

Model Driven Software Development Approach on
Procedural Modeling of Buildings

Murat Kurtcephe

Oğuzcan Oğuz

Buğra M. Yıldız

Contents
● Procedural Modeling of Buildings
● DSL Grammar
● The Shape Grammar Meta-Model
● Model Transformations

● Motivation
● Transformation to Derivation Graph
● Transformation to XML

● Conclusions

Problem Statement

• Virtual cities should be modelled in order to be used in a bunch of
applications.

• Designing large number of building models requires extensive manual
work.

• Procedural modeling: Building model generation with intended style and
variation.

• A domain specific language for procedural modeling of buildings.
• Model-to-Model transformations to provide better understanding and

design of procedural modeling.
• Model-to-Text transformations to achieve portability for model

generating grammars.

Shape Grammars

• Stiny G, Gips J, 1972
• Architectural Design with Shapes
• How does it work?

1. Recognize a shape
2. Replace the recognized shape with another

shape
• Rules define which shape is replaced by

which shape

Shape Grammar Example

Shape
● Terminal or Non-Terminal
● Non-Terminal shapes are

applied to rules
● Terminal shapes have

associated final geometry
● A smybol, numerical and

geometric attributes
● Scope: An oriented

bounding box: P, X, Y, Z
and S

Production Rules
● Notation:

id: predecessor : cond -> successor : prob
● Example:

1: fac(h) : h> 9 -> floor(h/3) floor(h/3) floor(h/3)

● Scope Rules: Translation, Scaling, Rotation,
Insertion and Stacking:

– 1: A -> [T(0,0,6) S(8,10,18) I(”cube”)]T(6,0,0) S(7,13,18)
I(”cube”) T(0,0,16) S(8,15,8) I(”cylinder”)

Production Rules
● Split Rules: Splits the given scope, and derives

new shapes:
– 1: floor -> Subdiv(”X”,2,1r,1r,2) {B | A | A | B}

● Repeat Rules: Repeats a successor shape in
the scope of the given shape:

– 1: floor -> Repeat(”X”,2) { B}
● Component Split Rules: To split into shapes of

lesser dimension
– 1: a -> Comp(“edge”, 3, 7) {A | B}

Production Process
● Configuration: A set of finite shapes (a runtime

concept, not included in abstract syntax)
● Model Generation Process:(a runtime concept, not

included in abstract syntax)
1. Select an active shape with symbol B in the configuration
2. Choose a production rule with B on the left hand side to

compute a successor for B, a new set of shapes BNEW
3. Mark the shape B as inactive and add the shapes BNEW to

the configuration and continue with step (1). When the
configuration contains no more non-terminals, the production
process terminates.

● Priority sets to control traversal

Model Derivation

Facade

Derivation Tree

Active Shapes Queue

: Temporary Shape : Terminal Shape

Grammar
ShapeGrammar ::= PrioritySet (PrioritySet)*

PrioritySet ::= PriorityID ProductionRuleList

PriorityID ::= Natural Number

ProductionRuleList ::= ProductionRule (ProductionRule)*

ProductionRule ::= RuleID NonTerminalShape [Condition] SuccessorList

RuleID ::= Natural Number

Condition ::= Boolean Expression

SuccessorList ::= (Successor Probability, SuccesorList) (Successor Probability, SuccesorList)*

Successor Probability ::= Float

Successor ::= Shape | ComponentSplitRule | RepeatRule | ScopeRule |
BasicSplitRule

...

The Abstract Syntax of Shape
Grammar Meta-Model

● Meta-model from scratch, using Ecore
● Meta-model using UML 2.0 profiling mechanism

Static Semantics
● context RotationRule inv:

self.angle >=0 and self.angle<=360
● context ComponentSplitRule inv:

if self.paramList->size() = 0 then

self.paramShapes->size() = 1
else

self.paramList->size() = self.paramShapes->size()
endif

● context RulePart inv:

self.probabilty <=1 and self.probability >0

Concrete Syntax

Concrete Syntax

Meta-modeling Issues
● Do we need to represent and how to represent geometric

and numerical attributes?
● If we don't, how to use a parameter of a shape to define a

condition?
● Scope is actually only needed at runtime(M0).
● It seems, for full automation, we need to define the set of all

possible geometries.
● Tools still not adequate: Associating stereotypes, Switched

btw. 3 different tools, plugins (Eclipse, Topcased, Papyrus)
● The UML Profile and the ECore meta-model not so

different.
● A confusing fact: For our domain, an M1 model is also like

a grammar(A shape grammar).

Meta-modeling Conclusions
● The major limitation of grammars, for the

selected domain, is the limitation of resulting
tree structure: A shape cannot be connected to
a number of rules.

● Using standards results in a high level tool
support; had difficulty first but impressed later.

● For full automation, the meta-model needs to be
coherently specified as much as possible.

● Extensive profiling needs adequate UML
knowledge. But very suitable for OO similar
domains.

Model Transformation
● Model to Model Transformation Motivation:

● Understandability and productivity are increased by
transforming the models into simpler and more
expressive models: Derivation Graphs

● Model to Text Transformation Motivation:
● Automatic code generation: Shape Grammars are

output as XML files, and can be ported to existing
model generation tools.

● Productivity is promoted since DSL is used to define
models in a higher level; manual modification
reduced, automatic production is achieved.

Transformation to Derivation Graphs
● A Derivation Graph simply

tells which shapes generate
which shapes during the
derivation process

● Non-terminal nodes have a
number of rule edges which
are connected to the nodes
that the non-terminal node
generates.

● Rule edges captures the rule
properties coming from the
input shape grammar model.

Transformation Specification

M2M Transformation in ATL

Shape Grammar to Derivation Graphs
Transformation Example

Input “Shape Grammar” Model

Output “Derivation Graph” Model

Conclusions on M2M
● The M2M transformation should be defined as

precisely as possible.
● Not all the information is transformed.
● Transformation needs to satisfy conformance of

the output.
● ATL should be used declaratively to avoid

unintended consequences caused by the virtual
machine.

● Browsing the target model should be avoided.

Shape Grammar to XML
● XML file is ported to a building generation tool:

Generating different kinds of buildings easily
● The generated models can be used for different

aspects such as gaming, educational or
architectural purposes.

● The capabilities of the target engine is limited
wrt. the shape grammar meta-model. Need to
check input model validity.

Output Code Specification

Transformation Specification

● Xpand is used for writing the templates.
● Xpand finds all non-terminal shapes which are

going to be converted to new shapes and
generates the conversion rules associated with
non-terminal shapes.

● For a clear representation, an XML beautifier is
invoked after the transformation.

M2T Transformation in Xpand

Checking the Validity of the Input
Model

● By using the
check language
the initiated
model is checked
before
transformation

Conclusions on M2T
● Writing code generation templates involves

extensive work.
● Templates not easy to use, unintuitive and not

expressive enough. PL's designed for humans.
These lead code failures.
● Better template languages required or better
● The 'T' layer should be skipped at all.

● Generated code is untidy, use beautifer.

	Slayt 1
	Slayt 2
	Slayt 3
	Slayt 4
	Slayt 5
	Slayt 6
	Slayt 7
	Slayt 8
	Slayt 9
	Slayt 10
	Slayt 11
	Slayt 12
	Slayt 13
	Slayt 14
	Slayt 15
	Slayt 16
	Slayt 17
	Slayt 18
	Slayt 19
	Slayt 20
	Slayt 21
	Slayt 22
	Slayt 23
	Slayt 24
	Slayt 25
	Slayt 26
	Slayt 27
	Slayt 28
	Slayt 29
	Slayt 30
	Slayt 31
	Slayt 32
	Slayt 33

