
Model Driven Software Development Approach on
Procedural Modeling of Buildings

Murat Kurtcephe, Oğuzcan Oğuz, Buğra M. Yıldız
Bilkent University Computer Engineering Dept.

Ankara, Turkey
kurtcephe, oguzcan @cs.bilkent.edu.tr

b_yildiz@ug.bilkent.edu.tr

Abstract— To construct virtual city models, sufficiently detailed
and variously styled building models are required. Traditional
production of such models demands extensive manual work and
time. This process could be automated using the procedural
methods. The aim of this work is to realize a DSL for procedural
building modeling. Two approaches, a MOF based from-scratch
approach and UML2 profiling, are applied to define the meta-
model of the intended DSL. Moving from this DSL, model-to-
model and model-to-text transformations are done using ATL
and Xpand languages.

Keywords-Model driven software development; Procedural
modeling of buildings ; shape grammar; MOF; UML; Model-to-
Text Transformation; Model-to-Model Transformation. ATL;
openArchitectureWare Xpand.

I. INTRODUCTION

Modeling and visualization of large and complex
environments is a popular research area in computer graphics.
Recent developments in processors and graphics cards, the
amount of available memory, and the development of computer
graphics modeling and rendering techniques facilitate to run
high quality simulations. To this end, virtual cities should be
modeled in order to be used in such simulations.

One major component of a virtual city that affects the
realism is the building models. In a virtual city, building
models should have a high level of geometric detail and be
consistent with the architectural style of the virtual
environment. Today’s machine capabilities facilitate the
visualization of both large and complex 3D models.
Applications cover a large spectrum, from military training and
city planning to video games and tourism. Modeling exactly
existent cities to be used in such applications can be tedious
and is not intended in this work. Modeling each and every
building in detail by hand using 3D models is inefficient, even
the use of aerial images or airborne laser scan data requires a
great deal of manual work.

For solving the problem defined above, we realize a
domain specific modeling language in this project. The DSL's
concrete syntax is defined in a textual form so that the users of
the architects, designers or any other people who work on

building modeling do not have to deal with complex 3D
models manually.

The domain specific language is defined by means of meta-
modeling, for procedurally generating building models. The
meta-modeling process is done using two approaches: MOF-
based from scratch meta-modeling and UML profiling
mechanism. The identified domain concepts that correspond to
entities in these meta-models are based on CGA shape
grammar [9].

To achieve interoperability, increased understandability and
productivity, we also realized two model transformations.
Model-to-text transformation transforms a given model into a
pre-defined XML format that interpreted and then, output
XML file is used to generate 3D building models by another
existing system. Also a model-to-model transformation is
defined that is used to transform given model to a less
complete but more expressive form, a graph model. The
modifications or changes occurring as the result of production
rules are easier to see on a simple planar graph sketch of the
graph model that is produced by model-to-model
transformation.

The paper starts with the domain concepts' descriptions in
section II. Following this, DSL grammar is defined in section
III. In sections IV and V, meta-model instantiated from MOF
and meta-model created by applying UML profiling approach
are described. Concrete syntax definition and example models
are given in Section VI. Model transformation details can be
found in Section VII. Section VIII is about related work done
on procedural modeling of buildings. The paper ends with a
conclusion section.

II. PROCEDURAL BUILDING OF MODELS

Shape: The grammar works with a configuration of shapes:
a shape consists of a string symbol, geometry (geometric
attributes) and numeric attributes. A shape is either a terminal
shape or a non-terminal shape. The most important geometric
attributes are the position P, three orthogonal vectors X, Y, and
Z, describing a coordinate system, and a size vector S. These
attributes define an oriented bounding box in space called
scope (Figure 1). Some of the other geometric attributes of the
shapes can be defined with respect to the associated scope(i.e.
With respect to the local oriented bounding box of the object)

The variability of the number of geometric and numeric
attributes, enables the definition of various shapes with
different geometries.

Figure 1. The scope of a shape

A configuration is a finite set of basic shapes. The
derivation process can start with an arbitrary configuration of
shapes. The initial configuration should, however, include a
number of non-terminal shapes. The derivation process is
composed of a number of steps. At each step, an active non-
terminal shape B is selected in the configuration and an
applying rule with highest probability applied to the selected
shape. At the end of the step, a set of newly created shapes
BNEW is added to the configuration and the shape B is set
inactive. The process continues until there are not any active
non-terminal shapes left in the configuration. A final
configuration contains a number of terminal shapes which
defines the geometry of the generated model. To have finer
control over the derivation process, each rule assigned a
priority. Among the rules that apply to the same shape, the rule
with the highest priority is selected and applied to the shape.
Therefore, the derivation proceeds from low detail to high
detail. Also it is worth to mention that the derivation process
should be a sequential process to allow for the characterization
of the structure i.e. the spatial distribution of features and
components.

Rules

Context-free production rules to transform shapes to other
shapes. The production rules have the following form:

id: predecessor : cond → successor : prob

where id is a unique identifier for the rule, predecessor is a
symbol identifying a non-terminal shape that is to be replaced
with the shape with symbol successor, and “cond” is condition
(logical expression) that has to evaluate to true in order for the
rule to be applied. A rule can have more than one successor
with associated probabilities. The successor rule is selected
with probability prob.

Successor shapes can be defined by five different ways.
The simplest successor shape is just another symbol list
defining a set of successor shapes. Other than that a successor
shape can be defined by one of the following ways.

Scope Rules: Scope rules define transformations on the
scope of the given predecessor shape. A transformation can be

a translation denoted by T(tx, ty, tz), a scaling denoted by S(sx,
sy, sz) or a rotation around one of the three axes denoted by Rx

(angle), Ry(angle) and Rz(angle). By defining a stack, we could
save and restore the current scope by pushing it in to save and
popping it out to restore. In addition to the rules to modify the
scope, an insertion rule creates a given shape with the current
scope. An insertion rule is denoted by I(objId). An example is
given below which defines the shape in Figure 2.

1: A → [T(0,0,6) S(8,10,18) I(”cube”)]T(6,0,0)
S(7,13,18) I(”cube”) T(0,0,16) S(8,15,8) I(”cylinder”)

Figure 2. A simple building mass model composed of three shape primitives

Basic Split Rule: The basic split rule is used to split the
scope of the given shape along one of three axes. The split
sizes and ratios is defined in the rule. For every sub-scope there
are listed a number of successor shapes which are to be put into
the sub-scope. An example split rule is given below.

1: floor → Subdiv(”X”,2,1r,1r,2){ B | A | A | B }

The 'r' symbol states that the defined size is relative and is
proportional to the associated size of the provided scope. The
size parameters without an 'r' symbol are absolute values
independent of the size of the scope of the given shape.

Repeat Rule: A repeat rule splits the scope of the given
shape along the specified axis into equally sized sub-shapes.
The successor shapes are of the same kind given in the body of
the rule. Splits are generated for the given scope as long as
there is space; the minimum size of a split is stated in the rule.
An example repeat rule follows.

1: floor → Repeat(”X”,2){ B }

Component Split Rule: A component split rule splits the
given shape into its lesser dimensional components. The type
of the components to be generated is stated in the rule and can
be one of: “faces”, “edges”, “vertices's” or “side faces”. A
component split rule has the following notation:

1: a → Comp(type, param){ A | B | ... | Z }

The “param” parameter lists the indices of the generated
components that are to be replaced by the listed successor
shapes. If the “param” list is left empty, then all of the
generated components is replaced by the stated successor
shape.

III. DSL GRAMMAR

The domain specific grammar is provided below. The start
symbol is ShapeGrammar that contains a number of
PrioritySet symbols. A PrioritySet has a PriorityID and a set
of ProductionRuleList. ProductionRuleList acts as a list of
ProductionRule symbols. A ProductionRule has a RuleID, a
NonTerminalShape as the predecessor shape, a guard
condition and a SuccesorList which is a list of successor
various types.

We didn't need to give the further explanation for the well
known primitive concepts such as Natural Number, Identifier,
boolean and float.

ShapeGrammer ::= PrioritySet(PrioritySet)*

PrioritySet ::= PriorityID ProductionRuleList

PriorityID ::= Natural Number

ProductionRuleList ::= (ProductionRule)*

ProductionRule ::= RuleID NonTerminalShape (Condition)?
SuccessorList

RuleID ::= Identifier

Condition ::= Boolean Expression

SuccessorList ::= Successor Probability| (SuccesorList)*

Propability ::= float

Successor ::= Shape | ComponentSplitRule | RepeatRule |
ScopeRule | BasicSplitRule

Shape ::= NonTerminalShape | TerminalShape

NonTerminalShape ::= Symbol Scope

TerminalShape ::= EmptyShape | PredefinedShape

EmptyShape ::= E (Empty)

PredefinedShape ::= Symbol Scope FileName

FileName ::= Identifier

Symbol ::= Identifier

Scope ::= X Y Z S P

X ::= Vector

Y ::= Vector

Z ::= Vector

S ::= Vector

P ::= Vector

Vector ::= float float float

ComponentSplitRule::=ComponentSplitType ParameterShapes
ParameterInts

ParameterShapes ::= Shape (Shape)*

ParameterInts ::= (Natural Number)*

ComponentSplitType ::= Identifier

RepeatRule ::= Axis SplitRulePart

Axis ::= Identifier

SplitRulePart ::= Size isRelative Shape

Size ::= float

isRelative ::= boolean

BasicSplitRule ::= Axis SplitRulePart (SplitRulePart)*

ScopeRule ::= ScopeRulePart (ScopeRulePart)*

ScopeRulePart ::= InsertionRule | TranslationRule | ScaleRule |
RotationRule | StackRule

InsertionRule ::= InsertionItem

InsertionItem ::= Shape

TranslationRule ::= TranslationAmount

TranslationAmount ::= Vector

ScaleRule ::= ScaleAmount

ScaleAmount ::= Vector

RotationRule ::= RotationAxes Angle

Angle ::= float

RotationAxes ::= Identifier

StackRule ::= StackParameter

StackParameter ::= ScopeRule

IV. DEFINITION OF META-MODEL BASED ON MOF-FROM SCRATCH

In this section of the paper, the definition of the meta-
model which is defined based on the MOF (Modeling Object
Framework) will be described in detail.

A. Abstract Syntax of the Meta-Model
The abstract syntax of the meta-model is created by using

graphical tools. The representation of the model is very similar
to the UML model.

It is not possible to describe all abstract syntax by once, so
to clarify the diagram which represents the abstract syntax, the
diagram will be divided according to the relations between

elements. Each part will be described separately. The complete
diagram of the ECore meta-model is provided in Appendix A.

Figure 3. A section of the meta-model.

As it can be seen from Figure 3, as a start point shape
grammar concept is selected. A shape grammar has a number
of priority sets. Priority sets are used for defining the priority
relationship between the production rules. A priority set
consists of production rules. Every rule used in this shape
grammar is a production rule.

Production rules have ids, they can have a Boolean
expression as a guarding condition. Also each production rule
has a predecessor which is a non-terminal shape. This non-
terminal shape is converted into the successor shapes. A
successor shape is a component which consists of a number of
rule parts. A rule part is used in the abstract syntax since a
production rule can have more than one successor rules.

Before describing the details of the rules, the Boolean
expression concept should be defined. Figure 4 shows how to
define Boolean expressions which will be used as guards in the
production rules. A Boolean expression can be negated. This
means when the property is negated is set then the neagtion of
the expression should be the result.

Each Boolean expression can be a primitive Boolean
expression which has two types: Occlusion test and basic
Boolean. Basic Boolean is simply the ‘True’ and ‘False’ values
of Boolean concept. The occlusion test has three types of
occlusion which are defined as an enumeration.

A Boolean expression can be a comparison which takes two
float values and compares them by using the comparator sign
provided. Comparator signs are defined by using an
enumeration.

A Composite Boolean expression consists of two Boolean
expressions. It can be used for defining more complex Boolean
expressions by using ‘and’ and ‘or’ connectors.

Figure 4. The boolean expression concept

Successor rule has five different kinds: Substitution rule,
composite split rule, repeat rule, basic split rule and scope
rules. First of all, simple rules will be described. Figure 5
shows the abstract syntax of the rules used in the system.

Component split rules are used when splitting a shape into
shapes of lesser or higher dimensions. The type of a component
split rule is defined as an enumeration. When component split
rule is invoked, the parameter list will hold the indexes of the
components, each component can be assigned to a shape. For
allowing this there is a relationship between component split
rule and shape.

A repeat rule has an axis with which the rule will split the
given shape aligned. It takes the size of the split and the shape
element which is produced at the end of the split.

As it can be understood from its name basic split rule, splits
the given shape into new shapes according to the given size
and can produce shapes of different types. A relative split size
can be given, for differentiating the normal sizes and relative
size a Boolean flag is used.

Figure 5. Five types of successor rule

A substitution rule is another kind of successor rule. The
rule simply substitutes the shape given as predecessor with a

provided shape. To clarify, details of shape is given in Figure
6.

Figure 6. Shape concept

Each shape has a unique symbol. A shape can be terminal
or non-terminal. Terminal shapes can be empty shapes or
predefined shapes. Each predefined shape has a shape
geometry which corresponds to a file name and a path. Non-
terminal shapes are the shapes which are defined as in-between
shapes and eventually they will be converted to terminal
shapes.

Each shape has a number of geometric and numerical
attributes. As shown in Figure 6, a shape has a scope which
consists of five different vectors named: P, X, Y, Z and S. P
gives the reference point of the shape, X, Y and Z is used for
describing a local coordinate system. S is a size vector which is
the size of the scope.

Figure 7. Scope rules

Last production rule defined in the meta-model is scope
rule (Figure 7). Scope rules are used for modifying shapes by
making operations on their scope. These operations consist of

insertion, translation, scaling and rotation. Also there is another
concept called stack rule which will be described in detail.

Insertion takes a shape and inserts it to the current scope.
Translation rule uses a vector for translating the current scope.
Scaling rules take the size of the new scope as a vector.
Rotation rule uses rotation axes which are defined by using
enumeration and angle for rotating the scope.

Stack rules are used for saving the scope temporarily and
restoring it later when it is needed.

B. Static Semantics (OCL)
As it can be seen in the figures of the abstract syntax part,

static semantics of the meta-model is defined by using
annotation boxes.

Inside these boxes the static semantics are defined by using
OCL (Object Constraint Language). These rules ensures the
well formedness of shape grammar models. The constraints
will be given with their explanation below.

Constraint
No

Constraint

1 context RulePart

inv: self.probabilty <=1 and self.probability >0

2 context RotationRule

inv: self.angle >=0 and self.angle<=360

3 context Shape

inv:

if self.oclIsTypeOf(Empty)

then self.scope->size() = 0

else self.scope->size() = 1 endif

4 context ComponentSplitRule

inv:

if self.paramList->size() = 0 then
self.paramShapes->size() = 1

else self.paramList->size() = self.paramShapes-
>size()

endif

5 context ProductionRule

inv:

if self.successors->size() > 1 then
self.successors.probability->sum = 1 endif

Constraint 1 checks the interval of the probabilities. A
probability value can be between 0 and 1 (1 included).

Constraint 2 limits the interval of the angle between 0 and
360.

An empty shape can not have a scope, if it is not an empty
shape, then that shape can only have one scope. This is forced
by Constraint 3.

Constraint 4 states that when a component split rule has no
‘paramList’ element then it has to send all components to the
same shape, otherwise it has to have same number of
`paramShapes` as given in `paramList`. Details can be found
on Figure 5.

The successors of a production rule should have probability
value ‘1’ when they are summed. This is expressed in
Constraint 5.

V. DEFINITION OF META-MODEL USING UML 2.0 PROFILING

In this section, to define the meta-model another method
called ‘UML Profiling’ is used. UML 2.0 profiling is a
mechanism which allows developers to extend and use the
components of UML for developing their own meta-model.

A. Abstract Syntax
In our case, UML profile of the domain is very similar to

the meta-model defined according to MOF from scratch. In
MOF from scratch method we used ECORE elements such as
‘EClass’, ‘EReference’ or ‘EAnnotation’. In UML profiling
‘UML Class’ will be used instead of ‘EClass’. EAnnotation
will not be used instead of that comment boxes of UML can be
used.

Not the whole UML profiling diagram will be described in
detail because it is very similar to the meta-model based on
MOF. Only there are some minor representation differences.
Therefore, a small portion of the meta-model will be presented
for showing the similarities and differences. The complete
diagram of the profile is provided in Appendix B.

Figure 8. Scope rules by UML profiling

The ‘EClass’ corresponds to the stereotypes which are
extended from UML ‘Class’. Generalization relationship is

also same. Constraints are written inside of comment boxes
which are supported by UML.

B. Textual Profile Description
Since the stereotyped classes are instances of UML:Class

entity and there is no tagged value for stereotypes, we didn't
include Base Class and Tags columns in the table. Also
Constraints and Description columns are combined. The table
is provided in Appendix C.

VI. CONCRETE SYNTAX AND EXAMPLE MODELS

A. Concrete Syntax
Our language's concrete syntax is defined in textual form.

Since models' size can be very large and sometimes, recursive
definitions are required, textual representation is the best way
to cope with these problems. If we are to use a graphical
notation, large models would seem complicated and it would
be hard to follow links between the rules and the shapes.

“PRIORITY 1:

<ProductionRules>

PRIORITY 2:

<ProductionRules>“

The whole ShapeGrammar object is defined like the
example above. A ShapeGrammer defines the whole model
and consists of PrioritySets. PrioritySets are defined with
PRIORITY #: where # is an integer defining priority level.
Following the PrioritySet header, the body of the PrioritySet
comes. The body consists of ProductionRules. A PrioritySet
ends with the header of the following PrioritySet.

“PRIORITY 1:

1: <ProductionRule>

2: <ProductionRule>

3: <ProductionRule>“

Each ProductionRule has an identification number. This is
represented as “#: <ProductionRule>”, where # is the
identification number followed by a ':' character.
ProductionRule is written following “#: ” string.

<Predecessor>(:<Condition>)(<SuccessorList>)*

<SuccessorList> ::= ~><Successor> <Probability>|
<SuccesorList>*

This is the structure of a ProductionRule. Predecessor is
followed by a ':' character. Also, Probability is expressed by a
':' character. Probability is a float and represented as Default
English representation such as “5.6” (An integer following a
dot for representing decimal points). The Parenthesis content is
optional and Condition is represented like Boolean expressions

in Java. The followings are examples: a> b, 6<>h(not equal)
or predefined functions like Shape.occ(“all”)==”none”,
Shape.occ(“part”)<>”full”or just true/false.

Terminal shapes have the following representations. If it is
an EmptyShape, it is denoted by ε. PredefinedShape is defined
as Pshape(“*.obj”). PredefinedShape gives reference to the
external Shape object whose file name is *.obj. A NonTerminal
shape is defined with an identifier (called as symbol in abstract
syntaxes). For example, door, wall, window, etc. Each
<Successor><Probability> pair is separated from each other
with a “~>”.

 A Sucessor can be a Shape, or one of the other kinds of
SuccessorRules. ComponentSplitRule, one of the
SuccessorRules is represented like:

CS(<type>,<parameter>){ A| B| C|...Z}

<type> can be “faces”,”edges”,”verticles” or
“sidefaces”. <parameter> is optional and takes an integer
value. The capital letters present the symbol of the resulted
shape as the result of split operation. An example for
ComponentSplitRule can be CS(“edge”, 3){ A}.

RepeatRule is another kind of SuccessorRules. It is denoted
by “RR”. Following this, the axis and division size come. The
structure is formulated as:

RR(<axis>,<size>){ <Shape>}

 <axis> can be X, Y or Z as well as combinations of
these(XY, YZ, XZ or XYZ). <size> can be a float. <Shape>
corresponds to a Shape's symbol. An example of this rule is:
RR(“XY”, 3){ cell}

BasicSplitRule is denoted as “BS”. Like RepeatRule,
BasicSplitRule also takes <axis> as parameter and following
<axis>, split sizes are given.

BS(<axis>, <sizes>){ <ShapeList>}

<sizes> are float values separated by commas. Similarly,
<ShapeList> is a list of Shape symbols separated by commas.
An example can be BS(“XY”, 3, 5, 7){ balcony| floor| door}.

ScopeRule is composed a number of scope rules. The
notation for the individual scope rules is given below.

T(<tx>,<ty>,<tz>) denotes a translation rule. The
translation t vector is defined by three components.

S(<sx>,<sy>,<sz>) denotes a scaling rule. The scaling
factors along the axes are defined by three size values.

R<axis>(<angle>) denotes a rotation rule. <axis> states
the axis around which the rotation is performed. <angle> is the
angle of rotations.

I(<symbol>) denotes an insertion symbol. <symbol> is the
symbol associated with the shape to be inserted.

The push and pop operations are denoted by '[' and ']'
symbols respectively.

B. Example Model 1

The first example model is an instance of shape grammar
defined using concrete syntax described before. The
ShapeGrammar instance is the whole model in Figure 9 and
10. This ShapeGrammer contains two PrioritySets having
priority ids as 1 and 2. PrioritySet 1 has a BasicSplitRule as
the ProductionRule. PrioritySet 2 has the ProductionRules
starting from 2 to 8.

Figure 9. Example model 1-a

In Figure 10, production rule instances are shown. As an
example, ProductionRule 3 has two RuleParts with
probabilities 0.5. First RulePart defines the operation of
splitting NonTerminal shape, facade, into tiles and entrance
through X axis where tiles' length will be 2 and entrance's
length will be 3.

Figure 10. Example model 1-b

C. Example Model 2

This model is the representation of the first PrioritySet
defined in the previous model example using UML profiling
mechanism (Figure 11).

Figure 11. Example model 2 defined using UML profile.

The root is ShapeGrammar1 defined using the stereotype of
ShapeGrammer. PrioritySet1 is using stereotype PritoritySet
and belongs to ShapeGrammar1. PrioritySet1 has
ProductionRule1 as ProductionRule. The footPrint element is
the predecessor of ProductionRule1. BasicSplitRule1 defines
the transformation function of footprint into entrance, tile and
facdes that are all NonTerminals.

VII. MODEL TRANSFORMATIONS

A. Motivation

One of the claims of MDSD is supporting automatic code
generation from models. In procedural building the output of
the transformation of the model that is defined in domain
specific language gives an output (XML for our case) that can
be used by existent model generation tools. So portability of
the model across different tools is provided by model
transformation.

A model can be used to define different buildings since it
involves probabilities of turning the shapes into different kind
of shapes. This means by using this model different kind of
buildings can be generated. Also the ease of updating the
model saves most of the work which should be done by hand.
By model transformation, the user can change the model in
DSL much easier than doing the same job with manually
modifying complex 3D models. This creates the opportunity
of highly increased productivity.

Since the generated models are visualized, it can be used
for architecture lessons. Students can play on the model and
they can see the result on screen. After the model is
transformed into XML file, a game programmer can take this
model use it for creating building models for a game. Also the

models can be changed and transformed automatically to have
different kind of styles.

Another motivation for model transformation is to have
better understandability of the models. Since our concrete
syntax is textual, it saves great time and effort on making
changes. However, a large shape grammar model in textual
form can be difficult to design, understand and/or visualize in
mind. This is due to the mandatory components that are
included in the model such as conditions, different type of rule
components etc. To design and understand the derivation that
a shape grammar produces, on the other hand, a simple
representation is required for visualization of shape grammars.
A simple and explanatory derivation graph for a shape
grammar can be used for this purpose. This derivation graph
simply tells which shapes generate which shapes by which
rules. So a transformation from a shape grammar to a
corresponding graph model would be beneficial.

B. Model-to-Model Transformation

The meta-model for derivation graph is shown is Figure
12. Graph element denotes a derivation graph. Each node, as
in the shape grammar meta-model, stands for a terminal node,
empty node or a non-terminal node. Nodes are connected to
each other with directed rule edges: A non-terminal node has a
number of rule edges which denote the derivation rules that
the node is the predecessor of. A rule edge denotes for a
derivation rule which is a rule part in the shape grammar meta-
model, of a type (component split, basic split, repeat,
substitution) and have the nodes corresponds to the derived
shapes as its target nodes. Rule type is assigned the type of the
rule and ruleId is the id of the production rule of the
corresponding shape grammar.

Figure 12. Derivation graph meta-model

The transformation is achieved using ATL (Atlas
Transformation Language). The complete ATL code can be
found in Appendix D. For the root of the shape grammar
model, which is a ShapeGrammar element, transformation
creates the root Graph element of the output model. This is
perfomred by the rule named “root”. During the
transformation, every shape in the input shape grammar model
is transformed into a node of the associated type in the output
derivation graph model. These are performed by the rules
named “non-terminal-nodes”, “terminal-nodes” and “empty-
nodes”. Through the shape-node transformations, the root
Graph element of the output model is associated with all the
nodes that are generated, which is actually coded in the rule
named “root”. Then we need to generate RuleEdge elements
which correspond to the RulePart elements of the input model;
this transformation is performed by the rule named “rules”.
Note that, there are only the rule edges that correspond to
derivation type of rules defined in the target meta-model; the
scope rules are not cared since they are not derivation rules.
The targetNodes attribute of RuleEdge elements are set with
the shapes that the associated rule generates. The type of the
RuleEdge is set according to the type of the associated rule.
Through the RulePart-RuleEdge transformation, every non-
terminal node is connected to the RuleEdges of which the non-
terminal node is the predecessor, which is actually coded in
the rule named “non-terminal-nodes”. Also a helper rule
named “getTargetNodes” is used to fetch the shapes that are
generated for a rule.

Figure 13. Input model (on the left) vs. output model (on the right).

To demonstrate the defined transformation, an example
input model and the resulting output model is shown in Figure
13. The input model does not have any meaning and only
supplied for demonstration purposes. As can be seen in the
figure, the input shape grammar model include three non-
terminal shapes named “floor”, “corner” and “window”, an
empty shape and a predefined shape named “wall”. For
simplicity, there is only one priority set and three production
rules associated within. Predecessor shapes of the production
rules with id's 0, 1 and 2, are “floor”, “window” and “corner”

shapes respectively. By the production rule with id 0, “floor”
is split into “window” and “wall” shapes. By the production
rule with id 1, “window” is substituted with a “corner” shape.
By the last production rule, a “corner” shape is split into its
components; “wall“and empty shapes are generated.

When the transformation is applied, the output model is
generated (Figure 13). The root Graph element contains all the
nodes that correspond to the shapes defined in the input
model. For every non-terminal node there are rule edges, in
our case one per non-terminal node, which correspond to the
rule parts of the given input model that have the non-terminal
node as predecessor. Lastly, the rule edges are connected to
the nodes that the corresponding rule parts generate. The
resulting derivation graph is better represented by a graph
diagram; after all the purpose of the defined model-to-model
transformation is to promote understandability and the ease of
design. A considerably larger input model would serve the
demonstration of the promoted understandability better since
the shape grammar model would be much more complex in
that case. Besides promoting the understandability, we also
stated that the design of a shape grammar may become easier
using a derivation graph. However, to enable that, we also
need a backward transformation from derivation graph to
shape grammar. Once the draft design of the shape grammar is
done with the help of a derivation graph, we can transform the
resulting graph into an incomplete shape grammar model.
Then the necessary additions and refinements can be
performed on the shape grammar model.

C. Model-to-Text Transformation

In our case, we prefer to transform the model into a XML
file which can be interpreted by another existing system. This
system can transform the XML file into a graphical shape
object which can be viewed by another 3D model viewer. The
target XML file's structure is defined beforehand. The
transformation is designed to conform for this existing system.

The target system does not support some of the
transformation rules. ComponentSplitRule and ScopeRules are
not supported by this system.

The transformation stage needs a source model which is
defined by using the meta-model defined before. On the left
side of Figure 14 overall format of the model is given. A shape
grammar consists of a priority set (normally we have more
than one but this system does not support assigning any
priority of the rules) under this priority set there are rules
shown on the right side of the Figure 14.

Figure 14. Example model for model-to-text transformation

After the model is initiated, the next step is writing the
transformation rules. A `template` which can convert the
current model into another is used. This template mechanism
can be implemented by different languages; one of them is
Xpand of openArchitectureWare. Xpand is used for
transforming the model into the XML file.

Figure 15. Check language example.

There are two stages of the transformation; one of them
controls the model according to the rules written for checking
the integrity of the model. For this purpose `Check` language
form openArchitectureWare is used. Before transforming the
model to target file these rules are executed when there is a
violation happens it stops the transformation. The Check
language is similar to OCL. Some of the rules are given in
Figure 15. These rules are especially written for the current
context. As said before the existing system does not support
some of the features defined in meta-model. These rules are
for checking whether current model is suitable for
transformation or not.

Xpand language brings lots of features with it. One of
them is the aggregation relations are transformed into lists.
Programmer can use this feature for easily traverse the model.
Before describing the transformation rules an example target
XML will be given for clarification of the transformation.

A part of the transformed XML file is in Figure 16. As it
can be seen this format collects the rule under the shapes
which are going to be transformed into another shape. For
example as `BasicSplitRule` is defined by `<Fixed>` tag, we
understand that `Balcony_1` will be transformed into
wall,balcony_center and a wall again according to proportions
for X axis given on the `<xProportions>` tag. The complete
XML file can be found at Appendix E.

Figure 16. Example XML output of transformation.

Xpand language simply reads all the non terminal shapes
under the shape grammar and collects the production rules
which are transforming these shapes to other shapes. Then it
processes each production rule and determines what kind of
transformation rules are there and continues to complete inner
part of the rules according to model definition. First part of
Xpand code that does this operation is given in Figure 17
(Complete Xpand code can be found at Appendix F.).

Figure 17. First part of Xpand code for transformation.

When the engine is fed with the XML that is output of the
transformation, the created 3D building model can be seen in
Figure 18.

Figure 18. Created 3D model for the example source model

VIII. RELATED WORK ON BUILDING MODELING

Previous work related to computationally generating
building and city models demonstrates two major approaches.
One approach is building model reconstruction using remote
sensing and/or computer vision methods. The other approach is
procedurally generating building models.

Reconstruction of city models can be performed by
processing aerial images to extract the buildings and streets,
using computer vision methods [1, 2, 3, and 4]. Another
promising approach is to use range scanning with the help of
laser airborne scanning and other remote sensing methods [5,
6]. Both of these approaches aim to get the models of the real
buildings and real cities. There are quite successful results,
however, there are also some problems related with these
methods. One of the problems is that these methods are not
fully automated. They cannot identify all of the geometric
structures in a city because of the high geometrical variation of
the buildings. Another problem is that city models with high
level of geometric detail can only be constructed if, for every
building in the city, specific data is acquired and processed.
However, photographing or scanning every building in a city
would be quite labor intensive.

Shape processing grammars, mainly L-systems, were
applied to the modeling of streets [7]. Procedural modeling of
buildings is inspired by the shape grammars [11]. The
derivation of general detailed buildings using split grammars
was demonstrated to be highly successful [8]. Split grammars
are a composition of set grammars and shape grammars [11].
Split grammars split or transform 3D shapes to sub shapes that
are included in the volume of the parent shape. Derivation ends
when terminal shapes are derived which represents the building
design. This derivation is steered by the attributes, so specific
building designs and architecture trends could be achieved.
During derivation, a parameter matching system is invoked that
allows the user to specify multiple high-level design goals and
controls randomness to guarantee a consistent output. An idea

of control grammars was introduced that are simple context
free grammars which handle the spatial distribution of design
ideas not randomly, but in an orderly way that corresponds to
architectural principles. CGA Shape grammar is an
improvement over split grammars [9]. CGA Shape grammar
presents context free shape rules and can make use of complex
mass models. Resulting buildings have underlying consistent
mass models and high level of geometric detail. CGA Shape
Grammar rules can be created from building images to
generate a model of an existent building [10]. The meta-model
defined in this work largely follows CGA Shape Grammar.

IX. LESSONS LEARNED AND CONCLUSIONS

In this work we developed the meta-model for procedural
modeling of buildings using MOF for from scratch meta-
modeling and UML 2.* profiling mechanism for the second
way of doing meta-modeling and defining model
transformations for the models that will originate from these
meta-models. We faced some problems and came up with
solutions to these problems not only in modeling and
transformation, but also in the domain analysis part.

For procedural modeling domain, Scope was an extra-
ordinary concept. It is a part of Shape as a domain dependent
concept, but it is not represented in the Concrete Syntax
separately since it is a run-time entity which becomes visible
with the production rules rather than any other explicit
notation. Numeric attributes of Shape creates a similar
situation. In this case, we had to decide whether we should
include Scope and numeric attribute definition as an class
instance and class properties of EClass (of ECore) in the
Abstract Syntax. Note that the meta-model is created for
modeling purpose and automation of the code. Without
defining the scope and numeric attributes in meta-model, the
full automation seems not possible, because these entities are
used and kept in run-time although they have no explicit
declaration or notation. As a general guideline, the meta-
model should be defined as coherently and explicitly as
possible for full automation and validation.

In our case, it was easier doing the meta-modeling from
the scratch compared to the UML profiling. The main reason
was the tool availability and time for expertizing on tools that
we used. For from scratch case, we used ECore meta-meta-
model using Eclipse plug-in which is quite easy to learn and
use for a person who is familiar with the modeling concept.
For UML Profiling, Papyrus is used. Papyrus is a bit buggy
compared to ECore. We expressed the profile in Papyrus, but
Papyrus itself is not enough for defining the profile (to make it
usable for creating models), so Topcased helped us with
defining the profile. Another reason why UML profiling is

more challenging is that it requires enough knowledge on
UML modeling subject.

There is no general standard between tools that leads to
incompatibility of one model across different tools. Each tool
has its own type of file extension, as a result different file
types. Although the important point was the ECore and profile
model itself, diagram files were not able to be opened. The
tools are not only standardized but also not adequate for
supporting full functionality for modeling purpose. For
example, the plug-in we used for ECore was not supporting
UML profiling, so we searched through different tools. and we
did profiling using Papyrus that is a open source modeling
tool.

As we mentioned previously, tools generally do not
support full functionality for modeling. Despite of this fact, we
can surely say optimized tools (tools or just a particular
function) follow good standardization within itself and its
meta meta-model (such as ECore). At first, we spent some
time to get use to these tools, but after that we were impressed
with the high-level support (such as model variation).

After we derived the concepts and relations between these
concepts with the domain analysis, we started with from
scratch part. Comparing the time we spend time on UML
Profiling and MOF instantiated, MOF part took more time
since we came to conclusions about critic and argumentative
points. Following scratch meta-modeling, we created UML
Profile for our project. Since the entities and relations in the
domain are the same and clarified after domain analysis and
discussions, for both cases, in the result, UML Profile was not
so different from the MOF instantiated meta-model.

For our grammar, as it was described in the lessons also,
we couldn't achieve to connect a shape to different rules. The
case exists as the result of the tree structure that grammar is
converted. A tree structure does not allow its leaves to be
connected to the other branches of the tree, the graph structure
has this power on the other hand.

As a last point to mention about the domain is Shape
Grammar is also a grammar itself. Like any grammar, Shape
Grammar also has conversion rules for converting or assigning
values to different symbols, or entities. For the case at hand,
we assign or covert non-terminal shapes to some other shapes
in M1 level initiated from the meta-model in M2 level. This
could lead us to misunderstanding and confusion, but we made
the distinction between M1 and M2 levels very precise at the
end.

For model transformation phase, the first problem that we
faced was about the capabilities of target engine that is
expected to convert XML code to visual 3D building models.
Although our meta-model covers all the functionality
expressed in the procedural building modeling, the tool that
we used for visualization does not support all these

functionalities. So a number of check rules is required to
check the validity of the input model.

The tool, Xpand, which we used for model-to-text
transformation lacks of documentation support. This case
occurred especially for check language. We sometimes found
ourselves in try and fail situation to solve some difficulties
when using Xpand.

 The code generated from transformation in Xpand is in
an untidy form. To apply the correct indentation, it requires
some hard work. So, a beautifier is required. After a while, the
code written for transformation becomes very complicated. To
solve this problem, the syntax of Xpand should be reorganized
and updated.

The models are not much self explanatory for representing
visually outside the tools. This is a common problem for both
Papyrus and ATL. The associations between entities are
defined as properties of objects in the model in textual form
but they are not shown in the figures or list form of the models
with connections between these entities.

For Model-to-model transformation case, we used ATL
that is primarily a declarative language which is appropriate
for the nature of transformations. Due to the endless
possibility of variation of the source and target meta-models,
transformations can be quite complicated. To be able to
support all kinds of transformations, additional expressiveness
is achieved imperative parts of the ATL language. However,
imperative programming in ATL is strongly discouraged. This
is because the virtual machine of ATL does not work on
bindings in any specified order and so browsing the target
model on the fly may produce unintended consequences. The
transformations that are too complex to be easily implemented
by a declarative manner could be achieved by a number of
pipelined transformations instead of a single transformation.
For our experience since we are familiar with imperative
programming, at first, we miserably tried to implement a
transformation that includes considerable amount of
imperative parts. While generating non-terminal shapes, we
tried to browse the rule edges that are generated which did not
work at all. Then we noticed that we could achieve the aimed
information by only browsing the input model and switched to
the pure declarative approach.

Apart from the implementation of the model-to-model
transformation, the transformation should be defined as
precisely as possible. This would require one to know the
source and target meta-models, and the semantics of the
transformation very well. On most of the cases source and
target meta-models are quite different, and, naturally, not all
the information contained in the source model can be
transformed into the target model. The transformation should
only capture and transform all the information of the input
model that is required to be expressed in the output model.
One other point is that the transformation needs to satisfy the
conformance the output model. For our case, since we defined

our target meta-model specifically to represent shape
grammars and the source meta-model in mind, we have a quite
well understanding of the target and source meta-models and
the semantics of the transformation. So the transformation
specification is defined very easily which supports the claimed
facts.

As the final words, we did a well-performed domain
analysis on Shape Grammars and depending on domain
concepts and relations; we defined two complete and stable
meta-models for this domain. These meta-models served as a
reliable basis for the model transformations. For
demonstrating model-to-model and model-to-text
transformations on the defined meta-model, two model
transformations are defined with the motivations of
portability, increased productivity and understandability. The
results shows that the model driven engineering promises a
revolution in software area.

REFERENCES

[1] F. Jung, B. Jedynak, and D. Geman. Recognizing buildings in aerial
images. In Proceedings of the Workshop on Automatic Extraction of
Man-Made Objects from Aerial and Space Images (Ascona’97), pages
173–182, 1997.

[2] Y. Liow and T. Pavlidis. Use of shadows for extracting buildings in
aerial images. Computer Vision, Graphics, and Image Processing
(CVGIP), 49(2):242–277, Feb. 1990.

[3] L. Spreeuwers, K. Schutte, and Z. Houkes. A model driven approach to
extract buildings from multi-view aerial imagery. In Proceedings of the
Workshop on Automatic Extraction of Man-Made Objects from Aerial
and Space Images (Ascona’97), pages 109–118, 1997.

[4] V. Steinhage. On the integration of object modeling and image modeling
in automated building extraction for aerial images. In Proceedings of the
Workshop on Automatic Extraction of Man-Made Objects from Aerial
and Space Images (Ascona’97), pages 139–148, 1997.

[5] N. Haala and C. Brenner. Extraction of buildings and trees in urban
environments. ISPRS Journal of Photogrammetry & Remote Sensing,
54(2-3):130–137, July 1999.

[6] H.-G. Maas and G. Vosselman. Two algorithms for extracting building
models from raw laser altimetry data. ISPRS Journal of
Photogrammetry and Remote Sensing, 54(2/3):153–163, July 1999.

[7] Y. I. Parish and P. Müller. Procedural modeling of cities. In ACM
Computer Graphics (Proceedings of SIGGRAPH ’01), pages 301–308,
2001.

[8] P. Wonka, M. Wimmer, F. Sillion, and W. Ribarsky. Instant
architecture. ACM Transactions on Graphics (Proceedings of
SIGGRAPH ’03), 22(3):669–677, 2003.

[9] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. V. Gool. Procedural
modeling of buildings. ACM Transactions on Graphics (Proceedings of
SIGGRAPH ’06), 25(3):614–623, 2006.

[10] P. Müller, G. Zeng, P. Wonka, and L. Van Gool. Image-based
procedural modeling of facades. ACM Transactions on Graphics
(Proceedings of SIGGRAPH’07), 26(3), Article no. 85, 2007.

[11] Stiny, G. 1980. Introduction to shape and shape grammars. Environment
and Planning B 7, 343–361.

APPENDIX A

Diagram of the meta-model realized using ECore.

APPENDIX B

Diagram of the meta-model realized UML profiling.

APPENDIX C

Textual representation of the UML profile.

APPENDIX D

ATL transformation code.

APPENDIX E

Complete XML output of model-to-text transformation

APPENDIX F

Complete Xpand code for model-to-text transformation

	I. Introduction
	II. Procedural buıldıng of models
	III. DSL Grammar
	IV. Definition of meta-model Based on Mof-from Scratch
	A. Abstract Syntax of the Meta-Model
	B. Static Semantics (OCL)

	V. Definition of Meta-model Using Uml 2.0 Profiling
	A. Abstract Syntax
	B. Textual Profile Description

	VI. Concrete Syntax and Example Models
	A. Concrete Syntax
	B. Example Model 1
	C. Example Model 2

	VII. Model transformatıons
	A. Motivation
	B. Model-to-Model Transformation
	C. Model-to-Text Transformation

	VIII. Related Work on Building Modeling
	IX. Lessons learned and conclusions

