
Model Driven Approach for Electrical Circuit
Modeling

MoDELCiM

Hanifi Güneş
Department of Electrical and Electronics Engineering

Bilkent University
Ankara, Turkey

gunesi@ug.bilkent.edu.tr

Abstract— ‘Schematic Capture’ programs have been offering
very divergent set of capabilities and thus, mostly being chosen
by electrical engineers in accordance with the provided
capabilities. They, however, are not interoperable with each other
and focus purely on the visual aspects of the electrical
components rather than their behavioral features leading a
distortion from the original domain.

This paper aims to create a DSL for electrical circuits. In so
doing, interoperability between the tools will be assured and the
behavioral aspects of them will be fostered. Two separate
approaches, based on MOF and UML2 Profiling are employed to
define the DSL. Then, model-to-text and model-to-model
transformations are applied to demonstrate the interoperability
and the consolidated behavioral aspects.

Keywords-Model-driven approach; electrical circuit modeling;
automated circuit modeling; electrical circuit simplification; UML;
MOF; model-to-text transformation; model-to-model
transformation; openArchitectureWare; ATL; XPand

I. INTRODUCTION

Integrated circuit technologies have been playing a crucial
role for people’s everyday lives. While increasing demand for
electrical instruments has been making electrical circuits an
inevitable part of today’s world, so have they been making the
design and implementation of electrical circuits more complex
than ever before. It is not for electrical engineers have a
vendetta against computer-aided design (CAD) tools but since
the tools are not interoperable and intelligible with each other
thus, forcing engineers to put a separate effort to grasp them
first and then to model exactly the same circuit using these
tools. This syndrome is mainly because there is no concrete
electrical circuit modeling standard that has been out-of-the-
shelf yet. To this end, modeling of electrical circuits seems
inevitable from a systemic point of view.

Likewise, schematic capture tools, today, focus on the
visual aspects of the electrical components -that is concrete
syntax- rather than their behavioral features. Instead of taking,
for instance, a resistor as an electrical component with its own
special attributes, today’s CAD tools simply call it as a drawing
or a rectangular block shown on the screen. This leads a serious

shift from the problem domain and signifies the absence of
high level of abstraction and thus, of high level of modeling,
which multiplies complexity and slashes down the productivity
and reusability.

For resolving the aforementioned problems, a Domain-
Specific Language will be realized in this project as DSL’s are
quite beneficial as they help cover the original problem domain
concepts better [1]. Electrical circuits, however, meet a very
wide range of separate needs. This widely varying nature of
electrical circuits makes it virtually impossible to define a
meta-model that fits every single need well. This emphasizes
the point that the language engaged in must be domain-specific
as much as possible. Because of this reason, this study simply
works on defining a domain specific language for electrical
circuits in general, yet not especially for filter or antenna
circuits, to name a few, that necessitate comprehensive
knowledge to be employed and should have their own
enhanced domain specific languages defined.

To increase readability of the circuit models and possibly to
provide a common ground for interoperability purposes,
model-to-text transformation will be applied to existent models.
Given any model, the transformation will map the model to an
XML file. The XML file then can be used by various schematic
capture tools to produce exactly the same circuit model. Next,
model-to-model transformation will be used to simplify a given
circuit in order to minimize the number of components used in
the circuit. Here plenty of different strategies can be utilized
while simplifying the circuit such as component based
reduction, cost based reduction, overall power consumption
based reduction and so forth. We however, opted to work with
component based reduction as it is the simplest to demonstrate
and to be captured.

The following sections will be reserved to address these
issues in detail. The next section solely focuses on domain
analysis while the latter ones will mention mapping of concepts
to the grammar, the definition of meta-model including abstract
syntax, static semantics and concrete syntax respectively. Then,
we will go into model-to-text, model-to-model transformations
and finalize the paper with the conclusions taken out of this
study.

II. ELECTRICAL CIRCUITS

Model-Driven Software Engineering brings in the notion
that models should capture domain-specific knowledge, which
yields an increase in productivity. The idea behind is quite
simple: instead of forcing programmers to translate their
domain-specific knowledge every time needed, build a
language/model for the domain then using translators to end up
with artifacts [2]. However, not everything is as easy as it
sounds. Defining a meta-model from scratch requires extensive
domain knowledge. As separation of concerns lying at different
levels are of more than crucial in model-driven architecture.

Likewise, a meta-model, i.e. model of models must form a
basis for any model in its domain seamlessly. This factor
actually increases the significance and the complexity of
domain analysis process especially for loosely defined
domains, whose models always have the risk of
nonconformance with its meta-model at any time during its
design or even worse while the meta-model is somehow in
operation.

Fortunately, any electrical circuit incorporates the notion of
separation of levels in its body very well. In other words, the
elements at M1 and M2 seem no confusing.

To better span circuits as much as possible, we checked
some electronic circuit design books and googled some key
words regarding to electrical circuit design basics. Standing on
my background in electrical engineering, after doing some
meta-thinking over the data observed at the previous stages, we
came up with a primitive meta-model and tried to validate it
against all the circuits we found earlier and iteratively
improved the model. The very latest version of the meta-model
and the concepts extracted from the domain will be covered in
the following chapter.

Electrical circuits, today, are widely used in different areas
to meet the demands of very divergent customers. Although
they have a well-defined modeling schema and concrete
syntax, there is no interoperability between electrical circuit
modeling tools. Even electrical circuits are used in different
applications as separate entities of the system. Hence,
constructing a meta-model for electrical circuits is necessary to
determine precisely what an electrical circuit means in different
application domains. To extract the domain concepts from the
domain, a recursive approach is followed as below:

• An Electronic circuit is by definition a closed path
formed by the interconnection of electronic
components through which an electric current can
flow [3].

• An electrical network is an interconnection
of electrical elements such as resistors, inductors,
capacitors, transmission lines, voltage
sources, current sources, and switches [4].

• An electrical circuit is a network that has a closed
loop, giving a return path for the current. A
network is a connection of two or more
components, and may not necessarily be a circuit
[4].

• A network that also contains active electronic
components is known as an electronic circuit [4].

The concepts can be re-defined as follows:

1. Circuit: A closed loop combined by
electronic components.

2. Network: Connection of two or more
electronic elements not having an active
component!

3. Electronic component: Basic electronic
element with two or more connecting
leads.

4. Active component: Have gain and/or
directionality e.g. semiconductor devices
[5].

5. Passive component: Have neither of gain
nor directionality [5]. e.g. ordinary
electrical elements such as resistor and
lamp

The obvious model elements from definitions above
are circuit, network and component. After a commonality
analysis, one can say that the model will contain base
Component and Port elements.

A network is a container component consisting of
passive components and just like networks a circuit is a
set of components containing at least one active
component. DataFlow in the model stands for the
connection in between two components. In typical
electrical circuits, it simply corresponds to wire. For more
complicated examples, however, we cannot directly say
that.

III. DOMAIN SPECIFIC LANGUAGE

Among alternate ways of expressing domain model, BNF
and EBNF, EBNF is opted to textually visualize the resultant
domain model.

1) Circuit ::= Components Connection {Feature}*
2) Components ::= {Component}[1..*]
3) Connection ::= {DataFlow}[1..*]
4) Component ::= Network | ActiveComp | PassiveComp

{Feature}*
5) Network::= PassiveComponents Connection
6) PassiveComponents ::= {PassiveComp}[2..*]
7) DataFlow ::= SourcePort DestinationPort
8) SourcePort ::= Port
9) DestinationPort ::= Port
10) Port ::= Markers| InputPort | OutputPort

To better explain the grammar, we can say that a Circuit is
a combination of ‘Component’s interconnected via DataFlow
connections. A Component can either be of type Network,
ActiveComponent or PassiveComponent. To extensibly
describe a Circuit or a Component, we use ‘Feature’s that are
simple name-value pairs. A Network is a Circuit like container
except that it cannot have any ActiveComponent whereas a
Circuit might have. A PassiveComponent complying with the
earlier definition is the one having no gain or directionality
while an ActiveComponent stands for the vice-versa.

The above grammer checked against sample models
chosen manually. Unfortunately there is no easy way to that
yet one can still manually plug any model and monitor its
conformance to the grammar.

Apparently graphical representations when compared to
the textual ones are much more powerful in that they are easy
to read and understand, meaning that their expressiveness are
much better than that of the textual ones.

IV. META-MODELS

A. Meta-Model From Stratch/MOF

 For graphical modeling, we prefered to work with
TopCased [6], all in one modeling platform built upon Eclipse
[7]. There, one can easily define a meta-model provided that
the whole set of existing meta-model elements conform to
definitions in ECore package. For our case, elements like
Circuit, Network, Component, DataFlow, Port and their
children conform to ECore::EClass. The meta-model built
upon MOF can be found in Appendix A.

Below meta-model from MOF is shown together with an

example model. In the example, all elements rounded by red
circle have an instance-of relation with Component element
from meta-model. Eminently the whole example is instance of
a Network since no ActiveComponent instance is contained in
the model. All components are connected via solid-lines that
symbolize the DataFlow.

Figure 1. Meta-model from-scracth

Figure 2. An example model demonstrating meta-model conformance

B. Meta-Model Using UML Profiling

Alternate way of illustrating a meta-model is using UML
Profiling mechanism. UML Profiling enables us to customize
the way we define our models in regard to the any application
domain using stereotypes, tagged values and constraints
effecting specific elements in a model [8].

The UML profiling is performed using Lightweight

extension of UML 2. We created profiles/stereotypes and
applied them to the appropriate model elements. Stereotypes
are noteworthy here, because they let us to assign labels,
constraints, icons and properties to our model elements. Please
refer to Annexes Figure II for the completed model. To
complete our study, the proceeding chapters will deal with
static semantics and concrete syntax.

An example illustrating the usage of UML stereotypes

and circuit model corresponding to the UML model can be
found below. The circuit has three components and three
connecting wires in between these components. The overall
picture constitutes a circuit because the voltage source seen in
the figure is an instance of an active component.

Figure 3. Circuit model for the example demostrated

1. Context Circuit:
inv: self.comps->select
(c|c.isKindOf(ActiveComponent))->size()>0

2. Context DataFlow:
inv: self.src->forAll(s|self.dst->forAll(d|s<>d))
inv: self.src->forAll(s|s.isKindOf(OutpurPort))
inv: self.dst->forAll(d|d.isKindOf(InputPort))

3. Context Network:
inv: self.comps->select
(c|c.isKindOf(ActiveComponent))->size()=0

Figure 4. The same circuit using UML2 Profiling

 The example above has a circuit element, the root
container containing three electrical components whose are
stereotyped as either Active or Passive Component. Each
element is a two-terminal device meaning that they only have
an input and output ports and these ports are bound together
via wire instances stereotyped as DataFlow. For simplicity
reason, two other stereotypes: Feature and Network are not
demonstrated in this example. Feature is an extensibility
window to capture the behavioral aspects of any element in an
electrical model precisely. The next stereotype, Network as
defined previously is a component container consisting of all
kinds of components but active component instances.

V. STATIC SEMANTICS

Abstract syntax itself may not be sufficient to express
the nature of a model in all aspects. In this case, we use static
semantics in form of OCL [9] to improve and better the
expressiveness of abstract syntax. The OCL is a textual,
descriptive language used to define constraints. The below
short table contains OCL statements used to well-define our
meta-model. No further explanation on the statements will be
given since they are self-expressive.

VI. CONCRETE SYNTAX

Electronic circuits definitely had been existed much far
before the notion of meta-modeling was argued. Within these
years, electrical engineers shaped how to illustrate a circuit
model and well-defined the basic rules and icons for either
circuit element. As of late 50s most of the circuit element
standards have been put by IEEE and some other institutions
to assure a seamless communication between parties.

In this study we will also be using this enhanced circuit

modeling standards as to be our concrete syntax. To our
understanding, no further study is necessary at the point of
concrete syntax first because of fact that since it is well-
defined, no need to do this and second as it is widely used in
practical world today, the switching cost would be incredibly
much, which is not feasible.

A quick list of graphical representation of basic circuit

elements are given below. All these components are connected
through wires. A wire has presumed to have two terminals that
bind two separate ‘Port’s each other.

Figure 5. Concrete syntax of basic electrical components

Some examples illustrating the use of concrete syntax

will be given soon in this section. Although some slight
changes might seen in graphical representations, more or
less, all basic electrical components are used in the same
way regardless of the tool used.

Figure 6. Two basic examples using the concrete syntax

VII. MODEL TRANSFORMATIONS

A. Model to Text Transformation

Model-Driven approach enables automatic generation of
code using transformations at any level. In this case, we aim to
create an XML file that can be executed by any CAD tool to
produce the same circuit schema. This way interoperability,
portability and reusability of circuit models could be fostered
across other CAD tools.

The target XML schema is defined far before defining the
transformation rules. Since no existent schematic capture tool
supports an XML file format for storing the schema info, a
new extensible schema for this purpose is determined and
defined from scratch. However, we could not visualize the
models due to the absence of CAD tools with a mature open
format.

The transformation engine used in the study is
openArchitectureWare. oAW requires a meta-model defined
and a model instance conforming to the meta-model. It first
validates the model against check rules that are defined by an
OCL-like language and then using a template file generates
the target XML file. All these operations are stored in a
workflow file that directs oAW engine by instructing which
tasks will be executed under which configurations.

Figure 7. Meta-model used in oAW

oAW’s workflow supports a smart model conversion
bridge named uml2ecore. Using the adapter one can convert a
meta-model in UML2 to ecore. It enables users to use pure
UML to design their meta-models. The conversion works
seamlessly and helps increase productivity by means of
keeping models clear and light. Even more, it automatically
generates check files used to validate models at lower levels.
A tiny part of the check file is depicted in the figure 8. There
are two levels of checks: errors and warnings. Errors stops
execution of workflow immediately while warnings reports
the message and retain execution thread alive.

Figure 8. A small part of the check file used by oAW

Finally a template file is defined in order for mapping
model elements to text segments (XML nodes). A root entry
point is mentioned in the workflow file so that transformation
engine can initiate transformation properly. As part of the
XML template, figure 9 can be given. Xtend is a very handy
standard of oAW that betters users’ hands. It enables in-line
coding, reduces code repetitions so increases reusability and
helps separate template from underlying logic.

Figure 9. Small segment from XML template

The define block above is central to template declaration.
Here an outlet so-called xml is used to beautify the generated
output. The outlet definition is located in the workflow file
concerning the intended needs. The model on which
transformation will work can be shown as follows. The model,
as easily seen, is nothing but the one in the previous pretty
simple example stated out in figure 3. We have only three
components: one active and two passive elements. No network
is incorporated but some features are enclosed.

Figure 10. The model of the simple circuit mentioned in figure 3.

The resultant XML is an aggregation of the elements
above to the file. It fully uses the extensibility of xml and
makes the circuit model human-readable and portable across
the schematic capture tools (not intelligible as much as the
original concrete syntax but still seems fine comparing to the
model above). As part of the output file, figure 11 can be
addressed.

Figure 11. Part of the output XML file.

B. Model to Model Transformation

A circuit containing many components might perform

exactly the same way as another one having fewer elements.
This is because of the fact that many equivalent circuits may
satisfy the same input-output relation. Since it is a naive and
vast resource consuming exercise to utilize several circuit
elements when fewer elements are applicable, it may be highly
cost and resource effective to deduce the number elements
used in a network. At that point, a model-to-model
transformation mapping electrical circuit domain itself can be
applied to reduce the number of elements contained thus
resulting with a simplified circuit.

Given a circuit at the outset, the model-to-model
transformation simplifies the circuit and yields the production

of a simplified circuit. Sometimes, however, a network of
elements is intentionally placed instead of an equivalent
network having fewer elements. This might possibly be for
fulfilling some technical constraints like power consumption,
net impedance and so on. In this project the strategy used is far
apart from complex processes that require the execution of a
series of algorithms and necessitate some calculations to be
done.

The tool used for model-to-model transformations in this
study is ATL. The transformation in this study basically
cancels the unnecessary short-connections and thus, reduces
the size and complexity of any circuit. The algorithm used is
self-explanatory. If a DataFlow object has a src and dst bound
to the any two terminals of the same component then simply
cancel the flow and simplify the circuit.

ATL has a refining execution mode that is quite beneficial
especially for transformation mapping a meta-model itself as
in our case. In this mode the input model is modified if
necessary. And the rest of the model is retained in the output.
Thanks to the refining mode, excessive coding is eliminated.
So the code is kept light and clean. The final version of the
ATL code is in Appendix D.

The model demonstrated below in has a short connection.
The resistor in the circuit is shorted leading the component to
be cancelled out. The transformation is fed by the input model
in figure 12 and produces the resultant circuit in figure 13.

Figure 12. The input model with the resistor shorted.

Figure 13. The resultant model with no short.

VIII. CONCLUSIONS

This project helped me grasp many key aspects of
model-driven software development. First of all, the central
role of a DSL: DSL’s are quite beneficial in that they better
cover the problem domain and save a great effort while
developing solutions. They, however, require an upfront
investment and in many aspects are not easy to construct. I
have faced with many difficulties while striving to build the
meta-model. Mainly, the confusion of M2 and M1 was a tricky
problem. To get over this problem, I visited domain analysis
process again and again till its completion. Many kinds of
resources including textbooks, published articles and web
were gone into because expertise and a perfect domain
analysis will be handy to come up with a precise meta-model
defined.

Not only that, immature tools were also annoying.

During the project, Eclipse Modeling Framework (EMF) [10]
threw several exceptions and unexpectedly halted many times.
It is even incapable of drawing and placing associations
correctly and rendering the graph properly. These are all
indicating that EMF still needs to be improved. At the first
milestone the meta-modeling tools that I used were mostly
Eclipse plug-ins that have still been incubating. After suffering
from immature and instable environments, I seized
MagicDraw UML, a stable modeling tool, workaround that
supports model exportation in several formats including XMI.
Then, using UML2Ecore bridge and XMI model exported
from MagicDraw, I managed to refine the meta-model quite
easily with automatically generated constraint check file in
pocket.

As a consequence derived, I can say that meta-modeling

is a quite time consuming process and requires a thorough
attention employed with right tools chosen. There is always
possibility of level confusion yielding the creation of an ill-
behaved meta-model, which will be eliminated by a seamless
domain analysis and expertise in the target domain.

Other than those, it was captivating to use modeling in a

field other than computer science, it is widely used in
computer science though. As models and modeling are to an
extent assets of systemic approach; it was of paramount
significance to apply this systemic approach in electrical
engineering, it was exciting to witness the possible use of
model-driven approach in electrical engineering.

As far as the two methodologies used to create DSL are

concerned, meta-modeling from scratch is interestingly easier
than that of UML2 Profiling. The main reason making UML
Profiling harder to understand is eminently the lack of
sufficient UML background. In spite of the fact that I am good
at modeling on UML, I still needed to spend some note-worth
time to grasp the notion of profiling, stereotyping and other
UML basics. The other reason that makes UML Profiling
harder is associated to the tools used for the creation of
models. Many tools have better and enhanced support for

MOF when compared to UML2 Profiling. And the final reason
of going for meta-model from scratch is its higher readability.
Models created from scratch is much simpler and reader-
friendly than UML profiling does.

Another lesson taken out of this project is concerning
the expressiveness of textual and graphical representation of
models. The comparison of textual and graphical
representations can be easily made through model-to-text
transformation described earlier in this report. XML decreases
the level of understandability, readability and traceability
whiling bettering portability and providing a means of
interoperability. The outcome here is that textual
representation (XML) can be used across divergent tools while
using graphical one for the end-users. For textual
representation, it is since the interoperability is of incredible
consideration and again computers have no readability
problem as in the case with human-beings. Likewise, as
graphical representation in this case is more user-friendly and
expressive, readable and intelligible, it is better to serve them
as long as users come into play.

For model transformations play a key role in MDSD, it

was vital to understand the idea behind them. Starting with
model-to-text transformation I tried to comprehend them all.
An M2T transformation is used to output an XML file storing
the circuit info. OpenArchitectureWare is used for this
purpose. Its extended list of samples and hands-on practices
made it simpler to learn the tool. Since there is no common
ground for the schematic capture tools or a consensus on an
open file format, the output XML schema is created by my
own with a separate effort. The schema is designed to be as
extensive as possible through the Feature meta-class. I had no
difficulty while generating the file. However, the visualization
of the generated XML file unfortunately is not possible due to
the lack of open standards in the industry and of course to the
deficiency of tools built upon such open standards. As for
model-to-text, I couldn’t realize the transformed models
generated by model-to-model transformation simply because
of the same fact: lack of standards and tools supporting them.
M2M transformation is made using Atlas Transformation
Language (ATL). It was a pretty nice experience to evolve a
given circuit using a transformation definition that is defined
within a specific scope. Since the scope is highly restricted in
this case, programmers are not forced to know any other
concept that is beyond the scope. Rather, they are forced to be
to the point. Eminently, this way MDSD increases the
productivity and quality of the product, which is one of the
most important observations that I inferred from the project.

 The bottom line is that MDSD seems a promising
field of study that will definitely update the face of software
engineering in the near future. I am really glad to meet this
revolutionary approach through this project by means of
MDSD course.

REFERENCES

[1] J. White, Douglas C. Schmidt, A. Nechypurenko and E. Wuchner,

“Domain-Specific Intelligence Frameworks for Assisting Modelers in
Combinatorically Challenging Domains”

[2] Karsai, G., A. Agrawal, and A. Ledeczi, “A Metamodel-Driven MDA
Process and its Tools”, WISME, UML 2003 Conference, San Francisco,
CA, 2003

[3] http://en.wikipedia.org/wiki/Electronic_circuit

[4] http://en.wikipedia.org/wiki/Electrical_network

[5] Khalil, Hassan (2001). Nonlinear Systems (3rd Edition). Prentice
Hall. ISBN 0130673897.

[6] http://www.topcased.org/

[7] http://www.eclipse.org/

[8] Unified Modeling Language (UML), Version 1.5, Object
Management Group (2003), http://www.omg.org/cgi-
bin/doc?formal/03-03-01.

[9] OCL 2.0 Specification: http://www.omg.org/cgi-bin/apps/doc?ptc/2003-
10-14.

[10] http://www.eclipse.org/modeling/emf

APPENDIX A

Plot of the meta-model from scratch.

APPENDIX B

Plot of the meta-model using UML profiling.

APPENDIX C

Textual representation of the UML profiling.

APPENDIX D

Complete oAW code for model-to-text transformation

APPENDIX E

Complete XML output of model-to-text transformation

APPENDIX F

ATL transformation code.

