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Problem Statement

Virtual cities should be modelled in order to be used in a bunch of
applications.

Designing large number of building models requires extensive manual
work.

Procedural modeling: Building model generation with intended style and
variation.

A domain specific language for procedural modeling of buildings.

Model-to-Model transformations to provide better understanding and
design of procedural modeling.

Model-to-Text transformations to achieve portability for model
generating grammars.



Shape Grammars

Stiny G, Gips J, 1972
Architectural Design with Shapes

How does it work?
1. Recognize a shape

2. Replace the recognized shape with another
shape

Rules define which shape is replaced by
which shape



Shape Grammar Example

Rule 1: —>
Rule 1 Rule 1
—3 —3
Rule 1 Rule 1 Rule 1
—4 =% =




Shape

Terminal or Non-Terminal

Non-Terminal shapes are
applied to rules

Terminal shapes have
associated final geometry

A smybol, numerical and
geometric attributes

Scope: An oriented
bounding box: P, X, Y, Z
and S



Production Rules

e Notation:

id: predecessor : cond -> successor : prob
 Example:

1: fac(h) : h>9 -> floor(h/3) floor(h/3) floor(h/3)

» Scope Rules: Translation, Scaling, Rotation,
Insertion and Stacking:

- 1: A->[T(0,0,6) S(8,10,18) I("cube”) JT(6,0,0) S(7,13,18)
I("cube”) T(0,0,16) S(8,15,8) I("cylinder’)



Production Rules

» Split Rules: Splits the given scope, and derives
new shapes:

- 1: floor -> Subdiv("X”,2,1r,1r,2) {B | A| A | B}

 Repeat Rules: Repeats a successor shape in
the scope of the given shape:

- 1: floor -> Repeat(’X",2) {B}

 Component Split Rules: To split into shapes of
lesser dimension

- 1:a-> Comp(“edge’”, 3, 7) {A| B}



Production Process

» Configuration: A set of finite shapes (a runtime
concept, not included in abstract syntax)

 Model Generation Process:(a runtime concept, not
included in abstract syntax)

1. Select an active shape with symbol B in the configuration

2. Choose a production rule with B on the left hand side to
compute a successor for B, a new set of shapes BNEW

3. Mark the shape B as inactive and add the shapes BNEW to
the configuration and continue with step (1). When the
configuration contains no more non-terminals, the production
process terminates.

* Priority sets to control traversal



Model Derivation

Facade

Active Shapes Queue

Derivation Tree

: Temporary Shape @ : Terminal Shape




Grammar

ShapeGrammar ::= PrioritySet (PrioritySet)*

PrioritySet ::= PrioritylD ProductionRuleList

PrioritylD ::= Natural Number

ProductionRuleList ::= ProductionRule (ProductionRule)*

ProductionRule ::= RulelD NonTerminalShape [Condition] SuccessorList

RulelD ::= Natural Number

Condition ::= Boolean Expression

SuccessorList ::= (Successor Probability, SuccesorList) (Successor Probability, SuccesorList)*
Successor Probability ::= Float

Successor ::= Shape | ComponentSplitRule | RepeatRule | ScopeRule |
BasicSplitRule



The Abstract Syntax of Shape
Grammar Meta-Model

* Meta-model from scratch, using Ecore

* Meta-model using UML 2.0 profiling mechanism



Static Semantics

 context RotationRule inv:

self.angle >=0 and self.angle<=360

« context ComponentSplitRule inv:

if self.paramList->size() = 0 then

self.paramShapes->size() = 1
else

self.paramList->size() = self.paramShapes->size()
endif

 context RulePart inv:

self.probabilty <=1 and self.probability >0



PriortySet

Z<instancef>

Zinstancef> ‘

1 wall~=10wall oby”)
o tile ~=Ie oby)

Concrete Syntax

4: facade~=tiles
o tiles~=BE.C, D tie }

b entrance ; Scope.occ noparent”) 1= "none” ~>wall

ininstanc Ll

shapeGrammer

Pmduc:tmnRﬂe

PRIORITTY 1.

1: footprint~= B (“XY7, 3, 5, T){ facades | tile] entrann:e} SenaeRE:
PRIOEITY 2:

2 facades~>CS( s1defaces™ ) { facade }

3 facade —Finstance0fs3.

~x o BRI, 2, 3){ tles | entrance } ;0.5

~=  BE(IC, 4,2){ entrance | nles } 05 <zinstance0f>

Aﬂm ef==



Concrete Syntax

PEIORITY 1.
l: footprint~= B "XY7, 3, 5, ) facades | tile| entrance |
%I_I_I

MonTermmal

(Shape) PREIOEITY 2

“<instanceQfs> s | CotmponentSplitRule

% facade .
~>  BS(TI, 2, 3 tiles | entrance } SRR BaswophtRule

TR —
“amstancelt> | = RS, 4,2){ entrance | tiles } 2 0.5 {%ﬁ
4: facade~=tiles w RepeatRule
o tiles~=RR(IC, 2){ tile }

6 entrance,: Scope.oce{ noparent”) 1= "none” ~>wal] “Einstancelt>> _
T weall-> I wall oby™), EooleanEzpression

A .Li,li. ~=I"tile obj™), <<instancef>
" [PredefinedShape

Z<instanceCf=>

/[ 2 facades~=Co("s1defaces™) { facade }




Meta-modeling Issues

Do we need to represent and how to represent geometric
and numerical attributes?

* |f we don't, how to use a parameter of a shape to define a
condition?

e Scope is actually only needed at runtime(MO).

e |t seems, for full automation, we need to define the set of all
possible geometries.

Tools still not adequate: Associating stereotypes, Switched
btw. 3 different tools, plugins (Eclipse, Topcased, Papyrus)

The UML Profile and the ECore meta-model not so
different.

A confusing fact: For our domain, an M1 model is also like
a grammar(A shape grammar).



Meta-modeling Conclusions

« The major limitation of grammars, for the
selected domain, is the limitation of resulting
tree structure: A shape cannot be connected to
a number of rules.

 Using standards results in a high level tool
support; had difficulty first but impressed Ilater.

e For full automation, the meta-model needs to be
coherently specified as much as possible.

 Extensive profiing needs adequate UML
knowledge. But very suitable for OO similar
domains.



Model Transformation

 Model to Model Transformation Motivation:

« Understandability and productivity are increased by
transforming the models into simpler and more
expressive models: Derivation Graphs

e Model to Text Transformation Motivation:

e Automatic code generation: Shape Grammars are
output as XML files, and can be ported to existing
model generation tools.

* Productivity is promoted since DSL is used to define
models in a higher level;, manual modification
reduced, automatic production is achieved.



Transformation to Derivation Graphs

* A Derivation Graph simply
tells which shapes generate

) - H Graph
which shapes during the
derivation process
nodes
 Non-terminal nodes have a Zeromeratonss | L. mm—
number of rule edges which — Rueibe = e : 57
are connected to the nodes D it A
that the non-terminal node ~ repeats
generates.
|
* Rule edges captures the rule e ] Emptyhode
properties coming from the T type : RuleType
Truleld EInt 4]«

input shape grammar model. Heaae [ Narterminaiodd




Transformation Specification

H ShapeGramman

shépes

H Shape

T symbal : EString
% geometricatts : EFloat
Sonumericalatts | EFloat

™~

H ProductionRuls

T id : Elnt

SLCCESSOrs

1“*

H RulePart

T probability : EFloat

1.1 sSufcessorRule

H surcessorfie

~ H Graph
nodes
< <BrUMEeration > 1.
= RuleType EREES
= substitutes T name : EString

= componentSplits
= splits
= repeats

H TerminalHode H EmptyNode

H RuleEdge

| i

H ComponentSplitRule

H Tarmina!

H MonTerminal

T

H substitionRule

T type @ ComponentSplitType
a2 paramList : Elnt

H PredefinedShape

H EmptyShape

T shapeGeametry @ ESfring

g

T type  RuleType
T ruleld : EInt__g4

~y A

T

'EEﬁ——-aé;;‘ H MonterminalMNodd

-
-

H RepeatRule | |H BasicSplitRule
B axis © Axes B axis © Axes
”
-
repeatingShape
Pam
i

H SplitRulePart

T size : EFloat
2 isRelative : ERBoolean




2M Transformation in ATL

module ShapefGraph; —-- Module Template
create 0UT : DerivationGraph from IN : ShapeGrammar;

—-—transform the root: ShapeCGrammar -= Graph
rule root |
from
= : BhapelGrammar ! Shapebranmar
to
t : DeriwvationGraphl!lGraphinodes <- =_shapes)

-—given a PulePart, get derived Shapes
helper context ShapeCGrammar!PulePart def @ getTargetModes () : Set (ShapeCGrammar!Shape) =
if self.successorPule.  oclIsTypelf | ShapeCrammar ! SubstitionPule) then
salf. successorBule. shape
elze
if =self. successorPule. oclIsType0f (Shapelframmar | ConponentSplitPule) then
self_ successorPule paramBhapes
else
if self. successorBule oclIsTypelf(ShapeGrammar ! BepeatPule) then
self.successorBule.  repeatingfhape. shapeParam
elze
salf. successorBule. subfBhapes-*collect (s | =.shapeParam)->flatten)
endi £
endi f
endif;

—-—transform the rules: BulePart -» BuleEdge
rule rules {
from
= : BhapeGrammar!PulePart
to
t : DeriwvationGraph!PuleEdge(
ruleld =- s_ refImmediateCowmposited)._id,




B <
EI

Shape Grammar to Derivation Graphs
Transformation Example

Shape Grarmmat
< Priority Set
B- < Production Rule 0
B4 Rule Part 0.0
-4 Basic Spit Rule %
4 Split Rule Part 2.0
: w4 split Rule Part 3.5
EI *$=- Production Rule 1
B4 Rule Part 0.0
. L4 Substition Rule
EI < Production Rule 2
=4 Rule Part 0.0
Lo Camponent Split Rule Faces
<+ Mon Terminal Floor
<+ Mon Terminal corner
< Emplky Shape emply
%+ Predefined Shape wall
<+ Non Terminal window

Input “Shape Grammar” Model

B 4 iataph
EI < Monkerminal Mode Floor
: -4 Rule Edge splits
- 4+ Monterminal Mode corner
- < Rule Edge compaonentSplits
----- 4 Empty Mode emply
----- < Terminal Node wal
- < Monkerminal Mode window
\ 4 Rule Edge substitutes

Output “Derivation Graph” Model



Conclusions on M2M

 The M2M transformation should be defined as
precisely as possible.

 Not all the information is transformed.

* Transformation needs to satisfy conformance of
the output.

 ATL should be used declaratively to avoid
unintended consequences caused by the virtual
machine.

* Browsing the target model should be avoided.



Shape Grammar to XML

XML file is ported to a building generation tool:
Generating different kinds of buildings easily

* The generated models can be used for different
aspects such as gaming, educational or
architectural purposes.

* The capabillities of the target engine is limited
wrt. the shape grammar meta-model. Need to
check input model validity.



Output Code Specification

B <BuildingGens
<Fulez>-

LFacade:-
<0ccluded Element Dcclusinn="Full"H[:]

<R1=. .|

< Facade:

{Flnniﬁ[:ﬁ

<Temp. ..

<Wide_ Windo
<Window Center !
<Narrow_Windo !
<Balcony_1

{Balcnny_centerﬂ[:]

< fBEules=

<Terminal=a-
<Wall/>
<Window/ =
<Balcony./=
- < /Terminal s=

- L ABuildingGerncs




Transformation Specification

» Xpand is used for writing the templates.

» Xpand finds all non-terminal shapes which are
going to be converted to new shapes and
generates the conversion rules associated with
non-terminal shapes.

* For a clear representation, an XML beautifier is
invoked after the transformation.



M2T Transformation in Xpand

1«TMPORT ShapeGrammnar:

2

3«DEFIHE mwain FOR ShapeGrartnar:

4 «FILE "test.xml"»<?xm]l version="1.0" encoding="utf-5"2:>

5 <BuildingGens>

=] <Rules>

7 «EXPAHD nonterminals FOREACH shapes-—-»

a </Rulesx>

=]

10 <Terminals>

11 «EXPAHND terminals FOREACH shapes-=

1z </ Terminals>

13 </ BuildingGeny

14 «EHDFILE:

15 «EHDDEF IHE::

16

17«DEFIHE nonterminals FOR ShapeGrarmnar: : Shape-—=»

12«IF thi=.mwetaType.nawe.compareTo ("ShapeGramnar : tNonTerminal™)==0-:=
19 <«symbol—nk>
20«TIF [ (ShapeGrammar ) eRootContainer) .priority3ets.get (0) .rules.exists(e|e.predecessor.symbol .. compareTo (sywbhol) ==0) —=»

21«=LET [ (ShapeGrammar) eFootContainer) .priorityIets.get (0] .rules.select (e|e.predecessor.ayibol..compareTo (sywkbol)l==0) AF ProRule-:
22 «EXPAHD ruleProsess FOBREACH ProRule-—:

23 «EHDLET -3

23 «EHDIF -2

2Ef wsvibol—nx

260 <EHDIF -

27 «EHDDEF IHE::




Checking the Validity of the Input
Model

context EmptyZhape ERROR

® By USIng the "Empty shapes can not hawve a scope!'™ o
scope == null;
check language
. ngw context ShapeGramar::2hapetramumar ERROR
the Inltlated "The default Facade object iz not defined!™ :
. shapes.exists(e|e.syrbhol.compareTo ("Facade™) ==0) ;
model is checked

befo re context 3hapeGramar::2uccessorBule ERROR

"Ioope rules are not acceptable for this context!™ o

tra n Sfo rm ati O n wmetaType.hamwe.compareTo ("3hapeGrammar : : 3copeRule’™) '=0;

context 2hapeGrammar: :2hapeGranmar ERROR
"There can be only one priority set for this context!™ .
priorityiaets.size==1;

context AhapeGrammar::Prioritylet ERROR
"L1l rules must have a predecessor shape!™ o
rules.forlll(e|e.predecessor '=null) ;



Conclusions on M2T

* Writing code generation templates involves
extensive work.

* Templates not easy to use, unintuitive and not
expressive enough. PL's designed for humans.
These lead code failures.

« Better template languages required or better
 The 'T" layer should be skipped at all.

* Generated code is untidy, use beautifer.
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