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Abstract— To construct virtual city models, sufficiently detailed 
and variously styled building models  are required.  Traditional 
production of such models demands extensive manual work and 
time.  This  process  could  be  automated  using  the  procedural 
methods. The aim of this work is to realize a DSL for procedural 
building modeling. Two approaches, a MOF based from-scratch 
approach and UML2 profiling, are applied to define the meta-
model  of the intended DSL. Moving from this  DSL,  model-to-
model  and  model-to-text  transformations  are  done  using  ATL 
and Xpand languages.      
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Text  Transformation;  Model-to-Model  Transformation.  ATL;  
openArchitectureWare Xpand.

I.  INTRODUCTION

Modeling  and  visualization  of  large  and  complex 
environments is a popular research area in computer graphics. 
Recent  developments  in  processors  and  graphics  cards,  the 
amount of available memory, and the development of computer 
graphics  modeling and rendering techniques  facilitate  to run 
high quality simulations. To this end, virtual cities should be 
modeled in order to be used in such simulations. 

One  major  component  of  a  virtual  city  that  affects  the 
realism  is  the  building  models.  In  a  virtual  city,  building 
models should have a high level  of geometric  detail  and be 
consistent  with  the  architectural  style  of  the  virtual 
environment.  Today’s  machine  capabilities  facilitate  the 
visualization  of  both  large  and  complex  3D  models. 
Applications cover a large spectrum, from military training and 
city planning to video games and tourism. Modeling exactly 
existent cities to be used in such applications can be tedious 
and  is  not  intended  in  this  work.  Modeling  each  and  every 
building in detail by hand using 3D models is inefficient, even 
the use of aerial images or airborne laser scan data requires a 
great deal of manual work. 

For  solving  the  problem  defined  above,  we  realize  a 
domain specific modeling language in this project. The DSL's 
concrete syntax is defined in a textual form so that the users of 
the  architects,  designers  or  any  other  people  who  work  on 

building  modeling  do  not  have  to  deal  with  complex  3D 
models manually.  

The domain specific language is defined by means of meta-
modeling,  for  procedurally  generating  building  models.  The 
meta-modeling process is done using two approaches:  MOF-
based  from  scratch  meta-modeling  and  UML  profiling 
mechanism. The identified domain concepts that correspond to 
entities  in  these  meta-models  are  based  on  CGA  shape 
grammar [9].

To achieve interoperability, increased understandability and 
productivity,  we  also  realized  two  model  transformations. 
Model-to-text transformation transforms a given model into a 
pre-defined  XML  format  that  interpreted  and  then,  output 
XML file is used to generate 3D building models by another 
existing  system.  Also  a  model-to-model  transformation  is 
defined  that  is  used  to  transform  given  model  to  a  less 
complete  but  more  expressive  form,  a  graph  model.  The 
modifications or changes occurring as the result of production 
rules are easier to see on a simple planar graph sketch of the 
graph  model  that  is  produced  by  model-to-model 
transformation. 

The paper starts with the domain concepts' descriptions in 
section II. Following this, DSL grammar is defined in section 
III. In sections IV and V, meta-model instantiated from MOF 
and meta-model created by applying UML profiling approach 
are described. Concrete syntax definition and example models 
are given in Section VI. Model transformation details can be 
found in Section VII. Section VIII is about related work  done 
on procedural  modeling of buildings.  The paper ends with a 
conclusion section.

II. PROCEDURAL BUILDING OF MODELS

Shape: The grammar works with a configuration of shapes: 
a  shape  consists  of  a  string  symbol,  geometry  (geometric 
attributes) and numeric attributes. A shape is either a terminal 
shape or a non-terminal shape. The most important geometric 
attributes are the position P, three orthogonal vectors X, Y, and 
Z, describing a coordinate system, and a size vector S. These 
attributes  define  an  oriented  bounding  box  in  space  called 
scope (Figure 1). Some of the other geometric attributes of the 
shapes can be defined with respect to the associated scope(i.e. 
With respect to the local oriented bounding box of the object) 



The  variability  of  the  number  of  geometric  and  numeric 
attributes,  enables  the  definition  of  various  shapes  with 
different geometries.

Figure 1. The scope of a shape

A  configuration is  a  finite  set  of  basic  shapes.  The 
derivation process can start with an arbitrary configuration of 
shapes.  The  initial  configuration  should,  however,  include  a 
number  of  non-terminal  shapes.  The  derivation  process  is 
composed of a number of steps. At each step, an active non-
terminal  shape  B  is  selected  in  the  configuration  and  an 
applying rule with highest probability applied to the selected 
shape. At the end of the step, a set of newly created shapes 
BNEW is added to the configuration and the shape B is set 
inactive. The process continues until there are not any active 
non-terminal  shapes  left  in  the  configuration.  A  final 
configuration  contains  a  number  of  terminal  shapes  which 
defines  the geometry of the generated model.  To have finer 
control  over  the  derivation  process,  each  rule  assigned  a 
priority. Among the rules that apply to the same shape, the rule 
with the highest priority is selected and applied to the shape. 
Therefore,  the  derivation  proceeds  from  low  detail  to  high 
detail. Also it is worth to mention that the derivation process 
should be a sequential process to allow for the characterization 
of  the  structure  i.e.  the  spatial  distribution  of  features  and 
components.

Rules

Context-free production rules to transform shapes to other 
shapes. The production rules have the following form:

id: predecessor : cond → successor : prob

where id is a unique identifier for the rule, predecessor is a 
symbol identifying a non-terminal shape that is to be replaced 
with the shape with symbol successor, and “cond” is condition 
(logical expression) that has to evaluate to true in order for the 
rule to be applied. A rule can have more than one successor 
with  associated  probabilities.  The  successor  rule  is  selected 
with probability prob.

Successor  shapes  can  be defined  by five different  ways. 
The  simplest  successor  shape  is  just  another  symbol  list 
defining a set of successor shapes.  Other than that a successor 
shape can be defined by one of the following ways.

Scope  Rules: Scope  rules  define  transformations  on  the 
scope of the given predecessor shape. A transformation can be 

a translation denoted by T(tx, ty, tz), a scaling denoted by S(sx, 
sy, sz) or a rotation around one of the three axes denoted by Rx 

(angle), Ry(angle) and Rz(angle). By defining a stack, we could 
save and restore the current scope by pushing it in to save and 
popping it out to restore. In addition to the rules to modify the 
scope, an insertion rule creates a given shape with the current 
scope. An insertion rule is denoted by I(objId). An example is 
given below which defines the shape in Figure 2.

1:  A  →  [  T(0,0,6)  S(8,10,18)  I(”cube”)  ]T(6,0,0)  
S(7,13,18) I(”cube”) T(0,0,16) S(8,15,8) I(”cylinder”)

Figure 2.  A simple building mass model composed of three shape primitives

Basic Split Rule: The basic split rule is used to split the 
scope of the given shape along one of three axes.  The split 
sizes and ratios is defined in the rule. For every sub-scope there 
are listed a number of successor shapes which are to be put into 
the sub-scope. An example split rule is given below.

1: floor → Subdiv(”X”,2,1r,1r,2){ B | A | A | B }

The 'r' symbol states that the defined size is relative and is 
proportional to the associated size of the provided scope. The 
size  parameters  without  an  'r'  symbol  are  absolute  values 
independent of the size of the scope of the given shape. 

Repeat Rule: A repeat rule splits the scope of the given 
shape along the specified axis into equally sized sub-shapes. 
The successor shapes are of the same kind given in the body of 
the rule.  Splits are generated for the given scope as long as 
there is space; the minimum size of a split is stated in the rule. 
An example repeat rule follows.

1: floor → Repeat(”X”,2){ B } 

Component Split Rule: A component split rule splits the 
given shape into its lesser dimensional components. The type 
of the components to be generated is stated in the rule and can 
be  one  of:  “faces”,  “edges”,  “vertices's”  or  “side  faces”.  A 
component split rule has the following notation:

1: a → Comp(type, param){ A | B | ... | Z }

The “param” parameter  lists  the indices of the generated 
components  that  are  to  be  replaced  by  the  listed  successor 
shapes.  If  the  “param”  list  is  left  empty,  then  all  of  the 
generated  components  is  replaced  by  the  stated  successor 
shape.



III. DSL GRAMMAR

The domain specific grammar is provided below. The start 
symbol  is  ShapeGrammar  that  contains  a  number  of 
PrioritySet symbols. A PrioritySet has a PriorityID and a set 
of  ProductionRuleList.  ProductionRuleList  acts  as  a  list  of 
ProductionRule symbols.  A ProductionRule has a RuleID,  a 
NonTerminalShape  as  the  predecessor  shape,  a  guard 
condition  and  a  SuccesorList  which  is  a  list  of  successor 
various types.

We didn't need to give the further explanation for the well 
known primitive concepts such as Natural Number, Identifier, 
boolean and float.  

ShapeGrammer ::= PrioritySet(PrioritySet)*

PrioritySet ::=  PriorityID ProductionRuleList

PriorityID ::= Natural Number

ProductionRuleList ::= (ProductionRule)*

ProductionRule  ::=  RuleID  NonTerminalShape  (Condition)?  
SuccessorList

RuleID ::= Identifier

Condition ::= Boolean Expression

SuccessorList ::= Successor Probability| (SuccesorList)*

Propability ::= float

Successor  ::=  Shape  |  ComponentSplitRule  |  RepeatRule  |  
ScopeRule | BasicSplitRule

Shape ::= NonTerminalShape | TerminalShape 

NonTerminalShape ::= Symbol Scope

TerminalShape ::= EmptyShape | PredefinedShape

EmptyShape ::= E ( Empty)

PredefinedShape ::= Symbol Scope FileName

FileName ::= Identifier

Symbol ::= Identifier

Scope ::= X Y Z S P

X ::= Vector

Y ::= Vector

Z ::= Vector

S ::= Vector

P ::= Vector

Vector ::= float float float

ComponentSplitRule::=ComponentSplitType  ParameterShapes 
ParameterInts

ParameterShapes ::= Shape (Shape)*

ParameterInts ::= ( Natural Number)*

ComponentSplitType ::= Identifier

RepeatRule ::= Axis SplitRulePart

Axis ::= Identifier

SplitRulePart ::= Size isRelative Shape

Size ::= float

isRelative ::= boolean

BasicSplitRule ::= Axis SplitRulePart  (SplitRulePart)*

ScopeRule ::= ScopeRulePart (ScopeRulePart)*

ScopeRulePart ::= InsertionRule | TranslationRule | ScaleRule |  
RotationRule | StackRule

InsertionRule ::= InsertionItem

InsertionItem ::= Shape

TranslationRule ::= TranslationAmount

TranslationAmount ::= Vector

ScaleRule ::= ScaleAmount

ScaleAmount ::= Vector

RotationRule ::= RotationAxes Angle

Angle ::= float

RotationAxes ::= Identifier

StackRule ::= StackParameter

StackParameter ::= ScopeRule

IV. DEFINITION OF META-MODEL BASED ON MOF-FROM SCRATCH

In  this  section  of  the  paper,  the  definition  of  the  meta-
model which is defined based on the MOF (Modeling Object 
Framework) will be described in detail.  

A. Abstract Syntax of the Meta-Model
The abstract syntax of the meta-model is created by using 

graphical tools. The representation of the model is very similar 
to the UML model. 

It is not possible to describe all abstract syntax by once, so 
to clarify the diagram which represents the abstract syntax, the 
diagram  will  be  divided  according  to  the  relations  between 



elements. Each part will be described separately. The complete 
diagram of the ECore meta-model is provided in Appendix A.

Figure 3. A section of the meta-model.

As it  can  be  seen from Figure  3,  as  a  start  point  shape 
grammar concept is selected. A shape grammar has a number 
of priority sets. Priority sets are used for defining the priority 
relationship  between  the  production  rules.  A  priority  set 
consists  of  production  rules.  Every  rule  used  in  this  shape 
grammar is a production rule.

Production  rules  have  ids,  they  can  have  a  Boolean 
expression as a guarding condition. Also each production rule 
has  a  predecessor  which is  a  non-terminal  shape.  This  non-
terminal  shape  is  converted  into  the  successor  shapes.  A 
successor shape is a component which consists of a number of 
rule parts.  A rule part  is  used in the abstract  syntax since a 
production rule can have more than one successor rules.

Before  describing  the  details  of  the  rules,  the  Boolean 
expression concept should be defined. Figure 4 shows how to 
define Boolean expressions which will be used as guards in the 
production rules. A Boolean expression can be negated. This 
means when the property is negated is set then the neagtion of 
the expression should be the result. 

Each  Boolean  expression  can  be  a  primitive  Boolean 
expression  which  has  two  types:  Occlusion  test  and  basic 
Boolean. Basic Boolean is simply the ‘True’ and ‘False’ values 
of  Boolean  concept.  The  occlusion  test  has  three  types  of 
occlusion which are defined as an enumeration.

A Boolean expression can be a comparison which takes two 
float values and compares them by using the comparator sign 
provided.  Comparator  signs  are  defined  by  using  an 
enumeration.

A Composite Boolean expression consists of two Boolean 
expressions. It can be used for defining more complex Boolean 
expressions by using ‘and’ and ‘or’ connectors.

Figure 4. The boolean expression concept

Successor  rule  has five different  kinds:  Substitution rule, 
composite  split  rule,  repeat  rule,  basic  split  rule  and  scope 
rules.  First  of  all,  simple  rules  will  be  described.  Figure  5 
shows the abstract syntax of the rules used in the system.

Component split rules are used when splitting a shape into 
shapes of lesser or higher dimensions. The type of a component 
split rule is defined as an enumeration. When component split 
rule is invoked, the parameter list will hold the indexes of the 
components, each component can be assigned to a shape. For 
allowing this there is a relationship between component split 
rule and shape.

A repeat rule has an axis with which the rule will split the 
given shape aligned. It takes the size of the split and the shape 
element which is produced at the end of the split.

As it can be understood from its name basic split rule, splits 
the given shape into new shapes according to the given size 
and can produce shapes of different types. A relative split size 
can be given, for differentiating the normal sizes and relative 
size a Boolean flag is used.  

Figure 5. Five types of successor rule

A substitution rule is another kind of successor rule. The 
rule simply substitutes the shape given as predecessor with a 



provided shape. To clarify, details of shape is given in Figure 
6. 

Figure 6. Shape concept

Each shape has a unique symbol. A shape can be terminal 
or  non-terminal.  Terminal  shapes  can  be  empty  shapes  or 
predefined  shapes.  Each  predefined  shape  has  a  shape 
geometry which corresponds to a file name and a path. Non-
terminal shapes are the shapes which are defined as in-between 
shapes  and  eventually  they  will  be  converted  to  terminal 
shapes. 

Each  shape  has  a  number  of  geometric  and  numerical 
attributes. As shown in Figure 6, a shape has a scope which 
consists of five different vectors named: P, X, Y, Z and S. P 
gives the reference point of the shape, X, Y and Z is used for 
describing a local coordinate system. S is a size vector which is 
the size of the scope.

Figure 7. Scope rules

Last  production rule  defined  in  the  meta-model  is  scope 
rule (Figure 7). Scope rules are used for modifying shapes by 
making operations on their scope. These operations consist of 

insertion, translation, scaling and rotation. Also there is another 
concept called stack rule which will be described in detail.

Insertion takes a shape and inserts it to the current scope. 
Translation rule uses a vector for translating the current scope. 
Scaling  rules  take  the  size  of  the  new  scope  as  a  vector. 
Rotation rule  uses  rotation axes  which are defined by using 
enumeration and angle for rotating the scope. 

Stack rules are used for saving the scope temporarily and 
restoring it later when it is needed. 

B. Static Semantics (OCL)
As it can be seen in the figures of the abstract syntax part, 

static  semantics  of  the  meta-model  is  defined  by  using 
annotation boxes. 

Inside these boxes the static semantics are defined by using 
OCL (Object  Constraint  Language).  These  rules  ensures  the 
well  formedness  of  shape  grammar  models.  The  constraints 
will be given with their explanation below.

Constraint 
No

Constraint

1 context RulePart 

inv: self.probabilty <=1 and self.probability >0

2 context RotationRule 

inv: self.angle >=0 and self.angle<=360

3 context Shape 

inv: 

if self.oclIsTypeOf(Empty) 

then self.scope->size() = 0 

else self.scope->size() = 1 endif

4 context ComponentSplitRule

inv: 

if  self.paramList->size()  =  0  then 
self.paramShapes->size() = 1 

else  self.paramList->size()  =  self.paramShapes-
>size() 

endif

5 context ProductionRule 

inv: 

if  self.successors->size()  >  1  then 
self.successors.probability->sum = 1 endif



Constraint  1  checks  the  interval  of  the  probabilities.  A 
probability value can be between 0 and 1 (1 included).

Constraint 2 limits the interval of the angle between 0 and 
360. 

An empty shape can not have a scope, if it is not an empty 
shape, then that shape can only have one scope. This is forced 
by Constraint 3.

Constraint 4 states that when a component split rule has no 
‘paramList’ element then it has to send all components to the 
same  shape,  otherwise  it  has  to  have  same  number  of 
`paramShapes` as given in `paramList`. Details can be found 
on Figure 5. 

The successors of a production rule should have probability 
value  ‘1’  when  they  are  summed.  This  is  expressed  in 
Constraint 5.

V. DEFINITION OF META-MODEL USING UML 2.0 PROFILING

In  this section, to define the meta-model another method 
called  ‘UML  Profiling’  is  used.  UML  2.0  profiling  is  a 
mechanism  which  allows  developers  to  extend  and  use  the 
components of UML for developing their own meta-model.

A. Abstract Syntax
In our case, UML profile of the domain is very similar to 

the meta-model  defined  according  to  MOF from scratch.  In 
MOF from scratch method we used ECORE elements such as 
‘EClass’,  ‘EReference’  or  ‘EAnnotation’.  In  UML profiling 
‘UML Class’  will  be used instead of  ‘EClass’.  EAnnotation 
will not be used instead of that comment boxes of UML can be 
used.

Not the whole UML profiling diagram will be described in 
detail because it  is very similar to the meta-model based on 
MOF. Only there are some minor representation differences. 
Therefore, a small portion of the meta-model will be presented 
for  showing  the  similarities  and  differences.  The  complete 
diagram of the profile is provided in Appendix B.

Figure 8. Scope rules by UML profiling

The  ‘EClass’  corresponds  to  the  stereotypes  which  are 
extended  from  UML  ‘Class’.  Generalization  relationship  is 

also same.  Constraints  are  written  inside of  comment  boxes 
which are supported by UML.

B. Textual Profile Description
Since the stereotyped classes are instances of UML:Class 

entity and there is no tagged value for stereotypes, we didn't 
include  Base  Class and  Tags  columns  in  the  table.  Also 
Constraints and Description columns are combined. The table 
is provided in Appendix C.

VI. CONCRETE SYNTAX AND EXAMPLE MODELS

A. Concrete Syntax
Our language's concrete syntax is defined in textual form. 

Since models' size can be very large and sometimes, recursive 
definitions are required, textual representation is the best way 
to  cope  with  these  problems.  If  we  are  to  use  a  graphical 
notation, large models would seem complicated and it would 
be hard to follow links between the rules and the shapes.

“PRIORITY 1:

<ProductionRules>

PRIORITY 2:

<ProductionRules>“

The  whole  ShapeGrammar  object  is  defined  like  the 
example  above.  A ShapeGrammer  defines  the  whole  model 
and  consists  of  PrioritySets.  PrioritySets  are  defined  with 
PRIORITY  #:  where  #  is  an  integer  defining  priority  level. 
Following the PrioritySet  header,  the body of the PrioritySet 
comes.  The body consists of  ProductionRules.  A PrioritySet 
ends with the header of the following PrioritySet.

“PRIORITY 1:

1: <ProductionRule>

2: <ProductionRule>

3: <ProductionRule>“

Each ProductionRule has an identification number. This is 
represented  as “#:  <ProductionRule>”,  where  #  is  the 
identification  number  followed  by  a  ':' character. 
ProductionRule is written following “#: ” string.

<Predecessor>(:<Condition>)(<SuccessorList>)*

<SuccessorList>  ::=  ~><Successor>  <Probability>|  
<SuccesorList>*

This  is  the structure  of  a  ProductionRule.  Predecessor  is 
followed by a ':' character. Also, Probability is expressed by a 
':'  character. Probability is a float and represented as Default 
English representation such as “5.6” (An integer following a 
dot for representing decimal points). The Parenthesis content is 
optional and Condition is represented like Boolean expressions 



in Java. The followings are examples: a> b, 6<>h( not equal) 
or  predefined  functions  like  Shape.occ(“all”)==”none”,  
Shape.occ(“part”)<>”full”or just true/false. 

Terminal shapes have the following representations. If it is 
an EmptyShape, it is denoted by ε. PredefinedShape is defined 
as  Pshape(“*.obj”). PredefinedShape  gives  reference  to  the 
external Shape object whose file name is *.obj. A NonTerminal 
shape is defined with an identifier (called as symbol in abstract 
syntaxes).  For  example,  door,  wall,  window,  etc.  Each 
<Successor><Probability> pair is separated from each other 
with a “~>”. 

  A Sucessor can be a Shape, or one of the other kinds of 
SuccessorRules.  ComponentSplitRule,  one  of  the 
SuccessorRules is represented like:

CS( <type>,<parameter>){ A| B| C|...Z} 

<type> can  be  “faces”,”edges”,”verticles” or 
“sidefaces”.  <parameter> is  optional  and  takes  an  integer 
value.  The capital  letters  present  the symbol  of  the resulted 
shape  as  the  result  of  split  operation.  An  example  for 
ComponentSplitRule can be CS( “edge”, 3){ A}.

RepeatRule is another kind of SuccessorRules. It is denoted 
by “RR”. Following this, the axis and division size come. The 
structure is formulated as:

RR( <axis>,<size>){ <Shape>}

   <axis> can be X, Y or Z as well as combinations of 
these( XY, YZ, XZ or XYZ). <size> can be a float. <Shape> 
corresponds to a Shape's symbol. An example of this rule is: 
RR( “XY”, 3){ cell}

BasicSplitRule  is  denoted  as  “BS”.   Like  RepeatRule, 
BasicSplitRule also takes  <axis>  as parameter and following 
<axis>, split sizes are given. 

BS( <axis>, <sizes>){ <ShapeList>}

<sizes> are float values separated by commas. Similarly, 
<ShapeList> is a list of Shape symbols separated by commas. 
An example can be BS( “XY”, 3, 5, 7){ balcony| floor| door}.

ScopeRule  is  composed  a  number  of  scope  rules.  The 
notation for the individual scope rules is given below.

T(<tx>,<ty>,<tz>) denotes  a  translation  rule.  The 
translation t vector is defined by three components.

S(<sx>,<sy>,<sz>) denotes  a  scaling  rule.  The  scaling 
factors along the axes are defined by three size values.

R<axis>(<angle>) denotes a rotation rule.  <axis> states 
the axis around which the rotation is performed. <angle> is the 
angle of rotations. 

I(<symbol>) denotes an insertion symbol. <symbol> is the 
symbol associated with the shape to be inserted. 

The  push  and  pop  operations  are  denoted  by '['  and ']' 
symbols respectively.

B. Example Model 1

The first example model is an instance of shape grammar 
defined  using  concrete  syntax  described  before.  The 
ShapeGrammar instance is the whole model in Figure 9 and 
10.  This  ShapeGrammer  contains  two  PrioritySets  having 
priority ids as 1 and 2. PrioritySet 1 has a BasicSplitRule as 
the  ProductionRule.  PrioritySet  2  has  the  ProductionRules 
starting from 2 to 8.    

Figure 9. Example model 1-a

In  Figure  10,  production rule  instances  are  shown.  As  an 
example,  ProductionRule  3  has  two  RuleParts  with 
probabilities  0.5.  First  RulePart  defines  the  operation  of 
splitting NonTerminal  shape,  facade,  into tiles  and entrance 
through X axis  where  tiles'  length  will  be  2  and entrance's 
length will be 3.  

Figure 10. Example model 1-b 



C. Example Model 2

This  model  is  the  representation  of  the  first  PrioritySet 
defined in the previous model example using UML profiling 
mechanism (Figure 11).   

Figure 11. Example model 2 defined using UML profile.

The root is ShapeGrammar1 defined using the stereotype of 
ShapeGrammer.  PrioritySet1  is  using stereotype  PritoritySet 
and  belongs  to  ShapeGrammar1.  PrioritySet1  has 
ProductionRule1 as ProductionRule. The footPrint element is 
the predecessor of ProductionRule1. BasicSplitRule1 defines 
the transformation function of footprint into entrance, tile and 
facdes that are all NonTerminals. 

VII. MODEL TRANSFORMATIONS

A. Motivation

One of the claims of MDSD is supporting automatic code 
generation from models. In procedural building the output of 
the  transformation  of  the  model  that  is  defined  in  domain 
specific language gives an output (XML for our case) that can 
be used by existent model generation tools. So portability of 
the  model  across  different  tools  is  provided  by  model 
transformation. 

A model can be used to define different buildings since it 
involves probabilities of turning the shapes into different kind 
of shapes. This means by using this model different kind of 
buildings  can  be  generated.  Also  the  ease  of  updating  the 
model saves most of the work which should be done by hand. 
By model transformation,  the user can change the model in 
DSL  much  easier  than  doing  the  same  job  with  manually 
modifying complex 3D models. This creates the opportunity 
of highly increased productivity. 

Since the generated models are visualized, it can be used 
for architecture lessons. Students can play on the model and 
they  can  see  the  result  on  screen.  After  the  model  is 
transformed into XML file, a game programmer can take this 
model use it for creating building models for a game. Also  the 

models can be changed and transformed automatically to have 
different kind of styles.

Another  motivation  for  model  transformation  is  to  have 
better  understandability  of  the  models.  Since  our  concrete 
syntax  is  textual,  it  saves  great  time and  effort  on  making 
changes.  However,  a  large shape grammar model in textual 
form can be difficult to design, understand and/or visualize in 
mind.  This  is  due  to  the  mandatory  components  that  are 
included in the model such as conditions, different type of rule 
components etc. To design and understand the derivation that 
a  shape  grammar  produces,  on  the  other  hand,  a  simple 
representation is required for visualization of shape grammars. 
A  simple  and  explanatory  derivation  graph  for  a  shape 
grammar can be used for this purpose. This derivation graph 
simply  tells  which  shapes  generate  which  shapes  by which 
rules.  So  a  transformation  from  a  shape  grammar  to  a 
corresponding graph model would be beneficial.

B. Model-to-Model Transformation

The meta-model for derivation graph is  shown is Figure 
12. Graph element denotes a derivation graph. Each node, as 
in the shape grammar meta-model, stands for a terminal node, 
empty node or a non-terminal node. Nodes are connected to 
each other with directed rule edges: A non-terminal node has a 
number of rule edges which denote the derivation rules that 
the  node  is  the  predecessor  of.  A  rule  edge  denotes  for  a 
derivation rule which is a rule part in the shape grammar meta-
model,  of  a  type  (component  split,  basic  split,  repeat, 
substitution)  and have the nodes corresponds to the derived 
shapes as its target nodes. Rule type is assigned the type of the 
rule  and  ruleId  is  the  id  of  the  production  rule  of  the 
corresponding shape grammar.

Figure 12. Derivation graph meta-model



The  transformation  is  achieved  using  ATL  (Atlas 
Transformation Language).  The complete ATL code can be 
found  in  Appendix  D.  For  the  root  of  the  shape  grammar 
model,  which  is  a  ShapeGrammar  element,  transformation 
creates the root Graph element of the output model. This is 
perfomred  by  the  rule  named  “root”.  During  the 
transformation, every shape in the input shape grammar model 
is transformed into a node of the associated type in the output 
derivation  graph  model.  These  are  performed  by  the  rules 
named  “non-terminal-nodes”,  “terminal-nodes”  and  “empty-
nodes”.  Through  the  shape-node  transformations,  the  root 
Graph element of the output model is associated with all the 
nodes that are generated, which is actually coded in the rule 
named “root”. Then we need to generate RuleEdge elements 
which correspond to the RulePart elements of the input model; 
this transformation is  performed by the rule  named “rules”. 
Note  that,  there  are  only  the  rule  edges  that  correspond  to 
derivation type of rules defined in the target meta-model; the 
scope rules are not cared since they are not derivation rules. 
The targetNodes attribute of RuleEdge elements are set with 
the shapes that the associated rule generates. The type of the 
RuleEdge is set according to the type of the associated rule. 
Through  the  RulePart-RuleEdge  transformation,  every  non-
terminal node is connected to the RuleEdges of which the non-
terminal node is the predecessor,  which is actually coded in 
the  rule  named  “non-terminal-nodes”.  Also  a  helper  rule 
named “getTargetNodes” is used to fetch the shapes that are 
generated for a rule. 

Figure 13. Input model (on the left) vs. output model (on the right).

To  demonstrate  the  defined  transformation,  an  example 
input model and the resulting output model is shown in Figure 
13.  The  input  model  does  not  have  any  meaning  and  only 
supplied for demonstration purposes.  As can be seen in the 
figure,  the  input  shape  grammar  model  include  three non-
terminal  shapes  named “floor”,  “corner”  and  “window”,  an 
empty  shape  and  a  predefined  shape  named  “wall”.  For 
simplicity, there is only one priority set and three production 
rules associated within. Predecessor shapes of the production 
rules with id's 0, 1 and 2, are “floor”, “window” and “corner” 

shapes respectively. By the production rule with id 0, “floor” 
is split into “window” and “wall” shapes.  By the production 
rule with id 1, “window” is substituted with a “corner” shape. 
By the last production rule, a “corner” shape is split into its 
components; “wall“and empty shapes are generated. 

When the transformation is  applied,  the output model is 
generated (Figure 13). The root Graph element contains all the 
nodes  that  correspond to  the  shapes  defined  in  the  input 
model. For every non-terminal node there are rule edges,  in 
our case one per non-terminal node, which correspond to the 
rule parts of the given input model that have the non-terminal 
node as predecessor.  Lastly,  the rule edges are connected to 
the  nodes  that  the  corresponding  rule  parts  generate.  The 
resulting  derivation  graph  is  better  represented  by  a  graph 
diagram; after all the purpose of the defined model-to-model 
transformation is to promote understandability and the ease of 
design.  A considerably  larger  input  model  would  serve  the 
demonstration of the promoted understandability better since 
the shape grammar model would be much more complex in 
that  case.  Besides  promoting  the  understandability,  we also 
stated that the design of a shape grammar may become easier 
using  a  derivation  graph.  However,  to  enable  that,  we  also 
need  a  backward  transformation  from  derivation  graph  to 
shape grammar. Once the draft design of the shape grammar is 
done with the help of a derivation graph, we can transform the 
resulting  graph  into  an  incomplete  shape  grammar  model. 
Then  the  necessary  additions  and  refinements  can  be 
performed on the shape grammar model.

C. Model-to-Text Transformation

In our case, we prefer to transform the model into a XML 
file which can be interpreted by another existing system. This 
system  can  transform  the  XML file  into  a  graphical  shape 
object which can be viewed by another 3D model viewer. The 
target  XML  file's  structure  is  defined  beforehand.  The 
transformation is designed to conform for this existing system.

The  target  system  does  not  support  some  of  the 
transformation rules. ComponentSplitRule and ScopeRules are 
not supported by this system. 

The transformation stage needs a source model which is 
defined by using the meta-model defined before. On the left 
side of Figure 14 overall format of the model is given. A shape 
grammar  consists  of  a  priority set  (normally we have  more 
than  one  but  this  system  does  not  support  assigning  any 
priority  of  the  rules)  under  this  priority  set  there  are  rules 
shown on the right side of the Figure 14. 



Figure 14. Example model for model-to-text transformation

After  the model is  initiated,  the next step is  writing the 
transformation  rules.  A  `template`  which  can  convert  the 
current model into another is used. This template mechanism 
can be implemented  by different  languages;  one of  them is 
Xpand  of  openArchitectureWare.  Xpand  is  used  for 
transforming the model into the XML file. 

Figure 15. Check language example.

There are two stages of the transformation;  one of them 
controls the model according to the rules written for checking 
the integrity of the model. For this purpose `Check` language 
form openArchitectureWare is used. Before transforming the 
model to target file these rules are executed when there is a 
violation  happens  it  stops  the  transformation.  The  Check 
language is similar to OCL. Some of the rules are given in 
Figure 15. These rules are especially written for the current 
context. As said before the existing system does not support 
some of the features defined in meta-model. These rules are 
for  checking  whether  current  model  is  suitable  for 
transformation or not.

Xpand  language  brings  lots  of  features  with  it.  One  of 
them is  the  aggregation  relations  are  transformed  into lists. 
Programmer can use this feature for easily traverse the model. 
Before describing the transformation rules an example target 
XML will be given for clarification of the transformation.

A part of the transformed XML file is in Figure 16. As it 
can  be  seen  this  format  collects  the  rule  under  the  shapes 
which  are  going  to  be  transformed  into  another  shape.  For 
example as `BasicSplitRule` is defined by `<Fixed>` tag, we 
understand  that  `Balcony_1`  will  be  transformed  into 
wall,balcony_center and a wall again according to proportions 
for X axis given on the `<xProportions>` tag.  The complete 
XML file can be found at Appendix E.

Figure 16. Example XML output of transformation.

Xpand language simply reads all the non terminal shapes 
under  the  shape  grammar  and  collects  the  production  rules 
which are transforming these shapes to other shapes. Then it 
processes each production rule and determines what kind of 
transformation rules are there and continues to complete inner 
part of the rules according to model definition. First part of 
Xpand  code  that  does  this  operation  is  given  in  Figure  17 
(Complete Xpand code can be found at Appendix F.). 



Figure 17. First part of Xpand code for transformation.

When the engine is fed with the XML that is output of the 
transformation, the created 3D building model can be seen in 
Figure 18.

  

Figure 18. Created 3D model for the example source model

VIII. RELATED WORK ON BUILDING MODELING

Previous  work  related  to  computationally  generating 
building and city models demonstrates two major approaches. 
One approach is building model reconstruction using remote 
sensing and/or computer vision methods. The other approach is 
procedurally generating building models. 

Reconstruction  of  city  models  can  be  performed  by 
processing aerial  images to extract  the buildings and streets, 
using  computer  vision  methods  [1,  2,  3,  and  4].  Another 
promising approach is to use range scanning with the help of 
laser airborne scanning and other remote sensing methods [5, 
6]. Both of these approaches aim to get the models of the real 
buildings  and  real  cities.  There  are  quite  successful  results, 
however,  there  are  also  some  problems  related  with  these 
methods. One of the problems is that these methods are not 
fully  automated.  They  cannot  identify  all  of  the  geometric 
structures in a city because of the high geometrical variation of 
the buildings. Another problem is that city models with high 
level of geometric detail can only be constructed if, for every 
building in the city,  specific  data is acquired and processed. 
However, photographing or scanning every building in a city 
would be quite labor intensive.

Shape  processing  grammars,  mainly  L-systems,  were 
applied to the modeling of streets [7].  Procedural modeling of 
buildings  is  inspired  by  the  shape  grammars  [11].  The 
derivation of general detailed buildings using split grammars 
was demonstrated to be highly successful [8]. Split grammars 
are a composition of set grammars and shape grammars [11]. 
Split grammars split or transform 3D shapes to sub shapes that 
are included in the volume of the parent shape. Derivation ends 
when terminal shapes are derived which represents the building 
design. This derivation is steered by the attributes, so specific 
building  designs  and  architecture  trends  could  be  achieved. 
During derivation, a parameter matching system is invoked that 
allows the user to specify multiple high-level design goals and 
controls randomness to guarantee a consistent output. An idea 

of control grammars was introduced that are simple context 
free grammars which handle the spatial distribution of design 
ideas not randomly, but in an orderly way that corresponds to 
architectural  principles.  CGA  Shape  grammar  is  an 
improvement over split  grammars  [9]. CGA Shape grammar 
presents context free shape rules and can make use of complex 
mass models. Resulting buildings have underlying consistent 
mass models and high level of geometric detail. CGA Shape 
Grammar  rules  can  be  created  from  building  images  to 
generate a model of an existent building [10]. The meta-model 
defined in this work largely follows CGA Shape Grammar.

IX. LESSONS LEARNED AND CONCLUSIONS

In this work we developed the meta-model for procedural 
modeling  of  buildings  using  MOF  for  from  scratch  meta-
modeling and UML 2.* profiling mechanism for the second 
way  of  doing  meta-modeling  and  defining  model 
transformations for  the models that will originate from these 
meta-models.  We  faced  some  problems  and  came  up  with 
solutions  to  these  problems  not  only  in  modeling  and 
transformation, but also in the domain analysis part. 

For  procedural  modeling  domain,  Scope  was  an  extra-
ordinary concept. It is a part of Shape as a domain dependent 
concept,  but  it  is  not  represented  in  the  Concrete  Syntax 
separately since it is a run-time entity which becomes visible 
with  the  production  rules  rather  than  any  other  explicit 
notation.  Numeric  attributes  of  Shape  creates  a  similar 
situation. In  this case,  we had to decide whether  we should 
include  Scope  and  numeric  attribute  definition  as  an  class 
instance  and  class  properties  of  EClass  (  of  ECore)  in  the 
Abstract  Syntax.   Note  that  the  meta-model  is  created  for 
modeling  purpose  and  automation  of  the  code.  Without 
defining the scope and numeric attributes in meta-model, the 
full automation seems not possible, because these entities are 
used  and  kept  in  run-time  although  they  have  no  explicit 
declaration  or  notation.  As  a  general  guideline,  the  meta-
model  should  be  defined  as  coherently  and  explicitly  as 
possible for full automation and validation.   

In  our case,  it was easier doing the meta-modeling from 
the scratch compared to the UML profiling. The main reason 
was the tool availability and time for expertizing on tools that 
we used. For from scratch case,  we used ECore meta-meta-
model using Eclipse plug-in which is quite easy to learn and 
use for a person who is familiar with the modeling concept. 
For UML Profiling, Papyrus is used. Papyrus is a bit buggy 
compared to ECore. We expressed the profile in Papyrus, but 
Papyrus itself is not enough for defining the profile (to make it 
usable  for  creating  models),  so  Topcased  helped  us  with 
defining  the  profile.  Another  reason  why UML profiling is 



more  challenging  is  that  it  requires  enough  knowledge  on 
UML modeling subject. 

There is no general  standard between tools that  leads to 
incompatibility of one model across different tools. Each tool 
has  its  own type  of  file  extension,  as  a  result  different  file 
types. Although the important point was the ECore and profile 
model itself,  diagram files were not able to be opened. The 
tools  are  not  only  standardized  but  also  not  adequate  for 
supporting  full  functionality  for  modeling  purpose.  For 
example, the plug-in we used for ECore was not supporting 
UML profiling, so we searched through different tools. and we 
did profiling using Papyrus  that  is  a  open  source  modeling 
tool.

As  we  mentioned  previously,  tools  generally  do  not 
support full functionality for modeling. Despite of this fact, we 
can  surely  say  optimized  tools  (tools  or  just  a  particular 
function)  follow  good  standardization  within  itself  and  its 
meta meta-model  (such as  ECore).  At  first,  we spent  some 
time to get use to these tools, but after that we were impressed 
with the high-level support (such as model variation).

After we derived the concepts and relations between these 
concepts  with  the  domain  analysis,  we  started  with  from 
scratch  part.  Comparing  the  time  we  spend  time  on  UML 
Profiling  and  MOF instantiated,  MOF part  took  more  time 
since we came to conclusions about critic and argumentative 
points.  Following  scratch  meta-modeling,  we  created  UML 
Profile for our project. Since the entities and relations in the 
domain are the same and clarified after domain analysis and 
discussions, for both cases, in the result, UML Profile was not 
so different from the MOF instantiated meta-model.

For our grammar, as it was described in the lessons also, 
we couldn't achieve to connect a shape to different rules. The 
case exists as the result of the tree structure that grammar is 
converted.  A tree  structure  does  not  allow its  leaves  to  be 
connected to the other branches of the tree, the graph structure 
has this power on the other hand. 

As  a  last  point  to  mention  about  the  domain  is  Shape 
Grammar is also a grammar itself. Like any grammar, Shape 
Grammar also has conversion rules for converting or assigning 
values to different symbols, or entities. For the case at hand, 
we assign or covert non-terminal shapes to some other shapes 
in M1 level initiated from the meta-model in M2 level. This 
could lead us to misunderstanding and confusion, but we made 
the distinction between M1 and M2 levels very precise at the 
end.

For model transformation phase, the first problem that we 
faced  was  about  the  capabilities  of  target  engine  that  is 
expected to convert XML code to visual 3D building models. 
Although  our  meta-model  covers  all  the  functionality 
expressed in the procedural  building modeling, the tool that 
we  used  for  visualization  does  not  support  all  these 

functionalities.  So  a  number  of  check  rules  is  required  to 
check the validity of the input model.

The  tool,  Xpand,  which  we  used  for  model-to-text 
transformation  lacks  of  documentation  support.  This  case 
occurred especially for check language. We sometimes found 
ourselves  in  try and fail  situation to  solve some difficulties 
when using Xpand.

    The code generated from transformation in Xpand is in 
an untidy form. To apply the correct  indentation, it requires 
some hard work. So, a beautifier is required. After a while, the 
code written for transformation becomes very complicated. To 
solve this problem, the syntax of Xpand should be reorganized 
and updated. 

The models are not much self explanatory for representing 
visually outside the tools. This is a common problem for both 
Papyrus  and  ATL.  The  associations  between  entities  are 
defined as properties of objects in the model in textual form 
but they are not shown in the figures or list form of the models 
with connections between these entities. 

For  Model-to-model  transformation  case,  we  used  ATL 
that is primarily a declarative language which is appropriate 
for  the  nature  of  transformations.  Due  to  the  endless 
possibility of variation of the source and target meta-models, 
transformations  can  be  quite  complicated.  To  be  able  to 
support all kinds of transformations, additional expressiveness 
is achieved imperative parts of the ATL language. However, 
imperative programming in ATL is strongly discouraged. This 
is  because  the  virtual  machine  of  ATL  does  not  work  on 
bindings  in  any  specified  order  and  so  browsing  the  target 
model on the fly may produce unintended consequences. The 
transformations that are too complex to be easily implemented 
by a declarative  manner could be achieved  by a number of 
pipelined transformations instead of a single transformation. 
For  our  experience  since  we  are  familiar  with  imperative 
programming,  at  first,  we  miserably  tried  to  implement  a 
transformation  that  includes  considerable  amount  of 
imperative  parts.  While  generating  non-terminal  shapes,  we 
tried to browse the rule edges that are generated which did not 
work at all. Then we noticed that we could achieve the aimed 
information by only browsing the input model and switched to 
the pure declarative approach.

Apart  from  the  implementation  of  the  model-to-model 
transformation,  the  transformation  should  be  defined  as 
precisely  as  possible.  This  would  require  one  to  know the 
source  and  target  meta-models,  and  the  semantics  of  the 
transformation  very  well.  On most  of  the  cases  source  and 
target meta-models are quite different, and, naturally,  not all 
the  information  contained  in  the  source  model  can  be 
transformed into the target model. The transformation should 
only capture  and transform all  the  information of  the  input 
model that  is  required to be expressed in the output model. 
One other point is that the transformation needs to satisfy the 
conformance the output model. For our case, since we defined 



our  target  meta-model  specifically  to  represent  shape 
grammars and the source meta-model in mind, we have a quite 
well understanding of the target and source meta-models and 
the  semantics  of  the  transformation.  So  the  transformation 
specification is defined very easily which supports the claimed 
facts. 

As  the  final  words,  we  did  a  well-performed  domain 
analysis  on  Shape  Grammars  and  depending  on  domain 
concepts and relations;  we defined two complete and stable 
meta-models for this domain. These meta-models served as a 
reliable  basis  for  the  model  transformations.  For 
demonstrating  model-to-model  and  model-to-text 
transformations  on  the  defined  meta-model,  two  model 
transformations  are  defined  with  the  motivations  of 
portability,  increased productivity and understandability.  The 
results  shows that  the model driven engineering promises  a 
revolution in software area.  
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APPENDIX A

Diagram of the meta-model realized using ECore.

APPENDIX B

Diagram of the meta-model realized UML profiling.

APPENDIX C

Textual representation of the UML profile.

APPENDIX D

ATL transformation code.

APPENDIX E

Complete XML output of model-to-text transformation

APPENDIX F

Complete Xpand code for model-to-text transformation
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