
Developing MDSD Model for Flight Deck Displays

Enver Veli ATABEK1, Cevahir TURGUT2
1,2Middle East Technical University, METU

1,2Ankara, TURKEY
120393177@mail.baskent.edu.tr, 2cevahir.turgut@gmail.com

Abstract

Principal infrastructure of model driven software
development (MDSD) for flight deck displays is implemented
by creating metamodels using MOF-from scratch and
profiling at UML 2 with the static semantics of domain which
is flight deck display system. Grammar for flight deck display
system is also written. This paper is written to explain
implementation details and to give comparisons of used
method. Also difficulties which are experimented at
development processes are given.

Keywords

MDSD, metamodel, metamodeling, MOF, UML, profiling,
grammar, EBNF, Flight Deck Display, modeling, DSL, static
semantics [10]

1. Introduction
Today’s new aircrafts are equipped with glass cockpit

systems. Glass cockpit term means the interaction are done
via a display system instead of old manual switches and
indicators. Flight Deck Displays (FDDs) which are the
display systems for aircrafts (i.e. helicopters, airplanes etc)
are the main display for the pilot. Interactions are done via
glass cockpit systems. Pilots interfere with the aircraft with
the control mechanisms on the glass cockpit systems.

A model-driven software approach is developed for
Flight Deck Displays in this project; since it is suitable to
visualize components of FDDs using diagrams, it is a cost
effective way to use code generator for FDDs software.

Components of FDD are visual components; so software
of FDDs can be performed easily. Developing software for
FDD systems using visual components can increase
productivity, reduce development and maintenance costs.

Code generators are cost effective because life-span of
aviation products is very long. As an example, there are
cargo airplanes which are produced before 40 years and it is
aimed to use these airplanes for more than few decades. Used
technologies change with time. Before few decades ADA
was popular but now C++ are popular; it is not clear that
after few decades, which programming language will be
popular. After few decades, it can be very easy to adapt new
technology by changing code generator template.

Another issue of FDD Modeling in our project is that
defect at the FDD system can cause dead; this means that

FDDs are safety critical systems. A critical issue for the
aircraft systems is that ever piece of code must be certifiable.
Certifications are done by different authorities. For example;
civil aviation authority of the USA is the Federal Aviation
Administration (FAA), Civil Aviation Safety Authority
(CASA) is the Australian federal agency, and European
Aviation Safety Agency (EASA) is an agency of the
European Union (EU). International coordination of these
authorities is done by International Civil Aviation
Organization (ICAO). These authorities – FAA and EASA
are responsible for the certifications of civil aviation and they
determine regulations & policies for avionics. Standards for
avionics software are strict. For the display system, a
certifiable library is preferable by FAA. Khronos ES – SC
1.0 is a certifiable OpenGL subset and most of the FDDs are
developed with that library. It is aimed to generate code from
developed FDD model which conforms to Khronos ES – SC
1.0 with our project. It is also aimed to generate a compatible
code with DO178B (Software Considerations in Airborne
Systems and Equipment Certification) which is a guidance
for software development published by RTCA, Incorporated.
The standard was developed by RTCA and EUROCAE. The
FAA accepts use of DO-178B as a means of certifying
software in avionics [1, 2, 6].

The paper is organized as follows: Modeling of FDD
(domain analysis of FDD, defining domain concepts, etc.) is
given in Section 2. Section 3 follows with mapping of
domain concepts to grammar. Section 4 illustrates definition
of FDD metamodel based on MOF-from scratch and Section
5 explains static semantics of our FDD metamodel. An
alternative metamodel using UML Profiling is given at
Section 6. Section 7 gives model to model transformation
which is applied from FDD model to GMF model and
associated rules. Section 8 follows with model to text
transformation. Finally, Section 9 discusses development
process of FDD Modeling and Section 10 concludes by
giving important points of FDD Modeling.

2. Flight Deck Display Modeling
FDD systems are suitable for model-driven software

development because models are very expressive while
developing display systems. Especially, visual modeling
facilitates development activities by demonstrating system at
the start of development process. For example, textual
requirements and design are less expressive than visual ones.
Also it is easy to go though model to code.

Based on the authors’ profession experiences and
knowledge on avionics domain, some guidelines, some

aircraft documents are reviewed. In addition to company
restricted documents at the first domain selection process,
FAA documents are reviewed. As a result of review process,
25-11A (ELECTRONIC FLIGHT DECK DISPLAYS)
document is selected as a base document for our domain
analysis process. This document provides guidance for the
design, installation, integration, and approval of electronic
flight deck displays, components, and systems installed in
transport category airplane [3].

There are many components of FDDs. However, it has
been chosen a subset for the domain in scope of this project.
Chosen components are the main components of flight deck
display systems. Also selection is done in order to not restrict
developers while performing development process based on
our meta-model. Resulted domain model include instances of
the following components: “display, symbology, text, label,
symbol, indicator”. Glossary of resulted domain is given at
TABLE I.

TABLE I. DOMAIN CONCEPTS OF FLIGHT DECK DISPLAY MODELING

Terms Description

Display The main scene. A display contains symbologies.

Symbology A place holder that groups the components.

Text
Texts. Usually used to display warnings, messages
and errors. There are three kinds of texts;
Warnings, Normal, Errors.

Label
Label is a definitive component for another
component. Labels are seperated into two:
TextLabel and IconLabel.

TextLabel It is kind of a text however it color is static and
defined for another component.

IconLabel IconLabel has an image for it is component.

Symbol
It is a kind of visual component. Symbols are
seperated into two: TerrainSymbol and
AircraftSymbol.

AircraftSymbol This component is the aircraft symbol. A
consistent aircraft symbol is used for an FDD.

TerrainSymbol
Terrain symbols are used to show geographical
elements and buildinds such as mountains, tall
buildings, airports etc.

Indicator
Indicators are used to show some information, e.g.
speed, fuel, temperature. There are two kinds of
indicators Gauge and Bar.

Gauge Gauge indicators are like a speed indicator in a car.

Terms Description

Bar Bar indicators shows the information with a bar.

3. DSL Grammar
EBNF notation is used to express resulted domain while

mapping domain concepts to grammar. FDDModel can be
Display as seen from grammar of FDD. Display includes
multiple symbologies and symbology includes multiple
components. Component can be Text, Label, Symbol,
Symbology or Indicator since it is like a base class of these
elements. In the same manner; Label can be TextLabel or
Icon, Symbol can be TerrainSymbol or IconLabel, Indicator
can be Gauge or Bar.

3.1. EBNF Notation of DSL of FDD

4. Definition of metamodel based on MOF-from
scratch

4.1. Developed Metamdeol Based From Scratch

FDDModel = Display;

Display = {Symbology};

Symbology = {Component};

Component = Text | Label | Symbol | Symbology |
Indicator;

Label = TextLabel | IconLabel;

Symbol = TerrainSymbol | AircraftSymbol;

Indicator = Gauge | Bar;

Terminals are: Gauge, Bar, Text, TextLabel, IconLabel,
TerrainSymbol, AircraftSymbol

Non-terminals are: FDDModel, Display, Symbology,
Component, Label, Symbol, Indicator

Figure 1. Metamodel Using ECore Meta-metamodel

The meta-model from scratch is illustrated in Figure 1.
Component item is an abstraction for our domain concepts.
Common attributes like name of component, width, height,
X-axis and Y-axis positions are inherited from Component
item. Text item has color and content attributes. Type of
color attribute of Text item is TextColor and it can express
Fail, Normal or Warning conditions. Text item is also an
abstraction, in the M1 level there won't be an instance of
Text. There are two special types of Label item. One of
them is TextLabel which has content as an attribute and other
is IconLabel which has an icon at IconImage type as an
attribute. Both kinds of Label items must be associated with
a component item. Since Label item is a description for an
object. There is a Symbol item to represent general graphics
and there are two special types for this item. TerrainSymbol
is the first special type of Symbol which has element at
TerrainElement type as an attribute. TerranElements can be
airport, building, vor and mountain in general.
AircraftSymbol is another special type of Symbol which has
direction as an attribute to express direction of aircraft. In the
same manner with Text item Label and Symbol items are
abstractions. Symbology and Display items have background
attribute to store background color of these items. Type of
background attributes is RGBAColor which has red, green,
blue and alpha components. Indicator item has max, min and
current attributes to represent maximum, minimum and
current values of the indicated object, respectively. Also
Indicator item has an operation named update to update
current value of indicated object. Gauge and Bar items are
the special types of Indicator item. Indicator item is an
abstraction and won't be instantiated in M1 level.
Symbologies consist of elements which are at type
Component but symbologies cannot include Display and
Symbology items as an element. This is expressed at the

static semantics of our mete-model. In the same manner,
Display item consists of symbologies and it cannot include
Display item as an included symbologies. Our FDDModel is
formed with a Display.

Eclipse IDE and oAW (openArchitectureWare)
framework are used as the development environment. ECore
is used to construct our meta-model. ECore is simplified
version of MOF.

4.2. Example Concrete Syntax for Metamodel
based on MOF from Scratch

An example concrete syntax notation which is given at
Figure 2. is created using a Vectorial graphics tool. There
can be lots of concrete syntax for developed meta-model for
FDD since one can define any of the components given in
metamodel with any visual element. In example concrete
syntax, Aircraft is defined with airplane image, but it can be
defined with any other visual element like “clouds”. Given
example is just one of the possible concrete syntaxes.

Figure 2. Example Concrete Syntax for Metamodel from MOF

5. Static Semantics
15 (Fifteen) constraints are defined for resulted meta-

model. They are specified using Check Language which is
provided by oAW (openArchitectureWare) tool. Check
Language is a syntactical mixture of Java and OCL (Object
Constraint Language) [4]. Statics semantics of our meta-
model is given at TABLE II. These constraints are very
useful while checking validity of developed model based on
meta-model and also they will be used while code
generation.

FDDModel has to have a valid Display according to first
rule. Second and third rules requires that all symbologies of
Display and all elements of Symbology have to be unique;
respectively. None of the symbology has width which is
greater than display width according to fourth rules. Fifth
rule is same as fourth but it is for height constraints. Also
none of the component can have negative x-axis or y-axis
position according to seventh rule.

TABLE II. STATIC SEMANTICS OF
METAMODEL

context FDDModel ERROR "No Display Defined" :
 display != null;

context Symbology ERROR "All symbologies of
Display have to be unique" :
((Display)this.eContainer).symbologies.select(e|e.name
== this.name) == 1;

context Component ERROR "All elements of
Symbology have to be unique" :
((Symbology)this.eContainer).elements.select(e|e.name
== this.name) == 1;

context Display ERROR "Out of Width" :
this.symbologies.exists(e|e.width<=this.width);

context Display ERROR "Out of Height" :
 this.symbologies.exists(e|e.height<=this.height);

context Indicator ERROR "Current Value is Out of
Range" :
this.current >= this.min && this.current <= this.max;

context Component ERROR "Invalid X-Y
Coordinate": this.xCoord >= 0 && this.yCoord >= 0;

context Symbology ERROR "Invalid X-Y Coordinate":
this.elements.exists(e|e.xCoord<=this.width) &&
this.elements.exists(e|e.yCoord<=this.height);

context AircraftSymbol ERROR "Invalid Direction" :
this.direction <= 360 && this.direction >= 0;

context Label ERROR "Label has to be referenced to a
Component" : this.labelFor != null;

context Display WARNING "Background color of
Display has to be more gray" :
this.background.red <= 235 && this.background.green
<= 235 && this.background.blue <= 235;

context Symbology ERROR "Sybology cannot have
element at Display or Symbology type" :
this.elements.typeSelect(Display) == false &&
this.elements.typeSelect(Symbology) == false;

context TextLabel ERROR "Text has to be defined for
a TextLabel" : this.content != null;

context IconLabel ERROR "Icon image has to be
defined for a IconLabel" :
this.icon != (IconImage)(null);

context Component ERROR "Name has to defined" :
this.name != null;

6. Alternative metamodel using UML profiling

 UML Profiling provides a generic extension mechanism
for customizing UML models for particular domains and
platforms. In our project, FDD profile is created using UML
2.* Profiling according to our FDD meta-model.

 While creating FDD profile, Component and
RGBAColor items are extended from class type of metaclass
of UML meta-model. Component is generalization of
Symbology, Display, FDDModel, Indicator and its
specializations, Text, Label and its specializations, Symbol
and its specializations. TerrainElement and TextColor items
are extended from enumeration type of metaclass of UML
meta-model. Resulted UML 2.* profile for our meta-class is
given at Figure 5. Also generated XMI code for FDD profile
is interoperable with other modeling tools.

 Example usage of developed UML profile is shown at
Figure 3. and Figure 4. . In Figure 3. , it is shown that FDD
Profile imports Java Profile and FDD Profile is applied to
FDD_model which is an example model of FDD Profile.
FDD_model is an example for PFD (primary flight display)
display for sample aircraft. Fuel symbology of PFD which
has bar type indicator for FuelTank, readouts and TextLabel
type label is shown in Figure 4.

 EA (Enterprise Architect) has been used while creating
UML profile for FDD system. EA uses stereotype “extends”
for stereotype symbol. UML concrete syntax is used for this
meta-model.

Figure 3. Applying Developed UML Profile for FDD to Model

class FDD_model

«Symbology»
FuelSymbology

«Display»
PFD

Airbus137DisplayModel

«Bar»
FuelTank

«TextLabel»
FuelLabel

«Text»
Readout

Figure 4. Example Model from Developed Profile for FDD

Figure 5. UML Progile for FDD

7. Model to Model Transformatıon: FDD to
GMF

In this project, it is aimed that FDD Modeling is based on
visualization of models. Although metamodel is constructed
and example concrete syntax is selected, tool for generating
models using our metamodel and concrete syntax is not
developed due to time constraints. We are assuming that we
have developed such a tool for FDD Modeling for this
section. In this case, another problem - interoperability
problem arises. Generated models with our tool cannot be
used at any other tools (Also note that, any UML 2.*
compatible tool can be used if modeling is done using FDD
Profile). For example, one can request to open model
developed using our tool at The Eclipse Graphical Modeling
Framework (GMF). So model to model transformation is
need to use generated model at other modeling tools.

GMF is commonly used framework for visualizing the
models. Custom graphical editors based on metamodels
defined via EMF (Eclipse Modeling Framework) can be
achieved using GMF. Ecore is provided by EMF for defining
metamodels using base components of MOF. FDD
metamodel is also defined using Ecore. Also in our
assumption, developed tools provide visualizing for FDD
metamodel using pre-defined concrete syntax same as GMF.
So GMF is very suitable example framework for requesting
to use developed models using our tool. Model to model
transformation from FDD to GMF is defined in the scope of
this project using Atlas Transformation Language (ATL).
ATL provides to define transformation rules to transform
model which conforms source metamodel to another model
which conforms to target metamodel. We have defined FDD
metamodel, generated example model and GMF metamodel
is already defined and being used commonly. FDD
components are mapped to core hierarchy of the GMF
notation meta-model [7] components using defined ATL
rules [8]. Using defined rules, example model is transformed
to GMF model. Format of our example model and
transformed model are in XMI format.

ATL is used as a model to model transformation
language since standard development tools like syntax
highlighting, ATL compiler, debugger, etc. are provided by
The ATL Integrated Environment [8]. Also necessary
documentation of ATL is available. Header and helpers of
our ATL file has been given in TABLE III.
“FDD_metamodel” is the name of FDD metamodel and
“aFDD” is the name of example FDD model which is given
in Figure 6. ATL Helpers are method like structures of ATL.
They are defined for commonly used operations like color
conversions. Main transformation rules are also given in
TABLE IV. When ATL transformation is applied to example
model using FDD metamodel and GMF metamodel, model
which is given in Figure 7. is generated. FDD is mapped to
GMF as follows: “Display to Diagram; Component to
Node”. Since Text, Labels, Indicators, Symbology, Symbol
are specialization of Component; these elements are also
mapped to Node. Component to Node rule is defined abstract
in order to achieve mentioned transformation. For example
Symbology rule extends from Component2Node rule and

additional transformation constraints are defined in
Symbology2Node rule. For example background color of
symbology is transformed to style of Node element using
“colorvalue” helper. Connections have not been defined at
GMF side since there are no visual elements developed.

TABLE III. ATL TRANSFORMATION HELPERS FOR FDD TO
GMF

module FDD2GMF; -- Module Template
create aGMF : GMF from aFDD :
FDD_metamodel;

helper context
FDD_metamodel!RGBAColor def :
colorvalue : Integer =
 (self.red*255 + self.green*255
+ self.blue*255 + self.alpha*255);

helper context
FDD_metamodel!TextColor def :
normalColor : FDD_metamodel!RGBAColor
=
 Sequence{128, 128, 128, 128};

helper context
FDD_metamodel!TextColor def :
failColor : FDD_metamodel!RGBAColor =
 Sequence{255, 0, 0, 0};

helper context
FDD_metamodel!TextColor def :
warningColor :
FDD_metamodel!RGBAColor =
 Sequence{255, 255, 0, 0};

helper context
FDD_metamodel!TextColor def:
getRGBAColorFromTextColor() :
FDD_metamodel!RGBAColor =
 if self.color =
FDD_metamodel!TextColor.Normal
 then
 self.normalColor
 else
 if self.color =
FDD_metamodel!TextColor.Fail
 then
 self.failColor
 else
 self.warningColor
 endif
 endif;

TABLE IV. ATL TRANSFORMATION RULES FOR FDD TO
GMF

Figure 6. Example FDD Model

Figure 7. Generated GMF Model

8. Model to Text Transformatıon
It is aimed to generate reusable, certifiable, high quality

code with FDD Modeling in this project. Certification costs
of avionics software products are very high since every
statement and every condition of code that will be execute on
aircraft has to be verified (tested, analyzed). This procedure
has to be performed for any modifications on code.
Generating code from model is very productive and cost
effective way for two reasons. First, once transformation
template is written, high percentage of code can be generated
automatically from developed models. Design phase of
software product has to be performed for avionics software
products according DO178B standard. Mostly, designs of
software are done using UML or UML like tools. Once code
generator can be certified cost of software development will
be reduced and code phase will be passed very fast since
very high percentage of code can be generated after design
phase using transformation tool. Second, maintenance costs

rule Display2Diagram
{
from
 display : FDD_metamodel!Display
to
 diagram : GMF!Diagram (
 name <- display.name,
 type <- 'FDD_Display',
 measurementUnit<-#Pixel,
 children <- display.symbologies,
 visible <- true,
 mutable <- false,
 styles <- style,
 layoutConstraint <- size),
 style : GMF!ShapeStyle (
 fillcolor <- display.background
),
 size : GMF!Size (
 width <- display.width,
 height <- display.height)
}

abstract rule Component2Node
{
from
 component :
FDD_metamodel!Component
to
 node : GMF!Node (
 type <- component.name,
 layoutConstraint <- bound,
 visible <- true,
 mutable <- true),
 bound : GMF!Bounds (
 x <- component.xCoord,
 y <- component.yCoord,
 width <- component.width,
 height <- component.height)
}

rule Symbology2Node extends
Component2Node
{
from
 symbology :
FDD_metamodel!Symbology
to
 node : GMF!Node (
 styles <- style,
 children <- symbology.elements
),
 style : GMF!ShapeStyle (
 fillcolor <-
symbology.background.colorvalue)
}

will be reduced by reducing software life cycle phases. This
is especially valid at high mature companies since they obey
robust and expensive processes. By modifying model, code
changes are automatically done.

There are two code generation techniques. Platform
Specific and Platform Independent transformations can be
performed using model to text transformation techniques.
We have selected platform specific text transformation
technique since Khronos ES – SC OpenGL is widely used
graphic library at flight deck systems as many embedded
safety-critical systems. Also after a few decades, OpenGL
can be replaced by another technology; the only thing to do
is to develop platform specific rules for new technology.
This seems extra cost but since there is only one widely used
platform, platform specific transformation is seemed
effective engineering practice. If there were two widely used
platforms, then platform independent transformation
definition would be required; but it would also required that
there are two platform specific transformation definitions for
independent platform definition.

Xpand is one of the most capable models to text
transformation language. We have used Xpand for platform
specific (C++, Khronos ES – SC OpenGL) model to text
transformation. Our Xpand template definition for main
application of flight deck display model is given in TABLE
V. This definition generated application code of input model.

There is “Component” in FDD metamodel as a base
element for other elements except data elements like
“RGBAColor”. In our code generation, common data types
are defined like type definitions, RGBAColor class
definition, Component class definition to generate their
codes. Classes which are inherited from Component are
generated whenever they are needed according to input
model. This is first Display source file is created and it is
instantiated in main method according model; then if display
has symbologies, Symbology class source file is created.
Then Symbology is instantiated and added to symbologies of
display object. According to FDD metamodel, Symbology
has elements which are inherited from Component. Type of
Symbology element is checked and its source file is created
then created class is instantiated and added to elements of
Symbology object according to the input. This process is
performed for all of elements of Symbologies.

There is an abstract “myCode” method at Component
class. The derived classes implements “myCode” method by
performing its related responsible jobs like necessary
OpenGL API calls. If a class has sub items; for example
Display class has symbologies as sub items, after performing
its job, then it calls “myCode” of its sub items. So that
execution of system is performed by periodically calling
“myCode” method of display object, then it calls its sub
items’ “myCode” in a nested manner.

Finally, generated code segments call non-generated code
contained in libraries like OpenGL library in developed
model to code transformation.

9. Discussion
During the project, lots of problem occurred but also

MDSD importance is also experienced. The benefits of
MDSD are examined. They are given at below according to
subtopics.

9.1. Tools
During the project, it was experienced that some

obstacles were aroused from used tools. Especially oAW has
lots of bug and it decreases productivity. Model – graphical
model compatibility may be lost during changes. These
immature tools force you to solve some problems and waste
some of your time. Also, our major concern is that oAW
does not support standards. It means that nor ECore neither
Check Language is a standard. We expected to use MOF and
OCL, however oAW framework does not support. Another
major issue is that these tools are not well documented. But
visual interface to develop ECore is very effective after
learning tool.

For profiling we used Enterprise Architect, easy to use
but it has problems with import and export. For example, EA
is not interoperability with other tools like oAW while
exporting constraints to oAW. But EA generates XMI output
very easily and it can be easily used at other tools.

ATL is flexible language for defining transformation
rules. But there are some bugs while working at ATL Eclipse
environment. For example; we had problems while
compiling ATL file. ATL files are compiles automatically
when ATL file is saved. But when we faced this problem, we
had to construct ATL project again in order to compile ATL
files. oAW Xpand is also very flexible language to perform
model to text transformation.

9.2. Grammar
Grammar usage is not an efficient and suitable for

defining a Domain Specific Language. EBNF notation is
more suitable for solution (i.e. a programming language)
domain; it is not for problem domain (i.e. for model domain).
Constraints and relations cannot be expressed clearly. Also it
is open to ambiguity. A more expressive meta-syntax can be
constructed for MDSD approach instead of EBNF.

9.3. Meta-modeling from Scratch
Meta-modeling from scratch is easier than defining the

grammar. In fact, in our project we firstly create our meta-
model and then construct grammar. Meta-modeling is much
more expressive. Internal types and abstractions are used.
Constraints and relationships are clearly defined. Also meta-
modeling process provides you to distinct M1 and M2 items.
In our opinion meta-modeling is the best way for MDSD
approach.

TABLE V. MAIN CODE GENERATION XPAND
DEFINITION

«IMPORT fdd_metamodel»
«EXTENSION fdd_template_m2t::GeneratorExtensions»

«DEFINE main FOR fdd_metamodel::FDDModel»
«FILE "FDDModel.cpp"»
#include"Display.h"
#include <iostream>
using namespace std;

int main()
{
bool retVal = true;

Display «display.name» = new Display("«display.name»", «display.width»,
«display.height», (new RGBAColor(«display.background.red»,
«display.background.green», «display.background.blue»,
«display.background.alpha»)));

«FOREACH display.symbologies AS s»
 //Create «s.name» symbology
 Symbology «s.name» = new Symbology("«s.name»", «s.width», «s.height»,
«s.xCoord», «s.yCoord», (new RGBAColor(«s.background.red», «s.background.green»,
«s.background.blue», «s.background.alpha»)));
 «FOREACH display.symbologies.elements AS e»
 //Create «e.name» element
 Component «e.name» = new
«e.metaType.toString().subString(15,e.metaType.toString().length)»("«e.name»",
«e.width», «e.height», «e.xCoord», «e.yCoord»);
 //Add «e.name» symbology to «s.name»
 «s.name».addElement(«e.name»);

 «IF e.metaType.toString().subString
(15,e.metaType.toString().length).matches("Indicator")»
 «EXPAND fddModel2code_classes::Indicator»
 «ENDIF»
 «IF e.metaType.toString().subString
(15,e.metaType.toString().length).matches("Gauge")»
 «EXPAND fddModel2code_classes::Gauge»
 «EXPAND fddModel2code_classes::Indicator»
 «ENDIF»
 «REM»Comment: Other elements can be transformed with similar rules«ENDREM»
 «ENDFOREACH»
 //Add «s.name» symbology to «display.name»
 «display.name».addSymbology(«s.name»);
«ENDFOREACH»

while (retVal == true) {
 retVal = «display.name».myCode();
}
return 0;
}
«ENDFILE»
«EXPAND display_cpp FOR display»
«EXPAND fddModel2code_classes::fdd_common»
«EXPAND fddModel2code_classes::fdd_symbology»
«ENDDEFINE»

9.4. Developing Concrete Syntax for Meta-model
from Scratch

A generative component and runtime infrastructure for
developing graphical editors based on EMF (Eclipse
Modeling Framework) and GEF (Graphical Editing
Framework) are provided by The Eclipse Graphical
Modeling Framework (GMF) [5]. We realized that
developing a graphical editing surface for a particular
domain (in this project our domain, FDD systems) by GMF
(Graphical Modeling Framework) wastes too much time.
Then we have created example concrete syntax for
components of FDD domain using graphics program.

9.5. UML 2.* Profiling
UML 2.* Profiling is the most effective and productive

way to define meta-model with its concrete syntax if it is not
requested to create new concrete syntax which is more
expressive.

9.6. MDSD
MDSD is an effective approach and increases

productivity. It focuses on problem domain and produces a
solution for the specific domain. Once a domain specific
meta-model is constructed than model for the problem
domain easily be generated. As a main point of MDSD,
model is executable so that productivity is increased. Also,
MDSD increases re-usability. Since re-usable items are
defined with use of meta-modeling.

9.7. Model to Model Generation
Model to model transformation is necessary when

metamodel from scratch is used as metamodeling technique.
Since, developed models will not be interoperable with
commonly used tools like UML, GMF tools.

9.8. Model to Text Transformation - Code
Generation

Code generation phase is like composition of design and
coding phases of standard software engineering. Xpand is
very effective template based text generator. Various
generation rules can be defined like string operations on file,
variable names based on model elements. Also checks can be
made in Xpand and it is possible to decide which files can be
generated according to input model

10. Conclusion and Future Work
In our case, we aim to construct a tool that generates

executable from our model that conforms to create meta-
model. In the avionics, as stated before, a software part must
be certifiable. However, if you certify the tool that generates
the code you do not need to certify your code or certification
costs of developed software reduces. That means lower cost.

We constructed a platform specific code generation
template and we have successes nearly 100% percentage of
code generation from our models which conforms to our
FDD metamodel. We have used libraries like OpenGL as a

manual code. But in this case, when it is requested to use
another platform like The Microsoft DirectX® instead of
OpenGL for graphics library, platform specific parts of code
generation templates have to be updates. There is a trade of
between using platform specific and platform independent
text transformation.

A tool for generating models using our metamodel with
any concrete syntax can be developed. This can be achieved
by developing a plug-in for Eclipse or writing application
software for this purpose. Model creation, model to model
transformations and model to text transformation can be
done using mentioned tool. Using this tool, abstraction level
will be increased and complexity problem of software
domain can be decreased. Even there is no such a tool,
models can be developed using Ecore Model Editor. Sample
model is developed using mentioned editor and it is seen
that model are generated very effective. So, after generating
model, code generation is just a few seconds using
developed model to text transformation definitions. Usage
of these techniques can be used at avionics which is live
domain since lifetimes of aircrafts are very long.

Generated code can be optimized in order to achieve
quality and safety constraints since developed code
generation rules are written to illustrate how effectively and
how flexible that code can be generated. Also for the
generated code segments, a text generator template for
automatic test cases can be developed.

Finally, it is seen that software for flight deck display
systems are suitable domain for model-driven software
development in our practice of FDD Modeling. Model-
driven software development approach can be seen as
investment since at the first steps (domain analysis,
metamodeling) of this approach has costs. But costs of
software life cycle processes after design phase are reduced
significantly after constructing modeling environment of
selected domain. MDSD approach for flight deck displays
or any other selected safety-critical systems can be more
productive and cost effective if MDSD is applied as a whole
in effective way like also developing automatic test case
generator.

11. Acknowledgments

 We want to thank Asst. Prof. Bedir Tekinerdogan for
his precious advices and contributions during this study.

12. References

[1] RTCA, Inc., Do178B Software Considerations in Airborne Systems
and Equipment Certification, USA

[2] U.S. Department of Transportation Federal Aviation Administration,
Advisory Circular 20- 115B – RTCA, Inc., Document RTCA/DO-I
78B, USA, l/ll/93

[3] U.S. Department of Transportation Federal Aviation Administration,
Advisory Circular 25-11A – Electronic Flight Deck Displays, USA,
6/21/07

[4] http://www.openarchitectureware.org, openArchitectureWare User
Guide, Version 4.3.1, 17/04/2009

[5] http://www.eclipse.org/modeling/gmf/, Eclipse Graphical Modeling
Framework, Accessed at 17/04/2009

[6] http://en.wikipedia.org/wiki/DO178B, DO178B, Accessed at
17/04/2009

[7] http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.gmf.doc/pr
og-

guide/runtime/Developer%20Guide%20to%20Diagram%20Runtime.
html, Accessed at 16/05/2009

[8] http://www.eclipse.org/m2m/atl/, Accessed at 16/05/2009
[9] Architecture Board ORMSC, Model Driven Architecture (MDA),

Document number ormsc/2001-07-01, 9/7/ 2001
[10] http://www.omg.org/technology/documents/modeling_spec_catalog.h

tm, Accessed at 15/04/2009

