Model Driven Software Development Approach on
Procedural Modeling of Buildings

Murat Kurtcephe

Oguzcan Oguz
Bugra M. Yildiz

Contents

* Procedural Modeling of Buildings
« DSL Grammar
 The Shape Grammar Meta-Model

* Model Transformations

 Motivation
* Transformation to Derivation Graph
 Transformation to XML

e Conclusions

Problem Statement

Virtual cities should be modelled in order to be used in a bunch of
applications.

Designing large number of building models requires extensive manual
work.

Procedural modeling: Building model generation with intended style and
variation.

A domain specific language for procedural modeling of buildings.

Model-to-Model transformations to provide better understanding and
design of procedural modeling.

Model-to-Text transformations to achieve portability for model
generating grammars.

Shape Grammars

Stiny G, Gips J, 1972
Architectural Design with Shapes

How does it work?
1. Recognize a shape

2. Replace the recognized shape with another
shape

Rules define which shape is replaced by
which shape

Shape Grammar Example

Rule 1: —>
Rule 1 Rule 1
—3 —3
Rule 1 Rule 1 Rule 1
—4 =% =

Shape

Terminal or Non-Terminal

Non-Terminal shapes are
applied to rules

Terminal shapes have
associated final geometry

A smybol, numerical and
geometric attributes

Scope: An oriented
bounding box: P, X, Y, Z
and S

Production Rules

e Notation:

id: predecessor : cond -> successor : prob
 Example:

1: fac(h) : h>9 -> floor(h/3) floor(h/3) floor(h/3)

» Scope Rules: Translation, Scaling, Rotation,
Insertion and Stacking:

- 1: A->[T(0,0,6) S(8,10,18) I("cube”) JT(6,0,0) S(7,13,18)
I("cube”) T(0,0,16) S(8,15,8) I("cylinder’)

Production Rules

» Split Rules: Splits the given scope, and derives
new shapes:

- 1: floor -> Subdiv("X”,2,1r,1r,2) {B | A| A | B}

 Repeat Rules: Repeats a successor shape in
the scope of the given shape:

- 1: floor -> Repeat(’X",2) {B}

 Component Split Rules: To split into shapes of
lesser dimension

- 1:a-> Comp(“edge’”, 3, 7) {A| B}

Production Process

» Configuration: A set of finite shapes (a runtime
concept, not included in abstract syntax)

 Model Generation Process:(a runtime concept, not
included in abstract syntax)

1. Select an active shape with symbol B in the configuration

2. Choose a production rule with B on the left hand side to
compute a successor for B, a new set of shapes BNEW

3. Mark the shape B as inactive and add the shapes BNEW to
the configuration and continue with step (1). When the
configuration contains no more non-terminals, the production
process terminates.

* Priority sets to control traversal

Model Derivation

Facade

Active Shapes Queue

Derivation Tree

: Temporary Shape @ : Terminal Shape

Grammar

ShapeGrammar ::= PrioritySet (PrioritySet)*

PrioritySet ::= PrioritylD ProductionRuleList

PrioritylD ::= Natural Number

ProductionRuleList ::= ProductionRule (ProductionRule)*

ProductionRule ::= RulelD NonTerminalShape [Condition] SuccessorList

RulelD ::= Natural Number

Condition ::= Boolean Expression

SuccessorList ::= (Successor Probability, SuccesorList) (Successor Probability, SuccesorList)*
Successor Probability ::= Float

Successor ::= Shape | ComponentSplitRule | RepeatRule | ScopeRule |
BasicSplitRule

The Abstract Syntax of Shape
Grammar Meta-Model

* Meta-model from scratch, using Ecore

* Meta-model using UML 2.0 profiling mechanism

Static Semantics

 context RotationRule inv:

self.angle >=0 and self.angle<=360

« context ComponentSplitRule inv:

if self.paramList->size() = 0 then

self.paramShapes->size() = 1
else

self.paramList->size() = self.paramShapes->size()
endif

 context RulePart inv:

self.probabilty <=1 and self.probability >0

PriortySet

Z<instancef>

Zinstancef> ‘

1 wall~=10wall oby”)
o tile ~=Ie oby)

Concrete Syntax

4: facade~=tiles
o tiles~=BE.C, D tie }

b entrance ; Scope.occ noparent”) 1= "none” ~>wall

ininstanc Ll

shapeGrammer

Pmduc:tmnRﬂe

PRIORITTY 1.

1: footprint~= B (“XY7, 3, 5, T){ facades | tile] entrann:e} SenaeRE:
PRIOEITY 2:

2 facades~>CS(s1defaces™) { facade }

3 facade —Finstance0fs3.

~x o BRI, 2, 3){ tles | entrance } ;0.5

~= BE(IC, 4,2){ entrance | nles } 05 <zinstance0f>

Aﬂm ef==

Concrete Syntax

PEIORITY 1.
l: footprint~= B "XY7, 3, 5,) facades | tile| entrance |
%I_I_I

MonTermmal

(Shape) PREIOEITY 2

“<instanceQfs> s | CotmponentSplitRule

% facade .
~> BS(TI, 2, 3 tiles | entrance } SRR BaswophtRule

TR —
“amstancelt> | = RS, 4,2){ entrance | tiles } 2 0.5 {%ﬁ
4: facade~=tiles w RepeatRule
o tiles~=RR(IC, 2){ tile }

6 entrance,: Scope.oce{ noparent”) 1= "none” ~>wal] “Einstancelt>> _
T weall-> I wall oby™), EooleanEzpression

A .Li,li. ~=I"tile obj™), <<instancef>
" [PredefinedShape

Z<instanceCf=>

/[2 facades~=Co("s1defaces™) { facade }

Meta-modeling Issues

Do we need to represent and how to represent geometric
and numerical attributes?

* |f we don't, how to use a parameter of a shape to define a
condition?

e Scope is actually only needed at runtime(MO).

e |t seems, for full automation, we need to define the set of all
possible geometries.

Tools still not adequate: Associating stereotypes, Switched
btw. 3 different tools, plugins (Eclipse, Topcased, Papyrus)

The UML Profile and the ECore meta-model not so
different.

A confusing fact: For our domain, an M1 model is also like
a grammar(A shape grammar).

Meta-modeling Conclusions

« The major limitation of grammars, for the
selected domain, is the limitation of resulting
tree structure: A shape cannot be connected to
a number of rules.

 Using standards results in a high level tool
support; had difficulty first but impressed Ilater.

e For full automation, the meta-model needs to be
coherently specified as much as possible.

 Extensive profiing needs adequate UML
knowledge. But very suitable for OO similar
domains.

Model Transformation

 Model to Model Transformation Motivation:

« Understandability and productivity are increased by
transforming the models into simpler and more
expressive models: Derivation Graphs

e Model to Text Transformation Motivation:

e Automatic code generation: Shape Grammars are
output as XML files, and can be ported to existing
model generation tools.

* Productivity is promoted since DSL is used to define
models in a higher level;, manual modification
reduced, automatic production is achieved.

Transformation to Derivation Graphs

* A Derivation Graph simply
tells which shapes generate

) - H Graph
which shapes during the
derivation process
nodes
 Non-terminal nodes have a Zeromeratonss | L. mm—
number of rule edges which — Rueibe = e : 57
are connected to the nodes D it A
that the non-terminal node ~ repeats
generates.
|
* Rule edges captures the rule e] Emptyhode
properties coming from the T type : RuleType
Truleld EInt 4]«

input shape grammar model. Heaae [Narterminaiodd

Transformation Specification

H ShapeGramman

shépes

H Shape

T symbal : EString
% geometricatts : EFloat
Sonumericalatts | EFloat

™~

H ProductionRuls

T id : Elnt

SLCCESSOrs

1“*

H RulePart

T probability : EFloat

1.1 sSufcessorRule

H surcessorfie

~ H Graph
nodes
< <BrUMEeration > 1.
= RuleType EREES
= substitutes T name : EString

= componentSplits
= splits
= repeats

H TerminalHode H EmptyNode

H RuleEdge

| i

H ComponentSplitRule

H Tarmina!

H MonTerminal

T

H substitionRule

T type @ ComponentSplitType
a2 paramList : Elnt

H PredefinedShape

H EmptyShape

T shapeGeametry @ ESfring

g

T type RuleType
T ruleld : EInt__g4

~y A

T

'EEﬁ——-aé;;‘ H MonterminalMNodd

-
-

H RepeatRule | |H BasicSplitRule
B axis © Axes B axis © Axes
”
-
repeatingShape
Pam
i

H SplitRulePart

T size : EFloat
2 isRelative : ERBoolean

2M Transformation in ATL

module ShapefGraph; —-- Module Template
create 0UT : DerivationGraph from IN : ShapeGrammar;

—-—transform the root: ShapeCGrammar -= Graph
rule root |
from
= : BhapelGrammar ! Shapebranmar
to
t : DeriwvationGraphl!lGraphinodes <- =_shapes)

-—given a PulePart, get derived Shapes
helper context ShapeCGrammar!PulePart def @ getTargetModes () : Set (ShapeCGrammar!Shape) =
if self.successorPule. oclIsTypelf | ShapeCrammar ! SubstitionPule) then
salf. successorBule. shape
elze
if =self. successorPule. oclIsType0f (Shapelframmar | ConponentSplitPule) then
self_ successorPule paramBhapes
else
if self. successorBule oclIsTypelf(ShapeGrammar ! BepeatPule) then
self.successorBule. repeatingfhape. shapeParam
elze
salf. successorBule. subfBhapes-*collect (s | =.shapeParam)->flatten)
endi £
endi f
endif;

—-—transform the rules: BulePart -» BuleEdge
rule rules {
from
= : BhapeGrammar!PulePart
to
t : DeriwvationGraph!PuleEdge(
ruleld =- s_ refImmediateCowmposited)._id,

B <
EI

Shape Grammar to Derivation Graphs
Transformation Example

Shape Grarmmat
< Priority Set
B- < Production Rule 0
B4 Rule Part 0.0
-4 Basic Spit Rule %
4 Split Rule Part 2.0
: w4 split Rule Part 3.5
EI *$=- Production Rule 1
B4 Rule Part 0.0
. L4 Substition Rule
EI < Production Rule 2
=4 Rule Part 0.0
Lo Camponent Split Rule Faces
<+ Mon Terminal Floor
<+ Mon Terminal corner
< Emplky Shape emply
%+ Predefined Shape wall
<+ Non Terminal window

Input “Shape Grammar” Model

B 4 iataph
EI < Monkerminal Mode Floor
: -4 Rule Edge splits
- 4+ Monterminal Mode corner
- < Rule Edge compaonentSplits
----- 4 Empty Mode emply
----- < Terminal Node wal
- < Monkerminal Mode window
\ 4 Rule Edge substitutes

Output “Derivation Graph” Model

Conclusions on M2M

 The M2M transformation should be defined as
precisely as possible.

 Not all the information is transformed.

* Transformation needs to satisfy conformance of
the output.

 ATL should be used declaratively to avoid
unintended consequences caused by the virtual
machine.

* Browsing the target model should be avoided.

Shape Grammar to XML

XML file is ported to a building generation tool:
Generating different kinds of buildings easily

* The generated models can be used for different
aspects such as gaming, educational or
architectural purposes.

* The capabillities of the target engine is limited
wrt. the shape grammar meta-model. Need to
check input model validity.

Output Code Specification

B <BuildingGens
<Fulez>-

LFacade:-
<0ccluded Element Dcclusinn="Full"H[:]

<R1=. .|

< Facade:

{Flnniﬁ[:ﬁ

<Temp. ..

<Wide_ Windo
<Window Center !
<Narrow_Windo !
<Balcony_1

{Balcnny_centerﬂ[:]

< fBEules=

<Terminal=a-
<Wall/>
<Window/ =
<Balcony./=
- < /Terminal s=

- L ABuildingGerncs

Transformation Specification

» Xpand is used for writing the templates.

» Xpand finds all non-terminal shapes which are
going to be converted to new shapes and
generates the conversion rules associated with
non-terminal shapes.

* For a clear representation, an XML beautifier is
invoked after the transformation.

M2T Transformation in Xpand

1«TMPORT ShapeGrammnar:

2

3«DEFIHE mwain FOR ShapeGrartnar:

4 «FILE "test.xml"»<?xm]l version="1.0" encoding="utf-5"2:>

5 <BuildingGens>

=] <Rules>

7 «EXPAHD nonterminals FOREACH shapes-—-»

a </Rulesx>

=]

10 <Terminals>

11 «EXPAHND terminals FOREACH shapes-=

1z </ Terminals>

13 </ BuildingGeny

14 «EHDFILE:

15 «EHDDEF IHE::

16

17«DEFIHE nonterminals FOR ShapeGrarmnar: : Shape-—=»

12«IF thi=.mwetaType.nawe.compareTo ("ShapeGramnar : tNonTerminal™)==0-:=
19 <«symbol—nk>
20«TIF [(ShapeGrammar) eRootContainer) .priority3ets.get (0) .rules.exists(e|e.predecessor.symbol .. compareTo (sywbhol) ==0) —=»

21«=LET [(ShapeGrammar) eFootContainer) .priorityIets.get (0] .rules.select (e|e.predecessor.ayibol..compareTo (sywkbol)l==0) AF ProRule-:
22 «EXPAHD ruleProsess FOBREACH ProRule-—:

23 «EHDLET -3

23 «EHDIF -2

2Ef wsvibol—nx

260 <EHDIF -

27 «EHDDEF IHE::

Checking the Validity of the Input
Model

context EmptyZhape ERROR

® By USIng the "Empty shapes can not hawve a scope!'™ o
scope == null;
check language
. ngw context ShapeGramar::2hapetramumar ERROR
the Inltlated "The default Facade object iz not defined!™ :
. shapes.exists(e|e.syrbhol.compareTo ("Facade™) ==0) ;
model is checked

befo re context 3hapeGramar::2uccessorBule ERROR

"Ioope rules are not acceptable for this context!™ o

tra n Sfo rm ati O n wmetaType.hamwe.compareTo ("3hapeGrammar : : 3copeRule’™) '=0;

context 2hapeGrammar: :2hapeGranmar ERROR
"There can be only one priority set for this context!™ .
priorityiaets.size==1;

context AhapeGrammar::Prioritylet ERROR
"L1l rules must have a predecessor shape!™ o
rules.forlll(e|e.predecessor '=null) ;

Conclusions on M2T

* Writing code generation templates involves
extensive work.

* Templates not easy to use, unintuitive and not
expressive enough. PL's designed for humans.
These lead code failures.

« Better template languages required or better
 The 'T" layer should be skipped at all.

* Generated code is untidy, use beautifer.

	Slayt 1
	Slayt 2
	Slayt 3
	Slayt 4
	Slayt 5
	Slayt 6
	Slayt 7
	Slayt 8
	Slayt 9
	Slayt 10
	Slayt 11
	Slayt 12
	Slayt 13
	Slayt 14
	Slayt 15
	Slayt 16
	Slayt 17
	Slayt 18
	Slayt 19
	Slayt 20
	Slayt 21
	Slayt 22
	Slayt 23
	Slayt 24
	Slayt 25
	Slayt 26
	Slayt 27
	Slayt 28
	Slayt 29
	Slayt 30
	Slayt 31
	Slayt 32
	Slayt 33

