
aerospace system in the world

 Determines Regulations & Policies for Avionics
 Advisory Circulars (ACs), FAA Regulations, Handbooks &

Manuals

 Some aircraft documentations
 i.e. DO178B: Software Considerations in Airborne

Systems and Equipment Certification [2]

Domain Concepts

 Display: The main scene. A display contains symbologies.

 Symbology: A place holder that groups the components.

 Text: Texts. Usually used to display information, warnings, messages and errors. There
are three kinds of texts; Warning, Normal, Error.

 Label: Label is a definitive component for another component. Labels are separated into
two: TextLabel and IconLabel.

 TextLabel: It is kind of a text however it color is static and defined for another component.

 IconLabel: IconLabel has an image for it is component.

 Symbol: It is a kind of visual component. Symbols are separated into two: TerrainSymbol
and AircraftSymbol.

 AircraftSymbol: This component is the aircraft symbol. A consistent aircraft symbol is
used for an FDD.

 TerrainSymbol: Terrain symbols are used to show geographical elements and buildings
such as mountains, tall buildings, airports etc.

 Indicator: Indicators are used to show some information, e.g. speed, fuel, temperature.
There are two kinds of indicators Gauge and Bar.

 Gauge: Gauge indicators are like a speed indicator in a car.

 Bar: Bar indicators shows the information with a bar.

Domain Analysis/Domain Concepts

Example

DSL Grammar

 EBNF Notation is used

FDDModel = Display;

Display = {Symbology};

Symbology = {Component};

Component = Text | Label | Symbol | Symbology | Indicator;

Label = TextLabel | IconLabel;

Symbol = TerrainSymbol | AircraftSymbol;

Indicator = Gauge | Bar;

Terminals are: Gauge, Bar, Text, TextLabel, IconLabel,
TerrainSymbol, AircraftSymbol

Non-terminals are: FDDModel, Display, Symbology, Component,
Label, Symbol, Indicator

Abstract Syntax of FDD

 Meta-model of FDD

Meta-modeling from Scratch

 Used Tools

 Eclipse IDE

 oAW (openArchitectureWare)

 ECore (for metamodeling)

 Check Language (for static semantics)

 Ecore is simplified version of MOF

 More expressive than grammar

Concrete Syntax

 Example Concrete Syntax of meta-model

Static Semantics

 Used Notation: oAW Check Language, 15 rules

Rules are used at code generation
 context FDDModel ERROR "No Display Defined" :

display != null;

 context Symbology ERROR "All symbologies of Display have to be unique" :

((Display)this.eContainer).symbologies.select(e|e.name == this.name) == 1;

 context Component ERROR "All elements of Symbology have to be unique" :

((Symbology)this.eContainer).elements.select(e|e.name == this.name) == 1;

 context Display ERROR "Out of Width" :

this.symbologies.exists(e|e.width<=this.width);

 context Display ERROR "Out of Height" :

this.symbologies.exists(e|e.height<=this.height);

 context Indicator ERROR "Current Value is Out of Range" :

this.current >= this.min && this.current <= this.max;

 context Component ERROR "Invalid X-Y Coordinate" :

this.xCoord >= 0 && this.yCoord >= 0;

Static Semantics

 context Symbology ERROR "Invalid X-Y Coordinate" :

this.elements.exists(e|e.xCoord<=this.width) && this.elements.exists(e|e.yCoord<=this.height);

 context AircraftSymbol ERROR "Invalid Direction" :

this.direction <= 360 && this.direction >= 0;

 context Label ERROR "Label has to be referenced to a Component" :

this.labelFor != null;

 context Display WARNING "Background color of Display has to be more gray" :

this.background.red <= 235 && this.background.green <= 235 && this.background.blue <= 235;

 context Symbology ERROR "Sybology cannot have element at Display or Symbology type" :

this.elements.typeSelect(Display) == false && this.elements.typeSelect(Symbology) == false;

 context TextLabel ERROR "Text has to be defined for a TextLabel" :

this.content != null;

 context IconLabel ERROR "Icon image has to be defined for a IconLabel" :

this.icon != (IconImage)(null);

 context Component ERROR "Name has to defined" :

this.name != null;

Metamodeling using UML 2.*

Profiling
 Used Tool: Enterprise Architect

Metamodeling using UML 2.*

Profiling
 Applying Developed UML Profile for FDD to Model

Metamodeling using UML 2.*

Profiling
 Example Model from Developed Profile for FDD

class FDD_model

«Symbology»

FuelSymbology

«Display»

PFD

Airbus137DisplayModel

«Bar»

FuelTank

«Label»

FuelLabel
«Text»

Readout

Model to Model Transformation:

FDD to GMF
 ATL (Atlas Transformation Language) is used for

model to model transformation

 Target model is chosen as GMF (Graphical

Modeling Framework)

 Why GMF?

 It is aimed to develop software through visual model with

FDD Modeling

 Generated tool for FDD Modeling will not be commonly

used

 GMF is framework for visualizing the models

 GMF is commonly used

Model to Model Transformation:

FDD to GMF
 GMF Core Notation Metamodel

Model to Model Transformation:

FDD to GMF
 FDD is mapped to GMF as follows:

 Display to Diagram

 Component to Node

 Also; Text, Labels, Indicators, Symbology, Symbol

to Node

 Size and Styles of FDD components are mapped

to LayoutConstraint of GMF

Model to Model Transformation:

FDD to GMF
 5 Helper Functions & 6 Rules with 1 Abstract

Model to Model Transformation:

FDD to GMF

Model to Model Transformation:

FDD to GMF
 Example model transformation: FDD Model

Model to Model Transformation:

FDD to GMF
 Example model transformation: GMF Model

Code Generation

(FDD Model to C++/OpenGL)
 Motivations of Code Generation

 Reusable,

 Certifiable,

 High Quality code with FDD Modeling.

 Working Product after Design Phase

 Cost effective: Design phase of software product

has to be performed for avionics software

products according DO178B standard

Code Generation

(FDD Model to C++/OpenGL)
 Platform Specific vs Platform Independent

Transformation

 Platform specific text transformation technique

since Khronos ES – SC OpenGL is widely used

 C/C++ mostly used in embedded and real time

systems

 If OpenGL is replaced by another technology;

the only thing to do is to develop platform specific

rules for new technology

Code Generation

(FDD Model to C++/OpenGL)
 Generated code segments call non-

generated code contained in libraries

 OpenGL APIs are called by generated code via

library

 Xpand is used for model to text transformer

 One of the most capable m2t language

 Template based and easy to use

Code Generation

(FDD Model to C++/OpenGL)
 «IMPORT fdd_metamodel»

 «EXTENSION fdd_template_m2t::GeneratorExtensions»

 «DEFINE main FOR fdd_metamodel::FDDModel»

 «FILE "FDDModel.cpp"»

 int main() {

 bool retVal = true;

 Display «display.name» = new Display("«display.name»", «display.width», «display.height», (new
RGBAColor(«display.background.red», «display.background.green», «display.background.blue»,
«display.background.alpha»)));

 «FOREACH display.symbologies AS s»

 //Create «s.name» symbology

 Symbology «s.name» = new Symbology("«s.name»", «s.width», «s.height», «s.xCoord»,
«s.yCoord», (new RGBAColor(«s.background.red», «s.background.green», «s.background.blue»,
«s.background.alpha»)));

 «FOREACH display.symbologies.elements AS e»

 «REM»Create source file of used elements. Too long, not given«ENDREM»

 «ENDFOREACH»

 //Add «s.name» symbology to «display.name»

 «display.name».addSymbology(«s.name»);

 «ENDFOREACH»

 while (retVal == true) {

 retVal = «display.name».myCode(); }

 return 0;

 }

 «ENDFILE»

 «EXPAND display_cpp FOR display»

 «EXPAND fddModel2code_classes::fdd_common»

 «EXPAND fddModel2code_classes::fdd_symbology»

 «ENDDEFINE»

Discussion: Used Tools

 oAW (openArchitectureWare)
 Lots of bugs

 Change at one view does not effect at other view of same
model/component

 Ecore and Check Language
 Neither OCL nor MOF are fully supported

 ECore and Check Language are supported

 ECore and Check Language are easy to use

 Not fully documented
 No fully descriptive tutorials

 No commonly used help file

 Successful code template based generation
 Xpand and Xtext

Discussion: Used Tools

 Enterprise Architect (EA)
 Constraints at EA not compatible with other tools

 It can be described via UML notes at diagram

 Vectorial Graphic Tools
 It is not easy to use GMF

 Easier and more practical way of defining concrete syntax

 Need to produce a compatible tool in order to use
generated concrete syntax while modeling

 ATL
 More mature compared to other languages/tools

 Complex to make an executable transformer

Conclusion/Lessons Learned

 Grammar is not good way to DSL

 Constraint cannot be defined preciously

 Visualization is not possible (especially for relations)

 Tools for MDSD are not interoperable

 Constraints import/export between oAW and EA

 Differentiating M1 & M2 is difficult and critical issue

 Classifying domain concepts

 Deciding on concrete syntax

 No common and widely used symbols/notations

Conclusion/Lessons Learned

 Model to Model Transformation
 Enables Interoperability

 Effective way to use created domain specific models to
commonly used tools

 Model to Text Transformation
 It is aimed to generate reusable, certifiable, high quality

code with FDD Modeling in this project

 Nearly 100% percentage code generation with libraries

 Productive way of developing code

 Reusable: Platform specific parts can easily updated

 Reduces certifications effort and costs at safety critical
projects by using certifiable libraries, standards at code
generator templates

Conclusion/Lessons Learned

 MDSD new approach but very promising

 MDSD is very suitable for FDD systems

 Also suitable for embedded real time software at
application level

 Only one product will be updated with changes

 Design will be alive during product life cycle

 Visualization reduces complexity and decreases
maintenance efforts (Easy to understand code)

 Some constraints are made at metamodeling level
 Reduces software defects

References

 [1] U.S. Department of Transportation Federal Aviation Administration, Advisory Circular

25-11A – Electronic Flight Deck Displays, USA, 6/21/07

 [2] RTCA, Inc., Do178B Software Considerations in Airborne Systems and Equipment

Certification, USA

 [3] L-3 Avionics Systems, SmartDeck Brochure, Grand Rapids, MI USA, 2008

 [4] http://www.openarchitectureware.org, openArchitectureWare User Guide, Version 4.3.1,

17/04/2009

 [5] http://www.eclipse.org/modeling/gmf/, Eclipse Graphical Modeling Framework,

Accessed at 17/04/2009

 [6] http://en.wikipedia.org/wiki/DO178B, DO178B, Accessed at 17/04/2009

 [7] http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.gmf.doc/prog-

guide/runtime/Developer%20Guide%20to%20Diagram%20Runtime.html, Accessed at

16/05/2009

 [8] http://www.eclipse.org/m2m/atl/, Accessed at 16/05/2009

 [9] Architecture Board ORMSC, Model Driven Architecture (MDA), Document number

ormsc/2001-07-01, 9/7/ 2001

 [10] http://www.omg.org/technology/documents/modeling_spec_catalog.htm, Accessed at

15/04/2009

THANK YOU

Questions?

