
Model-driven development of

Flight Desk Displays

Cevahir TURGUT

Enver Veli ATABEK

Outline

 Introduction / Description of the Domain

 Domain Analysis/Domain Concepts

 Grammar

 Meta-modeling from Scratch

 Static Semantics

 Meta-modeling using Profiling at UML 2.*

 Model to Model Transformation: FDD to GMF

 Code Generation (FDD Model to C++/OpenGL)

 Discussion/Conclusion/Lessons Learned

Introduction

 What is Flight Deck Displays (FDD)?

 Display systems used at glass cockpits

 Avionics Area

 Safety critical software is needed and requested

 Software products of FDD are also at high safey-

critical level

 Why is this domain selected?

 Professional Experience on Domain at Work

 Suitable for MDSD Approach

Introduction

 Aim of FDD Modeling

 To increase productivity and produce easily

reusable SW

 Visual software development using visual model

elements of domain

 Code Generation from models

 To produce SW with reduced certification costs

 Code Generation conforms to standards (i.e. Khronos

OpenGL ES-SC 1.0

 Reduce maintenance costs

Description of the Domain

 What is glass cockpit? [3]

Description of the Domain

 Some glass cockpit screen shots

Description of the Domain

 Some glass cockpit screen shots

Description of the Domain

 FDD are for aircrafts (i.e. helicopters, airplanes)
 Interactions are done via glass cockpit systems

 What is Glass Cockpit?
 Interaction are done via electronic display systems

instead of old manual switches and indicators

 What is NOT Flight Deck Display?
 Graphical User Interface

 Just graphics

 Today’s new aircrafts are equipped with glass
cockpit systems

Domain Analysis/Domain Concepts

 Personal Professional Experiences
 Software Development/Verification Activities at Avionics

Domain more than two Avionics Projects

 FAA Guidelines
 FAA: Federal Aviation Administration [1]

 Mission of FAA: To provide the safest, most efficient
aerospace system in the world

 Determines Regulations & Policies for Avionics
 Advisory Circulars (ACs), FAA Regulations, Handbooks &

Manuals

 Some aircraft documentations
 i.e. DO178B: Software Considerations in Airborne

Systems and Equipment Certification [2]

Domain Concepts

 Display: The main scene. A display contains symbologies.

 Symbology: A place holder that groups the components.

 Text: Texts. Usually used to display information, warnings, messages and errors. There
are three kinds of texts; Warning, Normal, Error.

 Label: Label is a definitive component for another component. Labels are separated into
two: TextLabel and IconLabel.

 TextLabel: It is kind of a text however it color is static and defined for another component.

 IconLabel: IconLabel has an image for it is component.

 Symbol: It is a kind of visual component. Symbols are separated into two: TerrainSymbol
and AircraftSymbol.

 AircraftSymbol: This component is the aircraft symbol. A consistent aircraft symbol is
used for an FDD.

 TerrainSymbol: Terrain symbols are used to show geographical elements and buildings
such as mountains, tall buildings, airports etc.

 Indicator: Indicators are used to show some information, e.g. speed, fuel, temperature.
There are two kinds of indicators Gauge and Bar.

 Gauge: Gauge indicators are like a speed indicator in a car.

 Bar: Bar indicators shows the information with a bar.

Domain Analysis/Domain Concepts

Example

DSL Grammar

 EBNF Notation is used

FDDModel = Display;

Display = {Symbology};

Symbology = {Component};

Component = Text | Label | Symbol | Symbology | Indicator;

Label = TextLabel | IconLabel;

Symbol = TerrainSymbol | AircraftSymbol;

Indicator = Gauge | Bar;

Terminals are: Gauge, Bar, Text, TextLabel, IconLabel,
TerrainSymbol, AircraftSymbol

Non-terminals are: FDDModel, Display, Symbology, Component,
Label, Symbol, Indicator

Abstract Syntax of FDD

 Meta-model of FDD

Meta-modeling from Scratch

 Used Tools

 Eclipse IDE

 oAW (openArchitectureWare)

 ECore (for metamodeling)

 Check Language (for static semantics)

 Ecore is simplified version of MOF

 More expressive than grammar

Concrete Syntax

 Example Concrete Syntax of meta-model

Static Semantics

 Used Notation: oAW Check Language, 15 rules

Rules are used at code generation
 context FDDModel ERROR "No Display Defined" :

display != null;

 context Symbology ERROR "All symbologies of Display have to be unique" :

((Display)this.eContainer).symbologies.select(e|e.name == this.name) == 1;

 context Component ERROR "All elements of Symbology have to be unique" :

((Symbology)this.eContainer).elements.select(e|e.name == this.name) == 1;

 context Display ERROR "Out of Width" :

this.symbologies.exists(e|e.width<=this.width);

 context Display ERROR "Out of Height" :

this.symbologies.exists(e|e.height<=this.height);

 context Indicator ERROR "Current Value is Out of Range" :

this.current >= this.min && this.current <= this.max;

 context Component ERROR "Invalid X-Y Coordinate" :

this.xCoord >= 0 && this.yCoord >= 0;

Static Semantics

 context Symbology ERROR "Invalid X-Y Coordinate" :

this.elements.exists(e|e.xCoord<=this.width) && this.elements.exists(e|e.yCoord<=this.height);

 context AircraftSymbol ERROR "Invalid Direction" :

this.direction <= 360 && this.direction >= 0;

 context Label ERROR "Label has to be referenced to a Component" :

this.labelFor != null;

 context Display WARNING "Background color of Display has to be more gray" :

this.background.red <= 235 && this.background.green <= 235 && this.background.blue <= 235;

 context Symbology ERROR "Sybology cannot have element at Display or Symbology type" :

this.elements.typeSelect(Display) == false && this.elements.typeSelect(Symbology) == false;

 context TextLabel ERROR "Text has to be defined for a TextLabel" :

this.content != null;

 context IconLabel ERROR "Icon image has to be defined for a IconLabel" :

this.icon != (IconImage)(null);

 context Component ERROR "Name has to defined" :

this.name != null;

Metamodeling using UML 2.*

Profiling
 Used Tool: Enterprise Architect

Metamodeling using UML 2.*

Profiling
 Applying Developed UML Profile for FDD to Model

Metamodeling using UML 2.*

Profiling
 Example Model from Developed Profile for FDD

class FDD_model

«Symbology»

FuelSymbology

«Display»

PFD

Airbus137DisplayModel

«Bar»

FuelTank

«Label»

FuelLabel
«Text»

Readout

Model to Model Transformation:

FDD to GMF
 ATL (Atlas Transformation Language) is used for

model to model transformation

 Target model is chosen as GMF (Graphical

Modeling Framework)

 Why GMF?

 It is aimed to develop software through visual model with

FDD Modeling

 Generated tool for FDD Modeling will not be commonly

used

 GMF is framework for visualizing the models

 GMF is commonly used

Model to Model Transformation:

FDD to GMF
 GMF Core Notation Metamodel

Model to Model Transformation:

FDD to GMF
 FDD is mapped to GMF as follows:

 Display to Diagram

 Component to Node

 Also; Text, Labels, Indicators, Symbology, Symbol

to Node

 Size and Styles of FDD components are mapped

to LayoutConstraint of GMF

Model to Model Transformation:

FDD to GMF
 5 Helper Functions & 6 Rules with 1 Abstract

Model to Model Transformation:

FDD to GMF

Model to Model Transformation:

FDD to GMF
 Example model transformation: FDD Model

Model to Model Transformation:

FDD to GMF
 Example model transformation: GMF Model

Code Generation

(FDD Model to C++/OpenGL)
 Motivations of Code Generation

 Reusable,

 Certifiable,

 High Quality code with FDD Modeling.

 Working Product after Design Phase

 Cost effective: Design phase of software product

has to be performed for avionics software

products according DO178B standard

Code Generation

(FDD Model to C++/OpenGL)
 Platform Specific vs Platform Independent

Transformation

 Platform specific text transformation technique

since Khronos ES – SC OpenGL is widely used

 C/C++ mostly used in embedded and real time

systems

 If OpenGL is replaced by another technology;

the only thing to do is to develop platform specific

rules for new technology

Code Generation

(FDD Model to C++/OpenGL)
 Generated code segments call non-

generated code contained in libraries

 OpenGL APIs are called by generated code via

library

 Xpand is used for model to text transformer

 One of the most capable m2t language

 Template based and easy to use

Code Generation

(FDD Model to C++/OpenGL)
 «IMPORT fdd_metamodel»

 «EXTENSION fdd_template_m2t::GeneratorExtensions»

 «DEFINE main FOR fdd_metamodel::FDDModel»

 «FILE "FDDModel.cpp"»

 int main() {

 bool retVal = true;

 Display «display.name» = new Display("«display.name»", «display.width», «display.height», (new
RGBAColor(«display.background.red», «display.background.green», «display.background.blue»,
«display.background.alpha»)));

 «FOREACH display.symbologies AS s»

 //Create «s.name» symbology

 Symbology «s.name» = new Symbology("«s.name»", «s.width», «s.height», «s.xCoord»,
«s.yCoord», (new RGBAColor(«s.background.red», «s.background.green», «s.background.blue»,
«s.background.alpha»)));

 «FOREACH display.symbologies.elements AS e»

 «REM»Create source file of used elements. Too long, not given«ENDREM»

 «ENDFOREACH»

 //Add «s.name» symbology to «display.name»

 «display.name».addSymbology(«s.name»);

 «ENDFOREACH»

 while (retVal == true) {

 retVal = «display.name».myCode(); }

 return 0;

 }

 «ENDFILE»

 «EXPAND display_cpp FOR display»

 «EXPAND fddModel2code_classes::fdd_common»

 «EXPAND fddModel2code_classes::fdd_symbology»

 «ENDDEFINE»

Discussion: Used Tools

 oAW (openArchitectureWare)
 Lots of bugs

 Change at one view does not effect at other view of same
model/component

 Ecore and Check Language
 Neither OCL nor MOF are fully supported

 ECore and Check Language are supported

 ECore and Check Language are easy to use

 Not fully documented
 No fully descriptive tutorials

 No commonly used help file

 Successful code template based generation
 Xpand and Xtext

Discussion: Used Tools

 Enterprise Architect (EA)
 Constraints at EA not compatible with other tools

 It can be described via UML notes at diagram

 Vectorial Graphic Tools
 It is not easy to use GMF

 Easier and more practical way of defining concrete syntax

 Need to produce a compatible tool in order to use
generated concrete syntax while modeling

 ATL
 More mature compared to other languages/tools

 Complex to make an executable transformer

Conclusion/Lessons Learned

 Grammar is not good way to DSL

 Constraint cannot be defined preciously

 Visualization is not possible (especially for relations)

 Tools for MDSD are not interoperable

 Constraints import/export between oAW and EA

 Differentiating M1 & M2 is difficult and critical issue

 Classifying domain concepts

 Deciding on concrete syntax

 No common and widely used symbols/notations

Conclusion/Lessons Learned

 Model to Model Transformation
 Enables Interoperability

 Effective way to use created domain specific models to
commonly used tools

 Model to Text Transformation
 It is aimed to generate reusable, certifiable, high quality

code with FDD Modeling in this project

 Nearly 100% percentage code generation with libraries

 Productive way of developing code

 Reusable: Platform specific parts can easily updated

 Reduces certifications effort and costs at safety critical
projects by using certifiable libraries, standards at code
generator templates

Conclusion/Lessons Learned

 MDSD new approach but very promising

 MDSD is very suitable for FDD systems

 Also suitable for embedded real time software at
application level

 Only one product will be updated with changes

 Design will be alive during product life cycle

 Visualization reduces complexity and decreases
maintenance efforts (Easy to understand code)

 Some constraints are made at metamodeling level
 Reduces software defects

References

 [1] U.S. Department of Transportation Federal Aviation Administration, Advisory Circular

25-11A – Electronic Flight Deck Displays, USA, 6/21/07

 [2] RTCA, Inc., Do178B Software Considerations in Airborne Systems and Equipment

Certification, USA

 [3] L-3 Avionics Systems, SmartDeck Brochure, Grand Rapids, MI USA, 2008

 [4] http://www.openarchitectureware.org, openArchitectureWare User Guide, Version 4.3.1,

17/04/2009

 [5] http://www.eclipse.org/modeling/gmf/, Eclipse Graphical Modeling Framework,

Accessed at 17/04/2009

 [6] http://en.wikipedia.org/wiki/DO178B, DO178B, Accessed at 17/04/2009

 [7] http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.gmf.doc/prog-

guide/runtime/Developer%20Guide%20to%20Diagram%20Runtime.html, Accessed at

16/05/2009

 [8] http://www.eclipse.org/m2m/atl/, Accessed at 16/05/2009

 [9] Architecture Board ORMSC, Model Driven Architecture (MDA), Document number

ormsc/2001-07-01, 9/7/ 2001

 [10] http://www.omg.org/technology/documents/modeling_spec_catalog.htm, Accessed at

15/04/2009

THANK YOU

Questions?

