
1

Model-driven Development of
Discrete Event Simulations

Uğur Aksu, Graduate Student, Bilkent University,
Cem Mergenci, Graduate Student, Bilkent University,

and Kaan Onarlıoğlu, Graduate Student, Bilkent University

Abstract—Simulation is a common tool for modeling and evaluating real-life systems. In discrete event simulation (DES)
a system is represented from the perspective of its events. Modern tools for developing simulations are bound to general
purpose programming concepts that cannot represent the simulation domain effectively. In this paper, we propose a
model-driven approach to DES domain. We provide a meta-model from scratch based on Ecore, an alternative one
that utilizes UML 2.* profiling and a domain specific language grammar. Two example models demonstrate the use
of our modeling language and provided model-to-text and model-to-model transformations to Java and DOT models,
respectively, show that DES can effectively be expressed by a model-driven approach.

Index Terms—MDSD, Discrete Event Simulation.

F

1 INTRODUCTION

S IMULATION is at the heart of many aspects of
engineering allowing evaluation of the systems

without any need for implementation. Discrete
event simulation (DES) is a simulation technique
which focuses on events occurring on the system
which mark points of time where state of the sys-
tem is updated. DES is suitable for systems that are
easy to define from an operational perspective.

Since DES is a widely used method, there are
many application frameworks for programming
discrete event simulations. However, most of these
frameworks are based on general programming
paradigms and tools, and do not allow program-
mers to develop their simulations using the domain
concepts. This makes it hard to focus on the simu-
lation logic and business rules to be simulated since
developers are required to deal with the constraints,
restrictions and programming styles dictated by the
programming language used.

In this study, we aim to provide a modeling lan-
guage that captures domain concepts as basic ab-
straction elements for model-driven development
of simulation systems and define the transforma-
tions for generating code and different models.
We provide the transformation rules for generat-
ing code to work with SimKit, a popular Java-
based simulation programming framework and
also transform our models to DOT models used

for defining graphs. Consequently, we alleviate the
problem of using general purpose programming
constructs by building executable models.

Rest of the paper is organized as follows: Section
2 presents a detailed analysis of DES domain and
lists a vocabulary of common concepts. Section
3 defines a meta-model consisting of an abstract
syntax and static semantics capturing domain con-
cept relations and a visual concrete syntax based
on event graphs. Two real-world example models
are also provided to illustrate the use of defined
modeling language. Section 4 gives an alternative
meta-model extended from the UML 2.* meta-
model by profiling. Section 5 describes a textual
domain specific language grammar corresponding
to given meta-model. Section 6 and 7 present the
transformations from our DES models to Java code
and to DOT models, respectively. In section 8, we
discuss the lessons learned in this study and reflect
on our experience and we conclude the paper in
section 9.

2 DOMAIN ANALYSIS

In this section we present discrete event simulation
domain and describe the key concepts relevant to
our study.

2.1 Simulations & Discrete Event Simulation
Simulation is the process of formally describing a
real-life system in order to experiment with mod-

2

els of the entities constituting it, observe the be-
havior of the system, control sources of variation
and investigate their effects on system operation.
Simulations make it possible to study, review and
analyze a system and its components, explore alter-
nate operation strategies and predict their effects on
behavior, all without actually producing the system.

Discrete-Event Simulation (DES) is one of the
many ways in the system modeling taxonomy to
simulate a system, in which the operation of a
system is represented as a chronological sequence
of events. The main characteristic of a Discrete-
Event System is that events, which mark significant
changes in the system state, occur at discrete points
in time; as opposed to Continuous-Time Systems
where the system evolves continuously in time.
Major strengths of DES over other simulation meth-
ods is its ability to stop and review a system at a
particular point of time, restore the system state and
model random events.[1]

Discrete-Event Systems can be described us-
ing several different ways, called world views. In
Activity-Oriented View, time is broken into small
increments and at each time increment, the system
model is checked to see whether there are new
events to process. Although this approach is very
easy to understand and implement, it is inefficient
since no events occur at most time increments.
In another approach, Process-Oriented View, the
system’s life-cycle is represented by a sequence of
activities. This approach is effective and efficient;
however, it usually requires detailed planning and
organization to implement. The final world view is
the Event-Oriented View, where events and event
transitions are the basic elements of the model and
the system always advances to the occurrence of
the next event. This approach offers good efficiency
and it is easy to realize. Today, Process-Oriented
and Event-Oriented Views are the most popular
approaches, whereas Activity-Oriented View is not
common.[6]

A traditional Event-Oriented modeling language
is Event Graphs, where each node in the graph
represents an event and a directed graph edge
between a source node and a target node denotes
scheduling of the target event when the source
event occurs.[7] Details of the event graph notation
are presented in section 3.2.

2.2 DES Lexicon
Key concepts in DES are presented and explained
in detail below.

• Global Timer: The global timer specifies the start
and end time of the simulation, and keeps track
of the simulation time.

• System State (or State): State is a collection of
variables that accurately and fully describe the
system simulation model at a given time.

• Event: Events cause significant changes in the
system model at their particular scheduled oc-
currence times; more specifically, they modify
the system states, schedule new events or can-
cel pending events. An event ”occurs” when
the simulation is at the scheduled time of the
event.

• Event Queue: Event queue is a time-ordered list
of pending events.

• Event Scheduling: Event scheduling means in-
serting a new event into the Event Queue.
Events can be scheduled prior to the execution
of the simulation according to the modeler’s
intend, scheduled when certain events occur
(specified by the model) or can be generated
randomly. Event scheduling may depend on
certain conditions specified by the model.

• Event Canceling: Event canceling means delet-
ing a particular event from the Event Queue,
before it can occur. Events can be cancelled as
the result of occurrence of certain other events
(specified by the model).

• Ending Condition: Ending condition determines
when the simulation terminates. The simula-
tion can stop its execution either when the
execution time or a state has a particular value.
Note that, the event queue becoming empty
also implies the end of the simulation since no
new events can occur.

3 METAMODEL FROM SCRATCH

In this section, we provide a meta-model based on
Ecore for modeling DES.[4]

3.1 Abstract Syntax
Our meta-model is defined to model event graphs
that are a common way to express DES. Figure 1
shows the abstract syntax based on Ecore. Model
is the main entity in the diagram. It has a Global-
Timer, an EventGraph, an EventQueue and States.
EventGraph consists of EventTypes and transitions
which are either normal event scheduling tran-
sitions or event canceling transitions. Scheduling
transitions can have a Boolean condition that de-
termines whether or not target event is going to

3

Fig. 2. Basic event graph

Fig. 3. Additional features of event graphs

be scheduled. Events have statements that are exe-
cuted when the event is scheduled to run and these
statements update the system state.

3.2 Concrete Syntax

The concrete syntax for our DES model is based on
the traditional event graph model, where the nodes
in the graph represent event types and the directed
edges connecting them are event scheduling or
cancelling transitions.

The basic form of an event graph is illustrated in
Figure 2. In this construct, graph nodes represent-
ing the event types are denoted by circles, and the
directed edge between two event types is depicted
by an arrow. Note that each event type is identified
by its name written in the node circles. In Figure 2,
the edge between event types A and B means that,
whenever an event of type A occurs, a new event
of type B is scheduled, in other words inserted into
the event queue.

We may use additional notation to enhance the
basic construct in Figure 2 and make our models
more expressive. The improved construct, as seen
in Figure 3, demonstrates the additional capabilities
of the model. A Boolean expression positioned at
the top of the transition arrow from A to B between
parentheses specifies a condition which must hold
when A occurs, in order for B to be scheduled;
if otherwise, B will not be inserted into the event
queue. An integer value located next to the source
end of a transition arrow specifies a delay value ’d’,
which means that if A occurs and all the conditions
for B to be scheduled hold, then B will be scheduled
to occur after a delay of ’d’ simulation clock ticks.
When this value is not specified, a delay of zero is
assumed and B is scheduled to occur immediately.

Fig. 4. Using canceling edges

Fig. 5. Defining the start event

Fig. 6. Start and finish times with initial values of
states

Finally, the statements written below each event
node between curly parentheses represent the state
changes that will take place when that event occurs.
Any number of statements could be specified for
each event type.

Another type of edge in the event graph model
is the event canceling transition denoted by a
dashed arrow as seen in Figure 4. The effect of
the event canceling transition in the given model is
interpreted as follows: Whenever an event of type
A occurs, the first scheduled event of type B is
cancelled, that is, the first occurrence of event B
will be removed from the event queue. If no such
event exists in the queue, then the canceling has no
effect. Note that, canceling transitions cannot have
a delay or a condition.

Each DES modeled by an event graph needs to
specify a start event, which is implicitly scheduled
to occur at the simulation start time to bootstrap the
system model. In our model syntax, it is depicted
by an event node with an additional smaller ring
inside, as illustrated in Figure 5.

The start and end time for the simulation is
shown besides the model with a figure representing
an hour glass, in Figure 6. A simulation usually
starts at time 0, but it is possible to specify a
different start time. The model must also specify the
state variables used in the simulation, their types
and initial values, which is accomplished by listing

4

Fig. 1. DES metamodel constructed with Ecore

them in a table, also shown in Figure 6.

3.3 Static Semantics
Following well-formedness rules in OCL defines
the static semantics for DES meta-model.

package DES

context StartEvent

inv: StartEvent::allInstances()->size()=1

inv: time = 0

context Simulation

inv: Event::allInstances()->forAll(e |
e.time >= self.timer.current)

context Transition

inv: delay >= 0

context Event

inv: Event::allInstances()->isUnique(name)

context State

inv: State::allInstances()->isUnique(name)

context Integer::value : Integer

init: value = 0

context Real::value : Real

init: value = 0.0

context Boolean::value : Boolean

init: value = false

context GlobalTimer

inv: start <= end

inv: end >= current

inv: current >= start

endpackage

3.4 Example Models
In this section, we demonstrate features of our
modeling language with two example cases.

3.4.1 Market Simulation Model
A market has two types of cashier’s desks, reg-
ular and express. Likewise, there are two types
of customers, regular and express customers, each
having different service and interarrival times, with
the assumption that interarrival times for regular
customers are greater than interarrival times for
express customers. Regular customers and express
customers wait in different lines. A regular cus-
tomer is served by a regular cashier’s desk if there
are idle regular cashier’s desks. A regular customer
can also be served by an express cashier’s desk
if all the regular cashier’s desks are busy and
there are available express cashier’s desks. Regular
customers join the end of the regular line if all
the cashier’s desks are busy. Similarly, an express
customer is served if there are any express cashier’s
desk available. Otherwise, express customers join
the end of the express line. (See Figure 7)

• Qr: Number of regular customers.
• Qe: Number of express customers.

5

• Sr: Number of regular cashier’s desks.
• Se: Number of express cashier’s desks.
• Tar: Interarrival time for regular customers.
• Tae: Interaarival time for express customers.
• Tsr: Service time at regular cashier’s desks.
• Tse: Service time at express cashier’s desks.

3.4.2 Car Washing Service Simulation Model
At a car washing facility there is one car washing
machine with service time Ts. Customers arrive
with interarrival time of Ta to have car washing ser-
vice, waiting in one line. First customer in the line
gets the service if the car washing machine is idle
and its status is operating. Car washing machine
fails to operate periodically with the failure period
of Tf regardless of how long it has been working.
Upon failure, the car being washed is returned back
to the queue. Machine starts operating again after
being fixed with the repair time of Tr. (See Figure
8)

• Ta: Interarrival times of cars.
• Ts: Services times.
• Tf : Periods between failures of machine.
• Tr: Periods between repair times of machine.
• isIdle: true/false if machine is idle or busy
• failure: true/false if machine is in failure status

or is operating.

4 METAMODEL WITH UML PROFILING

UML profiling is another method to define a meta-
model where domain concepts are described by
extending from the UML meta-classes.[8] Since we
are profiling for the same domain, concepts and
relations are the same as in the meta-model built
from scratch.

Event, AbstractTransition, GlobalTimer and State
stereotypes are extended from UML meta-class
Class. Statement, StateValue and Condition stereo-
types are more suitable to extend from the UML
meta-class Property, because they are an attribute
of a Class like a Property.

5 DOMAIN SPECIFIC LANGUAGE GRAMMAR

In this section, we provide a language grammar
that specifies the same concepts as Ecore meta-
model presented in Section 3. See Figure 10 for
the complete grammar in EBNF. Note that the
grammar also defines a textual concrete syntax
for modeling DES by providing a set of language
constructs and keywords. Following example
illustrates an instance of the grammar to model

the event graph given in Figure 3.

DES sampleSim(start:0, end:100) {
states{ n:real=0,

p:real=0,

q:integer=0

x:integer=0,

y:integer=0, }

start event A {
schedule:B if(x > y), delay 10,

update: n=q*p; }

event B {
schedule:B,

update: q++; }
}

6 MODEL-TO-TEXT TRANSFORMATION

In this section, we present the rules for transform-
ing models created by the proposed modelling lan-
guage to executable code. We map our modelling
entities to Java code and create fully executable sim-
ulations using the SimKit simulation programming
framework. Transformations are defined using the
Xpand template language, which is a part of ope-
nArchitectureWare platform [5].

The core transformation rules from DES meta-
model to SimKit Java code are presented below. For
brevity, details of the generation rules are omitted
in this section. For the full Xpand source code, see
Figure 11.

• For a ’Model’ entity, generate a Java Class
extending ’SimEntityBase’.

• For each ’State’ entity, generate a protected Java
variable and its corresponding getter method.

• For each ’EventType’ entity, generate a method
’doEventName’.

• For each ’Statement’ entity of an ’EventType’,
generate calls to the ’firePropertyChanged’
method inside the corresponding ’doEvent-
Name’ method.

• For each ’Transition’ entity, generate a call to
the ’waitDelay’ method, together with the tran-
sition delay and condition inside the ’doEvent-
Name’ method of the source EventType.

• For each ’CancelingTransition’ entity, generate
a call to the ’interrupt’ method, inside the ’do-
EventName’ method of the source. EventType.

6

Fig. 7. Market simulation model

7 MODEL-TO-MODEL TRANSFORMATION

In this section we provide a transformation of our
DES models to DOT models. DOT is a modelling
language for defining graphs and is used by pop-
ular tools such as doxygen and Graphviz. This
model-to-model transformation makes it possible to
represent simulation event graph models as DOT
graphs, capturing all the essential simulation data
such as states and statements; so that any tool
that can process the DOT metamodel can work
with DES models. The transformation rules are de-
fined using Atlas Transformation Language (ATL)
[3]. Roughly, each DES EventType is mapped to
a DOT Node, and the scheduling Transitions are
represented by DOT Directed Arcs. State updates
are transformed to DOT Node labels and Transition
delays & conditions are mapped to DOT Arc Labels.
Consequently, visualization of the DOT graphs are

also very similar to the concrete syntax proposed
for our event graph based DES models.

For the full ATL source code describing the map-
pings between metamodel entities, see Figure 12.

8 DISCUSSION

Performing a good analysis of the domain and
identifying the concepts clearly help building an
accurate abstract syntax. We encountered little dif-
ficulties while defining a meta-model from scratch;
however, it was not that easy to define the meta-
model with UML profiling. There are several rea-
sons behind this difficulty. Firstly, there is no com-
prehensive documentation or tutorial for profiling.
Secondly, extending an existing meta-model to meet
our requirements did not give us enough flexibility
and expressive power to build a complete meta-
model. On the one hand, UML profiling is consid-

7

Fig. 8. Car washing service simulation model

Fig. 9. UML meta-class extensions

ered useful as it provides a well-defined concrete
syntax without effort; on the other hand, UML
concrete syntax is not suitable for representing DES;
event graphs are a more natural choice.

Despite the fact that it was easy to define the

meta-models, computer aided design tools are not
capable enough to capture the meta-modelling
process as a whole. Moreover, Eclipse Modeling
Framework (EMF) seems incomplete and poorly
designed. Many simple tasks require too much

8

effort to perform and features are buggy.
Normally, grammars are thought to be harder

to construct than the graph based abstract syntax;
on the contrary, we have found that defining a
grammar for our domain was relatively easy. By
considering event graph representations, we were
even able to define a textual concrete syntax.

Transforming the DES models to SimKit modules
was one of the primary goals of this study. Since
both the proposed DES models and the SimKit
framework is based on the event graph represen-
tation of DES, constructing the mapping rules was
a straightforward task. Working with openArchitec-
tureWare and Xpand language, we were surprised
to see that code generation process was very ac-
curate and there were only minor bugs with the
tools. However, it should be noted that, working
with a pre-existing framework, SimKit, made it
possible for us to generate very high level code
and we did not have to worry about the inner
working mechanisms of the framework. We can
conclude that MDSD, with the current model-to-
text transformation tools, is suitable for mapping
models to high level programming frameworks; but
the flexibility of Xpand for generating code from
scratch needs further considerations.

Despite the relative maturity of model-to-code
transformation process, model-to-model transfor-
mations were not an easy task to perform. During
our studies, we were confronted with many inte-
gration problems between EMF platform and ATL;
moreover, ATL transformations usually resulted in
models that were reported to be corrupted. All in
all, model-to-model tranformation process does not
seem to be very refined and needs more maturity
before it can be used in professional software de-
velopement.

9 CONCLUSION

In this paper, we presented a model-driven ap-
proach for developing discrete event simulation
systems. We have provided the analysis of the
domain, described the meta-model for creating
models using Ecore, UML profiling and grammars
and given a domain specific language to visually
represent our models, with some examples. We also
present a Model-to-Model transformation to DOT,
and a Model-to-Text transformation to Java code
from our models.

To conclude, DES systems can benefit from
a model-driven software development approach

since they can effectively be represented by event
graphs that conform to our meta-model. This makes
it possible to define an easy to understand simu-
lation model without using simulation program-
ming frameworks. Model-to-Text transformations
can be applied to DES models in order to have
an executable code that runs on a simulation pro-
gramming framework; such as SimKit[2]. Further-
more, by using Model-to-Model transformations
DES models can be transformed into other models
for various purposes like visual representation.

ACKNOWLEDGMENTS

We would like to thank Asst. Prof. Dr. Bedir
Tekinerdoğan, for his efforts and for organizing
the Turkish Model-Driven Software Development
Workshop, 2009.

REFERENCES

[1] P. Ball. Introduction to discrete event simulation. Technical
report, University of Strathclyde, 1996.

[2] Arnold Buss. Discrete event programming with simkit.
Technical report, Simulation News Europe, 2002.

[3] ATLAS Project Eclipse Modeling Framework. Atlas trans-
formation language. http://www.eclipse.org/m2m/atl/,
2008.

[4] Eclipse Modeling Framework (EMF).
http://www.eclipse.org/modeling/emf/?project=emf,
April 2009.

[5] openArchitectureWare. Xpand template language. http:
//www.openarchitectureware.org/, 2008.

[6] M. Pidd. Computer Simulation in Management Science. John
Wiley & Sons, Inc., 1992.

[7] Lee Schruben. Simulation modeling with event graphs.
Commun. ACM, 26(11):957–963, 1983.

[8] Unified Modeling Language (UML). http://www.uml.org/,
April 2009.

9

DESDeclaration = "DES", "varName", "(", "start", ":", integer, "end", ":", integer, ")", "{",
 stateList, eventList, "}";

stateDeclaration = varName, ":", (("int", "=", integer) | ("real", "=", real) | ("bool", "=",
 boolean));

stateList = "States", "{", stateDeclaration, {",", stateDeclaration}, "}";

eventList = startEvent, {event};

startEventDeclaration = "start", event;

eventDeclaration = "event", varName, "{" , [stateUpDate, ","], [eventScheduling, ","],
 [eventCancelling], "}";

stateUpDate = "update", ":", statement , {statement};

targetEvent = varName, {",", ifStatement}, {",",delay};

eventScheduling = "schedule", ":", targetEvent, {",", targetEvent};

delay = "delay", ":", integer;

eventCancelling = "cancel", ":", varName, {",", varName};

statement = varName, "=", exp, ";";

varName = varName, (alpha | digit | "_") | alpha;

boolean = "true" | "false";

integer = digit | integer, digit;

digit = "0"|"1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9";

alpha = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" | "l" | "m" | "n" | "o" |
 "p" | "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z" | "A" | "B" | "C" | "D" | "E"
 | "F" | "G" | "H" | "I" | "J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" | "S" | "T" |
 "U" | "V" | "W" | "X" | "Y" | "Z"

real = integer, "." integer | ".", integer;

exp = exp , "||", aboveOr | aboveOr;

aboveOr = aboveOr, "&&", aboveAnd | aboveAnd;

aboveAnd = aboveAnd, equalityOp, aboveEqualityOp | aboveEqualityOp;

aboveEqualityOp = aboveEqualityOp, comparisonOp, aboveComparisonOp | aboveComparisonOp;

aboveComparisonOp = aboveComparisonOp, "+", abovePM | aboveComparisonOp, "-", abovePM | abovePM;

abovePM = abovePM, "*", aboveMDM | abovePM, "/", aboveMDM | abovePM, "%", aboveMDM | aboveMDM;

aboveMDM = aboveUM | "-", aboveUM | "++", varName | "--", varName | "!", aboveUM;

aboveUM = "(", exp, ")" | literalExp | varName;

literalExp = integer | real| boolean;

ifStatement = "if", "(", exp, ")";

comparisonOp = "==" | ">" | "<" | ">=" | "<=" | "!=";

Fig. 10. EBNF domain specific language grammar

10

«IMPORT metamodel»

«EXTENSION template::GeneratorExtensions»

«DEFINE main FOR Model»
 «FILE name+".java"»
 import simkit.*;

 public class «name» extends SimEntityBase {
 «FOREACH states AS s»
 protected «s.value.typeName» «s.name»;

 public «s.value.typeName» «s.getter()»() {
 return «s.name»;
 }
 «ENDFOREACH»

 «FOREACH graph.eventTypes AS e»
 public void do«e.name.toFirstUpper()»() {
 «IF e.name == "Run"»
 reset();
 «ENDIF»

 «FOREACH e.statements AS s»
 firePropertyChange("«s.updates.name»", «s.updates.name», «s.exp»);
 «ENDFOREACH»

 «EXPAND transitionClass FOREACH e.transitions»
 }
 «ENDFOREACH»

 public void reset() {
 super.reset();
 «FOREACH states AS s»
 «s.name» = «s.value.value»;
 «ENDFOREACH»
 }
 }
 «ENDFILE»
«ENDDEFINE»

«DEFINE transitionClass FOR AbstractTransition»
«ENDDEFINE»

«DEFINE transitionClass FOR Transition»
 «EXPAND conditionalTransition FOR this»
 waitDelay("«to.name»", «delay»);
«ENDDEFINE»

«DEFINE transitionClass FOR CancelingTransition»
 «EXPAND conditionalTransition FOR this»
 interrupt("«to.name»");
«ENDDEFINE»

«DEFINE conditionalTransition FOR AbstractTransition»
 «IF condition != null»
 if («condition.exp»)
 «ENDIF»
«ENDDEFINE»

Fig. 11. Xpand rules for Model-to-Text transformation.

11

module transform; -- Module Template
create dotfile : DOT from Model : metamodel;

rule GraphToDOTGraph
{
 from
 g: metamodel!EventGraph
 to
 out: DOT!Graph (
 type <- 'digraph',
 name <- 'DES Model in DOT',
 rankDir <- 'BT',
 labeljust <- '|',
 labelloc <- 't',
 compound <- true,
 nodeSeparation <- 0.75,
 nodes <- g.eventTypes
)
}

rule EventTypeToNode
{
 from
 e: metamodel!EventType
 to
 out: DOT!Node (
 name <- e.name,
 shape <- NodeShape
),

 NodeShape: DOT!RecordNodeShape (
 name <- 'circle',
 label <- EventLabel
),

 EventLabel: DOT!ComplexLabel (
 compartments <- EventLabelCompartment
),

 EventLabelCompartment: DOT!HorizontalCompartment (
 complexLabel <- nameComplexLabel,
 compartments <- simpleStatementCompartment
),

 nameComplexLabel: DOT!ComplexLabel (
 compartments <- simpleNameCompartment
),

 simpleNameCompartment: DOT!SimpleCompartment (
 content <- e.name
),

 simpleStatementCompartment: DOT!SimpleCompartment (
 content <- e.statements->iterate(s; acc: String = '' | acc + s.exp)
)
}

rule TransitionToDirectedArc
{
 from
 t: metamodel!Transition
 to
 out: DOT!DirectedArc (
 fromNode <- t.from,
 toNode <- t.to,
 arrowHead <- arrowHeadShape,
 arrowTail <- arrowTailShape,
 taillabel <- arcTailLabel,
 label <- conditionLabel
),

 arrowHeadShape: DOT!ArrowShape (
 name <- 'vee',
 isPlain <- false,
 clipping <- 'none'
),

 arrowTailShape: DOT!ArrowShape (
 name <- 'none',
 isPlain <- false,
 clipping <- 'none'
),

 arcTailLabel : DOT!SimpleLabel (
 content <- if t.delay > 0 then ''+t.delay else '' endif
),

 conditionLabel : DOT!SimpleLabel (
 content <- if t.condition.oclIsUndefined() then '' else t.condition.exp endif
)
}

Fig. 12. ATL rules for Model-to-Model transformation.

