First Turkish Symposium on Model-Driven Software Development
(TMODELS - 2009)

20 May 2009
Bilkent University, Ankara, Turkey

Model-driven Approach for Board Game
Development

Group Members:

« Dogan ALTUNBAY, Bilkent University

- M. Gokhan METIN, Bilkent University

« M. Eser CETINKAYA, Bilkent University & Havelsan

il
Agenda

 Introduction & Motivation

- Domain Description

« Mapping Domain Concepts to Grammar
« Metamodel Definition

» Static Semantics

-« UML Profiling

- Sample Models

« Model to Text Transformation

» Model to Model Transformation

» Conclusion

Introduction

- Game Industry has grown to mainstream market

Global video game market
$ Billions

2002 |21.88

2003 |23.3

2004 B |126.33

2005 |27.67

2006 |31.63

2007 3 37.47

|41.46

2008
2009e
2010e o ; |46.72
2011e n : j40.88

= 2 30.4%

|44.23

GTA IV vs Spiderman Il

» Grand Theft Auto IV, which took in over USD$500
million in sales during its opening week.

« The movie Spiderman III could only reach to USD$115
million in first week gross.

mGTAIV

® Spiderman III

Challenge for Game Companies

- Software quality is becoming of utmost
importance

- For large software systems it may take quite a lot
of human time and energy to gather requirements

 People have increasing demands on technology,
requirements keep changing

- Software systems need to be flexibly adaptable to
changing requirements

New Way in Game Development

- Raising the abstraction level from the “solution
domain” to the “problem domain” and using
the model-driven based approaches.

- Domain specific languages(DSL) may become
increasingly better assembly lines.

- New approach brings noticeable advantage to
companies in Game market.

Why we concentrate on Board Games

SCORE |LIVES | g (HEALTH| AMMO

0 3 & 1007 8

» Too generic
» Not practical
» Unnecessarily complicated

Domain Description

« Game: A Game is a root class which consists of Player(s) and GameEngine

« GameEngine: A game must have a GameEngine which is responsible for
running the game based on the defined rules of the game.

« GameElement: The GameElement represents all the objects inside a
specific game.

« Player: Players are the decision makers inside a game.

- Event: Event is a condition in which the opponents actions are restricted.

» Action: Actions are the movements of Players.

- GameState: GameState metaclass represents the current condition of the
game at any instance.

« Goal: In any board game, goal is the state which players try to attain by
creating actions on GameElements.

« Sub Goal: Sub-Goal concept is defined such that in some games it is
required to achieve global goal by completing its parts in order.

Domain Description

« NonMovableElement: NonmovableElements are the ones which cannot
be manipulated by any player by an action.

« MovableElement: MovableElements are the ones which can be
manipulated by any player.

« Rule: Rules are the constraints that define how to setup a system before
playing, relationship between the game and the player.

 Board: Board is a surface on which MovableElements are located.

Metamodel Definition

0..1
£ GameState
| | state
£l GameElement =] Rule 1.* E Event
1 name |
) b
resultEvent
1.7
depends
T - I5% —
[=] NonmovableElement £ Action
. 3 coordinateX
rule ‘ 3 coordinateY 1)» 1.v
gameState & setCoordinates
- = ~———actions
R posActions
= 2 . i - - t
=] Board 1.1 E Level s =] MovableElement acts
[' TR
gameBoard E Coal|
| e goals) B
N elements
> - | 2~ 0..* N
=] GameEnginl?‘1 gamelevel 0.+ = Player
: | = playerName
gameEngine - subgoal |
g Game|

player

DSL Grammar

<Game> :: = <GameEngine> , <Rules> , <Player>;
<Rules> ::= <text>

<GameEngine> ::= <GameElement> , <Rules> , <Level> , <Goal> |
<GameElement> , <Rules> , <Goal>;

<GameElement> ::= <MovableElement> , <NonmovableElement>;

<MovableElement> ::= <Token> , <Action> , <VisibleElement> | <Token>
<Action> , <InvisibleElement>;

<VisibleElement> ::= <Token>;
<InvisibleElement> ::= <Timer>;
<NonmovableElement> ::= <Board> , <Player> , <ScoreBoard>;

<Player> ::= <GameState> , <MovableElement> , <Goal>;

E————————.
Static Semantics

. context GameEngine inv:not self.Board.oclIsUndefined &
self.Board.size() = 1

« context Player inv:self.movableElement.size() >= 1
« context GameEngine inv: level.size() >=1
« context Goal inv:self.reject(g | self.subgoals.exists(self = g))

« context Level inv:self.reject(g | self.rules = g.rules)

Concrete Syntax

A % ¢ 4 @« T g N

& ~ & & 9 ¥ N -

a ® ¢ 9 « ¢t g h

Metaclasses for UML Profile for Board Games

Game Model Element UML Metaclass

Game BGGame Class
GameEngine BGEngine Component
GameElement BGElement Class
Player BGPlayer Class
Event BGEvent Class
Action BGAction Class
GameState BGState State
Board BGBoard Class
Goal BGGoal Class
MovableElement BGMovableElement Class
NonmovableElement BGNonmovableElement Class
Rule BGRule Class
Level BGLevel Class

—.\
UML Profile

==Frofile== BoardSGames

==grnumerati omn==
FlayerTyp=

Hurman ==stereotype=:>
Computer FPlayer
- ~twpe: PlaverType
==grurmerations=:> ==ctereotypes==>
Coordinate Lewel
1
20 ==stereotype==
Rul=
==Ml=taclass==>=
==stereotype=:> ‘_-_-________________'. Class
SameElemeant
==stereotype=:=
Ewvernt
==sterseotype==
A ctiorm
==sterseotype==
Soal
==stereotype== ==stereotype==
rovableElermeant rlonkiovableElerment

—coordSpace: Coordinate

==mA=taclass=>
State

==stersotype==
Board

==stereotyp===

==Mletaclass== ==stersotypes=:>= SarmeState

Zom poanent et} SameErng ne

Sample Model - Chess

==Rule>=>=
ChessTime

=<=State>>
Player State

==State>>
Game State

plaverTuns: mt

plaverTuomm: voud
gameTun=: mt

1sResign. voud

winner - ust

==Rule=>
Promotion

Yo

promotedElsment

\

==Rule>=>
Castling
s Performesd: void 2
==—=Rule=>> \ \ ~<Player>>
ChessPlayer

Fn Passant ==Game Engine>> ~ =

- ChessManager colorOfPlaver int
plaverTuom: it

mutd p void

=<Level==>

ChessLevel

=<=Game=>>
Chess

gamezLevel mt

==Event=>
Check

kg InDa

nger mt

==Action=>
PlayerMiove

==Goal=>
ChessGoal

==Niovable Element=>
Quenn

==Board=> ;
ChessBoard ==GameFlement=>>>
boardLocations mt[] ChessFlement
isInGame: void 1

<==Non-Movable Fle ment=>
Timer

movablsSguares t[]
currentPosition: ut[]

<==Niovable Fle ment==>
King

movableSqguares: mt[]
currentPosition: mt[]

cumentTuns" mt
remammg Tune: mt
totalTun=" mt

getRemmammgT It

<==Niovable Fle ment=>
Rooks

movableSqguarss: nt[]
cunrentPosition]

==Nlovable Flement=>

Pawn Bishops

==Nlovable Flement=>>

Knights

==NIovable Fle ment=>

movableSguares int[]
curentPosition: mit[]

movableSquares: mt[]
cunrentPosition ut[]

movablsSqguares: nt[]
currentPosition: mt[]

CollectChecker

I ——.
Sample Model - Backgammon

== State>> == State>>
CheckerState PlayerState
broken: void EEm S
1s AllCheckersIn{): void ent
BrokeChecker
==Rule == OneCl ker() v 1
IS —NeckKern) S OIC
BrokenChecker '
1s Broken(} : void
] ==Action ==
\ PlaverNlove
==Level == -
== Game Engine=> dice mt
Blevel \ 2 Sine a
BMhNanager
____A__—'
A |init(y void
— 1
==Board >> ot / \ ==Player >>
BBoard - o "l BPlaver
boardPomts{y mt[] \ S
- Il P 4

1 P
|
\ P
\ A
! > Fi \

==Game Flement == \ & \/

BElement ~ ,
== Game=>
Backgammon ol
BGoal
collectedCheckers: mt
<==Non-Novable Flement == ==Nlovable Flement ==
Dice Checker
checkertumber: it
rollcy unt

Model to Text Transformations

» The Model to Text transformation addresses
how to translate a model to various text artifacts
such as code, deployment specifications, reports,
documents, etc.

- Essentially, the m2t standard needs to address
how to transform a model into a text
representation.

Model to Text Transformation

- In this project, we derived model to text
transformation by using openarchitectureware
tool.

» We created an initial structuring file for the
chess game.

OPENARCHITECTUREWARE GAME METAMODEL XSD FILE

<complexType name="Game">
<sequence>
<element name="start" type="IDREF"/>
<element name="gameEngine" type="tns:GameEngine"/>
</sequence>
</complexType>
<complexType name="GameEngine">
<sequence>
<element name="gameName" type="string"/>
<element name="gameElement" type="tns:GameElement"/>
<element name="nonmovableElement" type="tns:NonmovableElement"/>

</sequence>
</complexType>
<complexType name="Player">
<sequence>
<element name="playerName" type="string"/>
<element name="action" type="tns:Action"/>
</sequence>
</complexType>

/schema>

OPENARCHITECTUREWARE CHESS GAME MODEL XML FILE

<start>Chess Game Metamodel Structure</start>
<gameEngine>
<gameName>Chess Game</gameName>
<gameElement>

<gameElementType>Movable Elements, Nonmovable
Elements</gameElementType>

</gameElement>

<movableElement>
<name>king, queen, rooks, bishops, knights, pawns</name>
</movableElement>
<board>
<xCoordinates>a, b, c, d, e, f, g, h</xCoordinates>
<yCoordinates>1, 2, 3, 4, 5, 6, 7, 8</yCoordinates>
</board>
<player>
<playerName>Player Name</playerName>
<action>
<coordinateX>Player's move x-coordinate</coordinateX>
</player>
</gameEngine>
</game>

OPENARCHITECTUREWARE TRANSFORMATION TEMPLATE FILE

«IMPORT metamodel»

«DEFINE Root FOR metamodel::Game»
«FILE "ChessGame.game'»

Explanation: «start»

Game Name: «gameEngine.gameName»

Game Element Types: «gameElement.gameElementType»
Non-movable Element Types: «xnonmovableElement.name»
Movable Element Types: «movableElement.name»

Board X-Coordinates: «board.xCoordinates»

Board Y-Coordinates: «board.yCoordinates»

Player Name: «player.playerName»

Player's Action X-Coordinate: «player.action.coordinateX»
Player's Action Y-Coordinate: «player.action.coordinateY»

«ENDFILE»
«ENDDEFINE»

Model to Model Transformations

- Interoperability is one of the key issues of MDSD

= Tool interoperability, ability to port models
between tools that conform to different
metamodels.

= M2M transformations allows us to transform a
source model to a desired target model.

= Then we are able to use out model within other
modeling tool which accepst target metamodel

M2M Transformations (cont...)

» Our domain model describes a sub domain of
games, Board Games

« We aim to be able to transform our models to a
more general domain model, Game DSL

- ATL — Atlas Transformation Language is used
for M2M transformations.

N
Game DSL

' Namedelement E] Namedlement Q Direction, 0.1] Animaton
E‘AbsoluleDilection: [o repeat
[0
onnedAnimations
directions
, , , ,, - B Acion . h nget
H Ky ' Zone HObect 0.1 | Varible He gy BEV““F , 0. | Relaton] tatty
— I o intalue | 0.1 ! — — I I
] | . | | phjees | — 0.1 4 | ‘ L [H ErrinDirect:
1.1 i J ounedstates L) o ! \ i B EntityDirection
! 0.1 onEvents T \ 0
key 20085 ownedVariables contanedEntites fypes
actions 0.t
' 2 ents .
B GimeParﬁ 0 B Plrayet‘ a'Terrain‘ 0! B Move ;ﬁ'(dntainerbbject‘ ‘Es{mable; ﬁ R'ulg @ 'Ernﬁﬁeécallewj‘f-' ‘@Stat‘us‘ e@ManyMorsgelatloﬁ‘
L terrain | | :
i Move
sYbGaléries
ownedPlayers 0.
ownedParts
£ (< "c. LI . ; awndDirections
E - E iy E] - e, Loy onnedRules o i =)
, o till Q Lee Q eiveEny] SuticEnty

o description
o Author

Mapping

- M2M transformation is basically the process of
defining a mapping between a source and target
metamodel.

» Once the mapping is defined, it can be used for
transforming instance models which conform to
source metamodel to corresponding models
which conforms to target metamodel.

Mappings

- GameEngine <-> Game

- MoveableElement <-> ActiveEntity

- NonMoveableElement <-> StaticEntity
- Board <-> ContainerObject

 Level <-> Level

 Action <-> Action

 State <-> State

« Event <-> Event

ATL Mappings

- ATL mappings are performed by rules:

rule GameEngine2Game{
from
ge: BoardGame!GameEngine
to
g: GameDSL!Game(
title <- ‘ChessGame’,
Author <- 'DEG/,
description <- 'Generated sample chess game'

ATL Mappings

rule MovableElement2ActiveEntity{
from
me: BoardGame!MovableElement
to
ae: GameDSL!ActiveEntity(
name <- me.name

)
¥

rule NonMovableElement2StaticEntity{
from
nme: BoardGame!NonMovableElement
to
ne: GameDSL!StaticEntity(
name <- nme.name

)

Conclusion

o Usmg MDSD approach have such advantages;
Automated transformations and DSL enhance software quality

» Defined architectures, modeling languages can be used in the sense of
software product line which leads to higher level of reusability.

» Through higher level of abstraction, manageability of complexity
improved.

s More productive environment

o With standardization, interoperability and portability of software
systems are improved.

= MDSD allows an abstraction between implementation and the solution
which brings crutial advantages to companies in software development
process.

o Current Difficulties

= Since the tools for MDSD are not mature yet , we have difficulties in the
entire process using MDSD tools.

Questions

?

