
Model-driven Approach for Board Game
Development

Group Members:

• Doğan ALTUNBAY, Bilkent University

• M. Gökhan METİN, Bilkent University

• M. Eser ÇETİNKAYA, Bilkent University & Havelsan

Agenda

• Introduction & Motivation
• Domain Description
• Mapping Domain Concepts to Grammar
• Metamodel Definition
• Static Semantics
• UML Profiling
• Sample Models
• Model to Text Transformation
• Model to Model Transformation
• Conclusion

Introduction

• Game Industry has grown to mainstream market

GTA IV vs Spiderman III

• Grand Theft Auto IV, which took in over USD$500
million in sales during its opening week.

• The movie Spiderman III could only reach to USD$115
million in first week gross.

500
115

GTA IV

Spiderman III

Challenge for Game Companies

• Software quality is becoming of utmost
importance

• For large software systems it may take quite a lot
of human time and energy to gather requirements

• People have increasing demands on technology,
requirements keep changing

• Software systems need to be flexibly adaptable to
changing requirements

New Way in Game Development

• Raising the abstraction level from the “solution
domain” to the “problem domain” and using
the model-driven based approaches.

• Domain specific languages(DSL) may become
increasingly better assembly lines.

• New approach brings noticeable advantage to
companies in Game market.

Why we concentrate on Board Games

• Games could have totally different domains

• Too generic

• Not practical

• Unnecessarily complicated

Domain Description

• Game: A Game is a root class which consists of Player(s) and GameEngine

• GameEngine: A game must have a GameEngine which is responsible for
running the game based on the defined rules of the game.

• GameElement: The GameElement represents all the objects inside a
specific game.

• Player: Players are the decision makers inside a game.

• Event: Event is a condition in which the opponents actions are restricted.

• Action: Actions are the movements of Players.

• GameState: GameState metaclass represents the current condition of the
game at any instance.

• Goal: In any board game, goal is the state which players try to attain by
creating actions on GameElements.

• Sub Goal: Sub-Goal concept is defined such that in some games it is
required to achieve global goal by completing its parts in order.

Domain Description

• NonMovableElement: NonmovableElements are the ones which cannot
be manipulated by any player by an action.

• MovableElement: MovableElements are the ones which can be
manipulated by any player.

• Rule: Rules are the constraints that define how to setup a system before
playing, relationship between the game and the player.

• Board: Board is a surface on which MovableElements are located.

Metamodel Definition

DSL Grammar
<Game> :: = <GameEngine> , <Rules> , <Player>;

<Rules> ::= <text>

<GameEngine> ::= <GameElement> , <Rules> , <Level> , <Goal> |
<GameElement> , <Rules> , <Goal>;

<GameElement> ::= <MovableElement> , <NonmovableElement>;

<MovableElement> ::= <Token> , <Action> , <VisibleElement> | <Token>
<Action> , <InvisibleElement>;

<VisibleElement> ::= <Token>;

<InvisibleElement> ::= <Timer>;

<NonmovableElement> ::= <Board> , <Player> , <ScoreBoard>;

<Player> ::= <GameState> , <MovableElement> , <Goal>;

Static Semantics

 context GameEngine inv:not self.Board.oclIsUndefined &
self.Board.size() = 1

 context Player inv:self.movableElement.size() >= 1

 context GameEngine inv: level.size() >= 1

 context Goal inv:self.reject(g | self.subgoals.exists(self = g))

 context Level inv:self.reject(g | self.rules = g.rules)

Concrete Syntax

Metaclasses for UML Profile for Board Games

Game Model Element Stereotype UML Metaclass

Game BGGame Class

GameEngine BGEngine Component

GameElement BGElement Class

Player BGPlayer Class

Event BGEvent Class

Action BGAction Class

GameState BGState State

Board BGBoard Class

Goal BGGoal Class

MovableElement BGMovableElement Class

NonmovableElement BGNonmovableElement Class

Rule BGRule Class

Level BGLevel Class

UML Profile

Sample Model - Chess

Sample Model - Backgammon

Model to Text Transformations

• The Model to Text transformation addresses
how to translate a model to various text artifacts
such as code, deployment specifications, reports,
documents, etc.

• Essentially, the m2t standard needs to address
how to transform a model into a text
representation.

• In this project, we derived model to text
transformation by using openarchitectureware
tool.

• We created an initial structuring file for the
chess game.

Model to Text Transformation

OPENARCHITECTUREWARE GAME METAMODEL XSD FILE

…

<complexType name="Game">

<sequence>

<element name="start" type="IDREF"/>

<element name="gameEngine" type="tns:GameEngine"/>

</sequence>

</complexType>

<complexType name="GameEngine">

<sequence>

<element name="gameName" type="string"/>

<element name="gameElement" type="tns:GameElement"/>

<element name="nonmovableElement" type="tns:NonmovableElement"/>

…

</sequence>

</complexType>

<complexType name="Player">

<sequence>

<element name="playerName" type="string"/>

<element name="action" type="tns:Action"/>

</sequence>

</complexType>

…

/schema>

OPENARCHITECTUREWARE CHESS GAME MODEL XML FILE

…

<start>Chess Game Metamodel Structure</start>

<gameEngine>

<gameName>Chess Game</gameName>

<gameElement>

<gameElementType>Movable Elements, Nonmovable
Elements</gameElementType>

</gameElement>

…

<movableElement>

<name>king, queen, rooks, bishops, knights, pawns</name>

</movableElement>

<board>

<xCoordinates>a, b, c, d, e, f, g, h</xCoordinates>

<yCoordinates>1, 2, 3, 4, 5, 6, 7, 8</yCoordinates>

</board>

<player>

<playerName>Player Name</playerName>

<action>

<coordinateX>Player's move x-coordinate</coordinateX>

…

</player>

</gameEngine>

</game>

OPENARCHITECTUREWARE TRANSFORMATION TEMPLATE FILE

«IMPORT metamodel»

«DEFINE Root FOR metamodel::Game»

«FILE "ChessGame.game"»

Explanation: «start»

Game Name: «gameEngine.gameName»

Game Element Types: «gameElement.gameElementType»

Non-movable Element Types: «nonmovableElement.name»

Movable Element Types: «movableElement.name»

Board X-Coordinates: «board.xCoordinates»

Board Y-Coordinates: «board.yCoordinates»

Player Name: «player.playerName»

Player's Action X-Coordinate: «player.action.coordinateX»

Player's Action Y-Coordinate: «player.action.coordinateY»

«ENDFILE»

«ENDDEFINE»

Model to Model Transformations

• Interoperability is one of the key issues of MDSD

▫ Tool interoperability, ability to port models
between tools that conform to different
metamodels.

▫ M2M transformations allows us to transform a
source model to a desired target model.

▫ Then we are able to use out model within other
modeling tool which accepst target metamodel

M2M Transformations (cont…)

• Our domain model describes a sub domain of
games, Board Games

• We aim to be able to transform our models to a
more general domain model, Game DSL

• ATL – Atlas Transformation Language is used
for M2M transformations.

Game DSL

Mapping

• M2M transformation is basically the process of
defining a mapping between a source and target
metamodel.

• Once the mapping is defined, it can be used for
transforming instance models which conform to
source metamodel to corresponding models
which conforms to target metamodel.

Mappings

• GameEngine <-> Game

• MoveableElement <-> ActiveEntity

• NonMoveableElement <-> StaticEntity

• Board <-> ContainerObject

• Level <-> Level

• Action <-> Action

• State <-> State

• Event <-> Event

ATL Mappings

• ATL mappings are performed by rules:
rule GameEngine2Game{

from
ge: BoardGame!GameEngine

to
g: GameDSL!Game(

title <- „ChessGame',
Author <- 'DEG',
description <- 'Generated sample chess game'

)

}

ATL Mappings
rule MovableElement2ActiveEntity{

from
me: BoardGame!MovableElement

to
ae: GameDSL!ActiveEntity(

name <- me.name
)

}

rule NonMovableElement2StaticEntity{
from

nme: BoardGame!NonMovableElement
to

ne: GameDSL!StaticEntity(
name <- nme.name

)

}

Conclusion

• Using MDSD approach have such advantages;
▫ Automated transformations and DSL enhance software quality
▫ Defined architectures, modeling languages can be used in the sense of

software product line which leads to higher level of reusability.
▫ Through higher level of abstraction, manageability of complexity

improved.
▫ More productive environment
▫ With standardization, interoperability and portability of software

systems are improved.
▫ MDSD allows an abstraction between implementation and the solution

which brings crutial advantages to companies in software development
process.

• Current Difficulties
▫ Since the tools for MDSD are not mature yet , we have difficulties in the

entire process using MDSD tools.

Questions

