
Emergency Resource Management and

Coordination

Ilker Murat Karakas*, Dogan Kaya Berktas*, Eren Algan*

*Bilkent University Computer Engineering Department, Ankara Turkey

{karakas,berktas,algan}@cs.bilkent.edu.tr

Abstract-In this study, our aim is to come up with a

domain-specific language that would be of use in the resource
management sub-domain of the emergency management

information systems space. We start by conducting a domain
analysis. A meta-modeling activity follows the domain-analysis,
where we design the abstract syntax, concrete syntax and static

semantics for the language that we devise. The meta-model for
the language is developed a) a based on MOF from scratch and
also b) using UML profiling.

Keywords-emergency response; coordination; resource
management; meta-model; doman-specific language; edxl-rm;

ws-bpel

I. INTRODUCTION

Emergencies are multi-causal, requiring complex response

mechanisms depending on the nature of the disaster, and are

usually manifested in several ways including natural

disasters, man-made disasters, and combinations of natural

and man-made disasters.

Emergency Management is in essence a set of activities

comprising four phases [4]; namely Preparedness,

Mitigation, Response and Recovery. The management of

emergencies is an endeavor that is characterized by

involvement from a multitude of stakeholders, including

numerous government agencies, military groups, non-

government and charitable organizations, private enterprise

and community groups.

Coordination is a cornerstone in emergency-management

operations. In order for an effective Emergency/Incident

Management System to function, coordination must take

place on several levels simultaneously. Coordination ties

directly to communication both horizontally and vertically

within the chain of command and is often dependent on

interagency cooperation to be successful; again this is a

frequent cause of failure in both exercises and real-world

emergency events. Coordination is essential regardless of

whether the response involves a single agency response or

several agencies. Coordination of resources controls

confusion, prevents freelancing, and strengthens the overall

response. Coordination is at different levels. At the incident
scene itself, when a mutual aid resource delivers

equipment or personnel to an incident; those resources must

be coordinated with the response efforts underway at that

time. At the regional level, when a major incident occurs that

requires a more robust response, some resources could be

limited in availability to the Incident Commander.

There are lots of examples of lack of coordination

resulting in being unable to effectively deal with the

emergencies. At a humanitarian disaster level, significant

coordination must occur at all levels of private, public, and

government organizations and multiple types of resources

and disaster management services and operations are

required for assisting a significant population affected by the

disaster.

There are currently no meta-models that effectively target

the coordination of emergency management operations.

There are very few initiatives, but those are either too

simplistic, or target some very specific fields like simulation.

The idea of a domain-specific language for emergency

resource management is innovative in this respect. While

building up this language and the meta-model, we base our

work on existing industry standards; namely the WS-BPEL

[2] meta-model and the existing EDXL-RM [3] resource

management specifications.

Effective emergency response is possible only through

efficient networking and collaborating of emergency

response stakeholders. According to [5], the primary

elements enabling effective collaboration are

 Coordination - The ability to coordinate activities

based on operational response plans.

 Dynamic Commitment - The ability to form

collaboration commitments with other agents.

 Shared Knowledge - The ability to share,

understand and utilize domain and external knowledge

relevant to the collaboration activity.

 Agent Context - The ability to share their specific

situational context to guide and monitor coordination

status.

 Situational Knowledge - The ability to sense,

integrate, and process disaster situational knowledge.

 Utilize Resources - The ability to effectively utilize

a wide variety of resources, including infrastructure.

 Core services - The ability to access rights

management, agency locator, information discovery, and

similar core shared services, and dynamically give them

new information and policies.

In addition, under [1] it is stated that being able to

coordinate resources at times of emergencies is one of the

biggest obstacles in the way of effective emergency

management. The Emergency Management operational

domain clearly lacks such coordination standards and the

necessary tooling that support efficient utilization and

coordination of resources during times of emergencies. One

reason behind this is the fact that there is a lack of models

and meta-models that would allow emergency information

management providers build the necessary tooling for

supporting the coordination aspects of emergency response

operations.

The rest of the paper is structured as follows: First

domain analysis is conducted. Then a meta-modeling

activity follows the domain- analysis, where the abstract

syntax, concrete syntax and static semantics for the

language are designed. Then the model-to-model and model

to text transformations are performed.

II. DOMAIN ANALYSIS

As mentioned, for this study we have actually decided to

work on the topic/domain of Emergency Management with

particular focus on the Resource Management sub-domain.

Our research and literature survey indicated the existence

of only one resource management standard (i.e.

specification), which is the Organization for the

Advancement of Structured Information Standards (OASIS)

consortium produced/endorsed specification called the

Emergency Management Data Exchange Language -

Resource Management [3]

Figure 2 explains the message types of EDXL-RM and

the actors are described with the request response orders.

Some messages can be produced by both users, others can

be produced by either the consumer or the supplier.

During the domain analysis, we therefore first looked at

the EDXL-RM specification and try to understand the

relationship between the concepts. Figure 3 shows EDXL-

RM class diagram.

Together with the domain knowledge that we have, we

have produced a draft meta-model, and then we added the

necessary meta-level notions from the BPEL meta-model.

Thus, we have exploited the following entities under the

umbrella of our proposed meta-model:

 Our existing domain knowledge and experience

 OASIS EDXL-RM domain model [3]

 OASIS WS-BPEL Specification, and meta-model

[2]

Figure 1 summarizes the domain analysis process we did
follow.

Figure 1 Domain Analysis Process

A. Domain Description/Context

Under this section, we provide information on the domain

analysis process and the resulting domain model including

glossary of domain concepts. The domain (meta) model is

illustrated by Figure 4.

B. Domain Lexicon

The glossary of the domain is described in TABLE 1.

TABLE 1 DOMAIN GLOSSARY

Id Concept Description

C1 ResourceCoordinationFlow Is the ‟entry‟ meta-concept.

Comprises a collection of resource
coordination processes.

C2 Flow Is a specialization of „Activity‟.

Conceptually maps to the BPEL‟s

Flow meta-model entity, therefore
carries the very same semantics as

defined in BPEL metamodel. Is a

container for a number of „parallel‟
activities.

C3 Sequence Is a specialization of „Activity‟.

Conceptually maps to the BPEL‟s
Sequence meta-model entity,

therefore carries the very same

semantics as defined in BPEL
metamodel. Is a container for a

number of „sequential‟ activities.

C4 Process A conceptualization for a checklist

or a workflow. Contains an activity
instance, where the steps of checklist

or workflow are defined. Process is a
logical wrapper around the Activity

meta-concept. At the same time,

conceptually maps to the BPEL‟s
Process meta-model entity, and

shares the very same semantics as

defined in BPEL metamodel.

C5 Activity Base meta-level concept for concept
including Flow, Sequence, Invoke,

Receive and Reply. Imported from

the BPEL meta-model. This meta
entitiy allows for definition of

compositions of activities. A single

activity instance is wrapped by a
Process instance.

C6 Incident A meta incident concept. To be

specialized by domain models; e.g.

an ‟earthquake‟, ‟flood‟, ‟manmade

disaster‟, etc. Conceptually, Incident

is a happening that has temporal and
geospatial projections.

C7 TemporalCoverage Used to assign temporal coverage

(i.e. time point or duration)

information to either actual
incidents, or to the resource

management messages

C8 GeospatialCoverage Used to assign geospatial coverage
(i.e. location) information to either

actual incidents, or to the resource

management messages

C9 AbstractRMMessage The meta message concept.
Conceptually, the model level

specializations of this concept shall

allow expressing recource
coordination messages between

emergency management entities.

For EDXL-RM, this meta concept
could be used in generalization of

the 15 different EDXL-RM

messages

C10 TimeEntity Comprises the temporal coverage

concept. Could be modelled at the

M1 level as a point, duration, etc

C11 LocationEntity Comprises the geospatial coverage

concept. Could be modelled at the

M1 level as a geospatial point (i.e. a
location that has lat/lon), a polygon,

etc.

C12 Resource Resource is conceptually the base

entity/notion. Anything that can be
exchanged between providers and

consumer at the time of an

incident/emergency is a resource.
Examples might include Search and

Rescue (SAR) Teams, Mobile

Camps, Construction Equipment,
Blood Units, Vehicles, Tents, etc.

C13 RMBaseEntity The base meta-concept for some RM

concepts including Incident,
TimeEntity, LocationEntity,

Resource.

C14 AttributeBag A generic attribute storage

mechanism for being able to attach
RMAttributes to the RMBaseEntity.

C15 RMAttribute Meta-concept that corresponds to

attributes to be appended to the
AttributeBag.

C16 Receive Is a specialization of „Activity‟.

Conceptually maps to the BPEL‟s
Receive meta-model entity,

therefore carries the very same

semantics as defined in BPEL
metamodel. Is used to model

reception of a (coordination)

message from a sender.

C17 Invoke Is a specialization of „Activity‟.
Conceptually maps to the BPEL‟s

Invoke meta-model entity, therefore

carries the very same semantics as
defined in BPEL metamodel. Is used

to model an „invocation‟, which

essentially means passign a message
between 2 entities.

C18 Reply Is a specialization of „Activity‟.

Conceptually maps to the BPEL‟s

Reply meta-model entity, therefore

carries the very same semantics as

defined in BPEL metamodel. Is used
to express sending a reply to a

message.

C19 EConfidentiality The confidentiality level that belong

to an AbstractRMMessage. Is
actually an enumeration comprising

the standards confidentiality levels

(unclassified, restricted, … etc.).

III. MAPPING OF DOMAIN CONCEPTS TO GRAMMAR

A. Grammar

Our metamodel expressed in Figure 4 is one to one

mapped into grammar. This BNF grammar can be

interpreted as follows:

ResourceCoordinationFlow (the same class in

metamodel) can be composed of many Process classes

(again the same name in metamodel). Process class can be

ProcessName (which is an identifier, terminal in some

sense), Activity, IncidentRef (identifier), ProcessID

(identifier). Activity can be ActivityName (identifier), Flow,

Sequence, one or zero AbstractRMMessage, Reply, Invoke,

and Receives. And so on.

The main idea here is that, there is one to one

correspondence between metamodel and grammar. The

relations between the components of the metamodel are

directly expressed with BNF grammar.

The grammar in BNF notation is expressed below:

IV. DEFINITION OF METAMODEL BASED ON MOF-FROM

SCRATCH

A. Abstract Syntax

The abstract syntax contains the metamodel and its

mapping to MOF components. Figure 5 shows the mapping

between these two phases, which are meta-metamodel and

metamodel.

B. Concrete Syntax

The concrete syntax of our metamodel is expressed in

Figure 6 .To create a consistent and user-friendly concrete

syntax, existing UML‟s class diagram paradigm is extended.

For this, a flow and sequence logic is embedded to a outer

bounding box and an incident box is also added to this outer

box. With this, the aim of incorporating the sequences of

messages with the predefined EDXL-RM messages is

achieved.

When the concrete syntax is analyzed, it will be easily

seen that there is a similarity between the metamodel and

the syntax. There is a process with a process name in the

outer box, which has a sequence, a flow and an incident. In

the flow, there are two activities in which the RM messages

are held. RM messages have attributes such as MessageID

(a number that identifies that message), Confidentiality

(messages can have different levels of confidentiality),

MessageType (determines the type of the message),

Location, Resource and TimeDuration.

This concrete syntax can be theoretically created via a

tool. Think of a tool like EA where process, flow,

sequence, activity, incident, RM messages are little boxes.

With drag and drop property, these boxes are combined a

syntax as in Figure 6 is produced.

C. Static Semantics

Static semantics of a metamodel defines the well-formedness rules of it. These well-formedness rules are used for both defining

constraints on how models can be formed, and validating the models constructed upon a specific metamodel.

In order to express that every process has a unique process id and this is the case for all of the entities in the structure, below

constraints are formed. Also, the geospatial coverage within the AbstractRMMessage should be single in one message instance

since there can be only one geospatial range for a message.

context Process inv: Process::allInstances()->isUnique(processId)

context AbstractRMMessage inv: AbstractRMMessage::allInstances()->isUnique(messageId)

context RMAttribute inv: RMAttribute::allInstances()->isUnique(attributeName)

context Incident inv:self.geospatialCoverage = self.temporalCoverage

context GeospatialCoverage ERROR "exactly one local entity required":localEntity. size == 1;

context Process ERROR loc()+" processes must have unique Ids: "+processId:

 ((ResourceCoordinationFlow)coordiantionFlow).processes.select(c | c.processId == processId).size == 1;

context AbstractRMMessage ERROR loc()+" messages must have unique message Ids: " + messageId:

 ((Activity)ctivitiy).messages.select(c | c. messageId == messageId).size == 1;

context Process WARNING loc()+" id not specified: ["+process.processId+"]":

 processId != null;

context AbstractRMMessage WARNING loc()+" id not specified: ["+ abstractRMMessage.messageId+"]":

 messageId != null;

ResourceCoordinationFlow ::= (Process)*

Process ::= ProcessName Activity IncidentRef ProcessID
ProcessName ::= Identifier

IncidentRef ::= Identifier

ProcessID ::= Identifier
Flow ::= FlowName (Activity)*

FlowName ::= Identifier

Activity ::= ActivityName Flow Sequence
(AbstractRMMessage)? Reply Invoke Receive

ActivityName ::= Identifier

Sequence ::= SequenceName (Activity)*
SequenceName ::= Identifier

AbstractRMMessage ::= AbstractRMMessageName

(Activity)* TemporalCoverage GeospatialCoverage
AbstractRMMessageID (ResourceRef)* Confidentiality

Reply ::= Target Source

Invoke ::= Target Source
Receive ::= Target Source

Target ::= Identifier

Source ::= Identifier
TemporalCoverage ::= TimeEntityName TimeEntity

GeospatialCoverage ::= LocationEntity

AbstractRMMessageID ::= Identifier
ResourceRef ::= Identifier

Confidentiality ::= ConfidentialityType

ConfidentialityType ::= Identifier
RMBaseEntity ::= Incident TimeEntity Resource

LocationEntity AttributeBag
Incident ::= TemporalCoverage GeospatialCoverage

TimeEntity ::= Time

Resource ::= ResourceType

LocationEntity ::= Location

AttributeBag ::= (IncidentAttribute)*

IncidentAttribute ::= IncidentAttributeName
Time ::= Identifier

ResourceType ::= Identifier

Location ::= Identifier
IncidentAttributeName ::= Identifier

TimeEntityName ::= Identifier

AbstractRMMessageName ::= Identifier

D. Example Models

The model in Figure 8 exemplifies an earthquake with a

sequence, which contains two flows. In this model example,

there has been an earthquake in Istanbul and all hospitals in

Marmara and Kızılay were requested some resource. 10

doctors and 5 nurses were asked to Avcılar, 10 tents and 5

staff were asked to KüçükÇekmece province. This is indeed

a very specific model which shows the expandability of our

metamodel.

Other model in Figure 7 is, on the other hand, a generic

model example. The idea here is to show what kind of

messages can be generated via our metamodel. The flow is

represented as in the format of a feature diagram. This

model can be better analyzed with our concrete syntax

example.

V. DEFINITION OF METAMODEL USING UML PROFILING

The extension mechanism of UML allows modeler to

define stereotypes and introduce tagged values to them in a

formal way. Using profiling mechanism of the UML 2. *,

we redefine our metamodel. TABLE 2 lists the stereotypes

introduced with this extension process.

TABLE 2 PROFILE AND STEREOTYPES

Model Element Stereotype UML

Metaclass

ResourceCoordinati

onFlow

EMRMResourceCoo

rdinationFlow

Class

Flow EMRMFlow Class

Sequence EMRMSequence Class

Process EMRMProcess Class

Activity EMRMActivity Class

Incident EMRMIncident Class

TemporalCoverage EMRMTemporalCo

verage

Class

GeospatialCoverage EMRMGeospatialC

overage

Class

AbstractRMMessage EMRMAbstractRM

Message

Class

TimeEntity EMRMTimeEntity Class

LocationEntity EMRMLocationEnti

ty

Class

Resource EMRMResource Class

RMBaseEntity EMRMRMBaseEntit

y

Class

AttributeBag EMRMAttributeBag Class

RMAttribute EMRMRMAttribute Class

Receive EMRMReceive Class

Invoke EMRMInvoke Class

Reply EMRMReply Class

EConfidentiality EMRMEConfidentia

lity

Class

Metamodel using UML profiling is shown in Figure 9.

VI. MODEL TO MODEL TRANSFORMATION

Model transformation is a key problem for MDD. Model

analysis, refactoring, model synchronization, code

generation, deployment, etc. are all handled with numerous

tools that require different tools and input models. To

achieve interoperability, various model transformation

languages and tools are developed.

Model to model transformation is an important aspect of

model driven software development. In our case, the input

model is the emergency model which gets together aspects

of EDXL-RM and BPEL workflow together.

As BPEL artifacts are supported by many tools, it is a

wise approach to have the ability to transform our model to

BPEL model. To do so, ATL is used. ATL (ATLAS

Transformation Language) is a model transformation

language and toolkit. ATL provides ways to produce a set of

target models from a set of source models [6]. ATL requires

mapping the source metamodel and target metamodel to be

mapped with ATL language.

The source metamodel (Emergency.ecore) and output

metamodel (bpel.ecore) are given in Figure 11 and Figure

12 respectively.

The atl file which handles the mapping between the

source metamodel and target metamodel is also given in the

run configuration. The output model file destination is set as

an xpi file. The path is also given in the runtime

configuration (See Figure 10).

The content of ATL file is as follows which handles the

basic mapping of two metamodels:

module AltDeneme1; -- Module Template

create Out : Bepl from IN : Emergency;

rule ProcessMapping

{

 from

 a : Emergency!Process

 to

 p : Bepl!Process (

 name <- a.processId,

 activity <- a.activity

)

}

rule FlowMapping

{

 from

 a : Emergency!Flow

 to

 p : Bepl!Flow

 (

 name <- a.activityId,

 activities <- a.activity

)

}

rule InvokeMapping

{

 from

 a : Emergency!Invoke

 to

 p : Bepl!Invoke

 (

 name <- a.activityId,

 inputVariable <- a.message

)

}

rule ReceiveMapping

{

 from

 a : Emergency!Receive

 to

 p : Bepl!Receive

 (

 name <- a.activityId,

 variable <- a.message

)

}

rule ReplyMapping

{

 from

 a : Emergency!Reply

 to

 p : Bepl!Reply

 (

 name <- a.activityId,

 variable <- a.message

)

}

rule AbstractRMMessageMapping

{

 from

 a : Emergency!AbstractRMMessage

 to

 p : Bepl!Variable

 (

 name <- a.messageId,

 messageType <- a.messageType

)

}

Process in the emergency domain directly mapped to

BPEL process. Flow, sequence, receive, reply, invoke are

all similar to BPEL processes. The challenging part is to

transform AbstractRMMessage to BPEL counterpart. For

instance, an invoke instance in emergency domain contains

an AbstractRMMessage. The Variable in BPEL model

contains similar features with our AbstractRMMessage.

These are name, messsageType. These two enable us to map

these two and transform AbstractRMMessage to a BPEL

Variable.

Our model example can be seen in Figure 13. After

applying ATL mapping, the following xmi code is

produced:

<?xml version="1.0" encoding="ISO-8859-1"?>

<xmi:XMI xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:bpws="http://docs.oasis-

open.org/wsbpel/2.0/process/executable">

 <bpws:Process name="12345">

<activity xsi:type="bpws:Invoke" name="i1"

inputVariable="/1"><bpws:Variable name="m1"/>

</activity>

</bpws:Process>

</xmi:XMI>

VII. MODEL TO TEXT TRANSFORMATION

In Model-Driven Software Development, the generation

of textual artifacts – often source code – plays an important

role. However, often, code generation is seen as the “less

important brother” of model-to-model transformations and

is consequently treated as a second-class citizen. However,

most developers come into MDSD through “simple” code

generation and in most cases, the last step of a

transformation chain is actually a code generator. It is

therefore important that the generator is up to the challenge

of generating non-trivial software systems.

openArchitectureWare [7] is a framework for model-

driven software development. oAW comes with a host of

features necessary for MDSD, including M2M

transformations, declarative constraints checking, a

workflow engine, adapters for the XMI of a variety of UML

tools, EMF integration, nice Eclipse IDE integration (with

custom editors and static error checking) as well as a proven

template language for code generation called Xpand.

Specifically the code generation language has been

available for a number of years, so there is considerable

industry experience available for that language [8].

With the help of Xpand, complete java codes can be seen

in page starting from 19 (in order to save some space,

commands are deleted).

VIII. LESSONS LEARNED AND CONCLUSION

Model driven software development‟s Achilles' heel is the

process of getting used to thinking in „meta‟. This is hard

for a programmer since, he is used to thing in M1 level

instead of M2 level. Therefore, it takes time to become

familiar with to M2 level and start creating metamodel for a

particular model. For this phase, we try to put ourselves in

to the shoes of a tool developer and try to see our

metamodel for her perspective. This approach helps us a lot,

however, again, it is quite difficult to resist the temptation

of modeling on the wrong level! (i.e. M1 in place of M2). In

the process of creating the artifacts, we see that, MDSD is

all about a universal, consistent platform for enable creation

and exchange of models, in reality especially exchange of

model and metamodel between platforms and tools are very

cumbersome. For instance, we used Enterprise Architect

(EA) and to create OCL we tried OpenArchitectureWare

(OAW) but what we see is the XMI output of EA is

inconsistent with the import mechanism of OAW.

Even though Model Driven Software Development has

been one of the brightest subjects in Computer Science for

few years now, there are still so many problems yet to be

solved. The main problem of MDSD is the inconsistency of

the tools. Most of the projects in Eclipse are in incubation

state. Although the idea of MDSD is to increase

productivity, these bugs and problems in the tools reduces

the productivity of the programmer / designer.

REFERENCES

[1] Rui Chen, Raj Sharman, H Raghav Rao, and Shambhu J Upadhyaya.
Coordination in emergency response management. Communications
Of The Acm, 51(5):8, Apr

[2] OASIS WS-BPEL Technical Committee. Web services business
process execution language version 2.0. pages 1–66, May 2007.

[3] OASIS Emergency Management TC. Emergency data exchange
language resource messaging (edxl-rm) version 1.0. pages 1–174,
Nov 2009.

[4] Jim Steel, Renato Iannella, and Ho-Pun Lam. Using ontologies for
decision support in resource messaging. Proceedings of the 5
International ISCRAM Conference, page 9, Apr 2008

[5] David Aylward, Jim Bound, Bonnie Gorsic, Steve Gross, Walter
LeGrand, Paul Mangione, Harrison Miles, Nelson Santini, Amin
Soleimani, and John Yanosy. Findings and recommendations for
mobile emergency communications interoperability (meci). NCOIC,
page 152, Jan 2007.

[6] Eclipse ATL Project Model To Model Transformation,
http://www.eclipse.org/m2m/atl

[7] openArchitectureWare, http://www.openarchitectureware.org/

[8] Markus Völter, Bernd Kolb, Best Practices for Model-To-Text
Transformations, Sep 2006

Figure 2 Use Case diagram for EDXL-RM

Figure 3 Class Diagram for EDXL-RM

Figure 4 Metamodel of our domain

Figure 5 Metamodel and MOF Mapping

Figure 6 Concrete Syntax

Figure 7 Model Example

Figure 8 Model Example 2

Figure 9 UML Profiling

Figure 10 ATL Project

Figure 11 Our system Ecore

Figure 12 BPEL Ecore

Figure 13 Example Model in xmi

Model2Text 1

import org.eclipse.emf.common.util.EList;

public interface AbstractRMMessage extends RMBaseEntity {
 String getMessageId();
 void setMessageId(String value);
 EList<Resource> getRelatedResource();
 EConfidentiality getConfidentiality();
 void setConfidentiality(EConfidentiality value);
 TemporalCoverage getTemporalCoverage();
 void setTemporalCoverage(TemporalCoverage value);
 GeospatialCoverage getGeospatialCoverage();
 void setGeospatialCoverage(GeospatialCoverage value);
 String getMessageType();
 void setMessageType(String value);

} // AbstractRMMessage

import org.eclipse.emf.ecore.EObject;
public interface Activity extends EObject {
 String getActivityId();
 void setActivityId(String value);
 String getActivityName();
 AbstractRMMessage getMessage();
 void setMessage(AbstractRMMessage value);

} // Activity

import org.eclipse.emf.common.util.EList;
import org.eclipse.emf.ecore.EObject;
public interface AttributeBag extends EObject {
 EList<RMAttribute> getAttribute();

} // AttributeBag

import org.eclipse.emf.common.util.EList;
public interface EmergencySequence extends Activity {
 EList<Activity> getActivity();

} // EmergencySequence

import org.eclipse.emf.common.util.EList;
public interface Flow extends Activity {
 EList<Activity> getActivity();

} // Flow

import org.eclipse.emf.ecore.EObject;
public interface GeospatialCoverage extends EObject {
 LocationEntity getLocation();
 void setLocation(LocationEntity value);
} // GeospatialCoverage
public interface Incident extends RMBaseEntity {
 GeospatialCoverage getGeospatialCoverage();
 void setGeospatialCoverage(GeospatialCoverage value);
 TemporalCoverage getTemporalCoverage();
 void setTemporalCoverage(TemporalCoverage value);

 String getIncidentId();
 void setIncidentId(String value);

} // Incident

public interface Invoke extends Activity {
} // Invoke

public interface LocationEntity extends RMBaseEntity {
} // LocationEntity

import org.eclipse.emf.ecore.EFactory;
public interface MetamodelFactory extends EFactory {
 MetamodelFactory eINSTANCE = metamodel.impl.MetamodelFactoryImpl.init();
 AbstractRMMessage createAbstractRMMessage();
 RMBaseEntity createRMBaseEntity();
 Resource createResource();
 Activity createActivity();
 metamodel.Process createProcess();
 Incident createIncident();
 ResourceCoordinationFlow createResourceCoordinationFlow();
 Flow createFlow();
 EmergencySequence createEmergencySequence();
 AttributeBag createAttributeBag();
 GeospatialCoverage createGeospatialCoverage();
 Invoke createInvoke();
 LocationEntity createLocationEntity();
 RMAttribute createRMAttribute();
 Receive createReceive();
 Reply createReply();
 TemporalCoverage createTemporalCoverage();
 TimeEntity createTimeEntity();
 MetamodelPackage getMetamodelPackage();

} //MetamodelFactory

import org.eclipse.emf.ecore.EObject;
public interface Process extends EObject {
 String getProcessId();
 void setProcessId(String value);
 Incident getContext();
 void setContext(Incident value);
 Activity getActivity();
 void setActivity(Activity value);

} // Process

public interface Receive extends Activity {
} // Receive

public interface Reply extends Activity {
} // Reply

public interface Resource extends RMBaseEntity {
} // Resource

import org.eclipse.emf.common.util.EList;
import org.eclipse.emf.ecore.EObject;
public interface ResourceCoordinationFlow extends EObject {

 EList<metamodel.Process> getProcesses();

} // ResourceCoordinationFlow

import org.eclipse.emf.ecore.EObject;
public interface RMAttribute extends EObject {

 String getAttributeName();
 void setAttributeName(String value);
 String getAttributeValue();
 void setAttributeValue(String value);

} // RMAttribute

import org.eclipse.emf.ecore.EObject;
public interface RMBaseEntity extends EObject {
 AttributeBag getAttributes();
 void setAttributes(AttributeBag value);

} // RMBaseEntity

import org.eclipse.emf.ecore.EObject;
public interface TemporalCoverage extends EObject {
 TimeEntity getTime();
 void setTime(TimeEntity value);

} // TemporalCoverage

public interface TimeEntity extends RMBaseEntity {
} // TimeEntity

import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import org.eclipse.emf.common.util.Enumerator;
public enum EConfidentiality implements Enumerator {
 UNCLASSIFIED(0, "Unclassified", "Unclassified"),
 RESTRICTEDTO_COMMUNITY(1, "RestrictedtoCommunity", "RestrictedToCommunity"),
 RELEASABLE_TO_PUBLIC(2, "ReleasableToPublic", "ReleasableToPublic"),
 SECRET(3, "Secret", "Secret"),
 TOP_SECRET(4, "TopSecret", "TopSecret");
 public static final int UNCLASSIFIED_VALUE = 0;
 public static final int RESTRICTEDTO_COMMUNITY_VALUE = 1;
 public static final int RELEASABLE_TO_PUBLIC_VALUE = 2;
 public static final int SECRET_VALUE = 3;
 public static final int TOP_SECRET_VALUE = 4;
 private static final EConfidentiality[] VALUES_ARRAY =
 new EConfidentiality[] {
 UNCLASSIFIED,
 RESTRICTEDTO_COMMUNITY,
 RELEASABLE_TO_PUBLIC,
 SECRET,
 TOP_SECRET,

 };

 public static final List<EConfidentiality> VALUES = Collections.unmodifiableList(Arrays.asList(VALUES_ARRAY));
 public static EConfidentiality get(String literal) {
 for (int i = 0; i < VALUES_ARRAY.length; ++i) {
 EConfidentiality result = VALUES_ARRAY[i];
 if (result.toString().equals(literal)) {
 return result;
 }
 }
 return null;
 }
 public static EConfidentiality getByName(String name) {
 for (int i = 0; i < VALUES_ARRAY.length; ++i) {
 EConfidentiality result = VALUES_ARRAY[i];
 if (result.getName().equals(name)) {
 return result;
 }
 }
 return null;
 }
 public static EConfidentiality get(int value) {
 switch (value) {
 case UNCLASSIFIED_VALUE: return UNCLASSIFIED;
 case RESTRICTEDTO_COMMUNITY_VALUE: return RESTRICTEDTO_COMMUNITY;
 case RELEASABLE_TO_PUBLIC_VALUE: return RELEASABLE_TO_PUBLIC;
 case SECRET_VALUE: return SECRET;
 case TOP_SECRET_VALUE: return TOP_SECRET;
 }
 return null;
 }
 private final int value;
 private final String name;
 private final String literal;
 private EConfidentiality(int value, String name, String literal) {
 this.value = value;
 this.name = name;
 this.literal = literal;
 }
 public int getValue() {
 return value;
 }
 public String getName() {
 return name;
 }
 public String getLiteral() {
 return literal;
 }
 @Override
 public String toString() {
 return literal;
 }

} //EConfidentiality

