
Model Driven Approach for Electrical Circuit 
Modeling 

MoDELCiM 

 

Hanifi Güneş 
Department of Electrical and Electronics Engineering 

Bilkent University 
Ankara, Turkey 

gunesi@ug.bilkent.edu.tr 
 
 

Abstract— ‘Schematic Capture’ programs have been offering 
very divergent set of capabilities and thus, mostly being chosen 
by electrical engineers in accordance with the provided 
capabilities. They, however, are not interoperable with each other 
and focus purely on the visual aspects of the electrical 
components rather than their behavioral features leading a 
distortion from the original domain.  

This paper aims to create a DSL for electrical circuits. In so 
doing, interoperability between the tools will be assured and the 
behavioral aspects of them will be fostered. Two separate 
approaches, based on MOF and UML2 Profiling are employed to 
define the DSL. Then, model-to-text and model-to-model 
transformations are applied to demonstrate the interoperability 
and the consolidated behavioral aspects. 
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I.  INTRODUCTION 

Integrated circuit technologies have been playing a crucial 
role for people’s everyday lives. While increasing demand for 
electrical instruments has been making electrical circuits an 
inevitable part of today’s world, so have they been making the 
design and implementation of electrical circuits more complex 
than ever before. It is not for electrical engineers have a 
vendetta against computer-aided design (CAD) tools but since 
the tools are not interoperable and intelligible with each other 
thus, forcing engineers to put a separate effort to grasp them 
first and then to model exactly the same circuit using these 
tools. This syndrome is mainly because there is no concrete 
electrical circuit modeling standard that has been out-of-the-
shelf yet. To this end, modeling of electrical circuits seems 
inevitable from a systemic point of view.  

Likewise, schematic capture tools, today, focus on the 
visual aspects of the electrical components -that is concrete 
syntax- rather than their behavioral features. Instead of taking, 
for instance, a resistor as an electrical component with its own 
special attributes, today’s CAD tools simply call it as a drawing 
or a rectangular block shown on the screen. This leads a serious 

shift from the problem domain and signifies the absence of 
high level of abstraction and thus, of high level of modeling, 
which multiplies complexity and slashes down the productivity 
and reusability. 

For resolving the aforementioned problems, a Domain-
Specific Language will be realized in this project as DSL’s are 
quite beneficial as they help cover the original problem domain 
concepts better [1]. Electrical circuits, however, meet a very 
wide range of separate needs. This widely varying nature of 
electrical circuits makes it virtually impossible to define a 
meta-model that fits every single need well. This emphasizes 
the point that the language engaged in must be domain-specific 
as much as possible. Because of this reason, this study simply 
works on defining a domain specific language for electrical 
circuits in general, yet not especially for filter or antenna 
circuits, to name a few, that necessitate comprehensive 
knowledge to be employed and should have their own 
enhanced domain specific languages defined.  

To increase readability of the circuit models and possibly to 
provide a common ground for interoperability purposes, 
model-to-text transformation will be applied to existent models. 
Given any model, the transformation will map the model to an 
XML file. The XML file then can be used by various schematic 
capture tools to produce exactly the same circuit model. Next, 
model-to-model transformation will be used to simplify a given 
circuit in order to minimize the number of components used in 
the circuit. Here plenty of different strategies can be utilized 
while simplifying the circuit such as component based 
reduction, cost based reduction, overall power consumption 
based reduction and so forth. We however, opted to work with 
component based reduction as it is the simplest to demonstrate 
and to be captured. 

The following sections will be reserved to address these 
issues in detail. The next section solely focuses on domain 
analysis while the latter ones will mention mapping of concepts 
to the grammar, the definition of meta-model including abstract 
syntax, static semantics and concrete syntax respectively. Then, 
we will go into model-to-text, model-to-model transformations 
and finalize the paper with the conclusions taken out of this 
study. 



II. ELECTRICAL CIRCUITS 

Model-Driven Software Engineering brings in the notion 
that models should capture domain-specific knowledge, which 
yields an increase in productivity. The idea behind is quite 
simple: instead of forcing programmers to translate their 
domain-specific knowledge every time needed, build a 
language/model for the domain then using translators to end up 
with artifacts [2]. However, not everything is as easy as it 
sounds. Defining a meta-model from scratch requires extensive 
domain knowledge. As separation of concerns lying at different 
levels are of more than crucial in model-driven architecture.  

Likewise, a meta-model, i.e. model of models must form a 
basis for any model in its domain seamlessly. This factor 
actually increases the significance and the complexity of 
domain analysis process especially for loosely defined 
domains, whose models always have the risk of 
nonconformance with its meta-model at any time during its 
design or even worse while the meta-model is somehow in 
operation.  

Fortunately, any electrical circuit incorporates the notion of 
separation of levels in its body very well. In other words, the 
elements at M1 and M2 seem no confusing.  

To better span circuits as much as possible, we checked 
some electronic circuit design books and googled some key 
words regarding to electrical circuit design basics. Standing on 
my background in electrical engineering, after doing some 
meta-thinking over the data observed at the previous stages, we 
came up with a primitive meta-model and tried to validate it 
against all the circuits we found earlier and iteratively 
improved the model. The very latest version of the meta-model 
and the concepts extracted from the domain will be covered in 
the following chapter. 

Electrical circuits, today, are widely used in different areas 
to meet the demands of very divergent customers. Although 
they have a well-defined modeling schema and concrete 
syntax, there is no interoperability between electrical circuit 
modeling tools. Even electrical circuits are used in different 
applications as separate entities of the system. Hence, 
constructing a meta-model for electrical circuits is necessary to 
determine precisely what an electrical circuit means in different 
application domains. To extract the domain concepts from the 
domain, a recursive approach is followed as below: 

• An Electronic circuit is by definition a closed path 
formed by the interconnection of electronic 
components through which an electric current can 
flow [3].  

• An electrical network is an interconnection 
of electrical elements such as resistors, inductors, 
capacitors, transmission lines, voltage 
sources, current sources, and switches [4]. 

• An electrical circuit is a network that has a closed 
loop, giving a return path for the current. A 
network is a connection of two or more 
components, and may not necessarily be a circuit 
[4]. 

• A network that also contains active electronic 
components is known as an electronic circuit [4]. 

The concepts can be re-defined as follows: 

1. Circuit: A closed loop combined by 
electronic components. 

2. Network: Connection of two or more 
electronic elements not having an active 
component! 

3. Electronic component: Basic electronic 
element with two or more connecting 
leads. 

4. Active component: Have gain and/or 
directionality e.g. semiconductor devices 
[5]. 

5. Passive component: Have neither of gain 
nor directionality [5]. e.g. ordinary 
electrical elements such as resistor and 
lamp 

The obvious model elements from definitions above 
are circuit, network and component. After a commonality 
analysis, one can say that the model will contain base 
Component and Port elements.  

A network is a container component consisting of 
passive components and just like networks a circuit is a 
set of components containing at least one active 
component. DataFlow in the model stands for the 
connection in between two components. In typical 
electrical circuits, it simply corresponds to wire. For more 
complicated examples, however, we cannot directly say 
that. 

III. DOMAIN SPECIFIC LANGUAGE 

Among alternate ways of expressing domain model, BNF 
and EBNF, EBNF is opted to textually visualize the resultant 
domain model.  

1) Circuit ::= Components Connection {Feature}* 
2) Components ::=  {Component}[1..*] 
3) Connection ::= {DataFlow}[1..*] 
4) Component ::= Network | ActiveComp | PassiveComp 

{Feature}* 
5) Network::= PassiveComponents Connection 
6) PassiveComponents ::= {PassiveComp}[2..*] 
7) DataFlow ::= SourcePort DestinationPort 
8) SourcePort ::= Port 
9) DestinationPort ::= Port 
10) Port ::= Markers| InputPort | OutputPort  



To better explain the grammar, we can say that a Circuit is 
a combination of ‘Component’s interconnected via DataFlow 
connections. A Component can either be of type Network, 
ActiveComponent or PassiveComponent. To extensibly 
describe a Circuit or a Component, we use ‘Feature’s that are 
simple name-value pairs. A Network is a Circuit like container 
except that it cannot have any ActiveComponent whereas a 
Circuit might have. A PassiveComponent complying with the 
earlier definition is the one having no gain or directionality 
while an ActiveComponent stands for the vice-versa. 

The above grammer checked against sample models 
chosen manually. Unfortunately there is no easy way to that 
yet one can still manually plug any model and monitor its 
conformance to the grammar.  

Apparently graphical representations when compared to 
the textual ones are much more powerful in that they are easy 
to read and understand, meaning that their expressiveness are 
much better than that of the textual ones.  

IV. META-MODELS 

A. Meta-Model From Stratch/MOF 

 For graphical modeling, we prefered to work with 
TopCased [6], all in one modeling platform built upon Eclipse 
[7]. There, one can easily define a meta-model provided that 
the whole set of existing meta-model elements conform to 
definitions in ECore package. For our case, elements like 
Circuit, Network, Component, DataFlow, Port and their 
children conform to ECore::EClass. The meta-model built 
upon MOF can be found in Appendix A. 

 
Below meta-model from MOF is shown together with an 

example model. In the example, all elements rounded by red 
circle have an instance-of relation with Component element 
from meta-model. Eminently the whole example is instance of 
a Network since no ActiveComponent instance is contained in 
the model. All components are connected via solid-lines that 
symbolize the DataFlow. 

 

Figure 1.  Meta-model from-scracth 

 

 
Figure 2.  An example model demonstrating meta-model conformance 

 

B. Meta-Model Using UML Profiling 

Alternate way of illustrating a meta-model is using UML 
Profiling mechanism. UML Profiling enables us to customize 
the way we define our models in regard to the any application 
domain using stereotypes, tagged values and constraints 
effecting specific elements in a model [8]. 

 
The UML profiling is performed using Lightweight 

extension of UML 2.  We created profiles/stereotypes and 
applied them to the appropriate model elements. Stereotypes 
are noteworthy here, because they let us to assign labels, 
constraints, icons and properties to our model elements. Please 
refer to Annexes Figure II for the completed model. To 
complete our study, the proceeding chapters will deal with 
static semantics and concrete syntax. 

 
An example illustrating the usage of UML stereotypes 

and circuit model corresponding to the UML model can be 
found below. The circuit has three components and three 
connecting wires in between these components. The overall 
picture constitutes a circuit because the voltage source seen in 
the figure is an instance of an active component. 

 
Figure 3.  Circuit model for the example demostrated 



1. Context Circuit: 
inv: self.comps->select 
(c|c.isKindOf(ActiveComponent))->size()>0 
 

2. Context DataFlow: 
inv: self.src->forAll(s|self.dst->forAll(d|s<>d)) 
inv: self.src->forAll(s|s.isKindOf(OutpurPort)) 
inv: self.dst->forAll(d|d.isKindOf(InputPort)) 
 

3. Context Network: 
inv: self.comps->select 
(c|c.isKindOf(ActiveComponent))->size()=0 

 
Figure 4.  The same circuit using UML2 Profiling 

  
 The example above has a circuit element, the root 
container containing three electrical components whose are 
stereotyped as either Active or Passive Component. Each 
element is a two-terminal device meaning that they only have 
an input and output ports and these ports are bound together 
via wire instances stereotyped as DataFlow. For simplicity 
reason, two other stereotypes: Feature and Network are not 
demonstrated in this example. Feature is an extensibility 
window to capture the behavioral aspects of any element in an 
electrical model precisely. The next stereotype, Network as 
defined previously is a component container consisting of all 
kinds of components but active component instances. 

V. STATIC SEMANTICS 

Abstract syntax itself may not be sufficient to express 
the nature of a model in all aspects. In this case, we use static 
semantics in form of OCL [9] to improve and better the 
expressiveness of abstract syntax. The OCL is a textual, 
descriptive language used to define constraints. The below 
short table contains OCL statements used to well-define our 
meta-model. No further explanation on the statements will be 
given since they are self-expressive. 

VI. CONCRETE SYNTAX 

Electronic circuits definitely had been existed much far 
before the notion of meta-modeling was argued. Within these 
years, electrical engineers shaped how to illustrate a circuit 
model and well-defined the basic rules and icons for either 
circuit element. As of late 50s most of the circuit element 
standards have been put by IEEE and some other institutions 
to assure a seamless communication between parties. 

 
In this study we will also be using this enhanced circuit 

modeling standards as to be our concrete syntax. To our 
understanding, no further study is necessary at the point of 
concrete syntax first because of fact that since it is well-
defined, no need to do this and second as it is widely used in 
practical world today, the switching cost would be incredibly 
much, which is not feasible. 

 
A quick list of graphical representation of basic circuit 

elements are given below. All these components are connected 
through wires. A wire has presumed to have two terminals that 
bind two separate ‘Port’s each other.  
 

 
Figure 5.  Concrete syntax of basic electrical components 

 
Some examples illustrating the use of concrete syntax 

will be given soon in this section. Although some slight 
changes might seen in graphical representations, more or 
less, all basic electrical components are used in the same 
way regardless of the tool used. 

 

 
Figure 6.  Two basic examples using the concrete syntax 



VII. MODEL TRANSFORMATIONS 

A. Model to Text Transformation 

Model-Driven approach enables automatic generation of 
code using transformations at any level. In this case, we aim to 
create an XML file that can be executed by any CAD tool to 
produce the same circuit schema. This way interoperability, 
portability and reusability of circuit models could be fostered 
across other CAD tools.  

The target XML schema is defined far before defining the 
transformation rules. Since no existent schematic capture tool 
supports an XML file format for storing the schema info,  a 
new extensible schema for this purpose is determined and 
defined from scratch. However, we could not visualize the 
models due to the absence of CAD tools with a mature open 
format.  

The transformation engine used in the study is 
openArchitectureWare. oAW requires a meta-model defined 
and a model instance conforming to the meta-model. It first 
validates the model against check rules that are defined by an 
OCL-like language and then using a template file generates 
the target XML file. All these operations are stored in a 
workflow file that directs oAW engine by instructing which 
tasks will be executed under which configurations. 

 
Figure 7.  Meta-model used in oAW 

oAW’s workflow supports a smart model conversion 
bridge named uml2ecore. Using the adapter one can convert a 
meta-model in UML2 to ecore. It enables users to use pure 
UML to design their meta-models. The conversion works 
seamlessly and helps increase productivity by means of 
keeping models clear and light. Even more, it automatically 
generates check files used to validate models at lower levels. 
A tiny part of the check file is depicted in the figure 8. There 
are two levels of checks: errors and warnings. Errors stops 
execution of workflow immediately while warnings reports 
the message and retain execution thread alive. 

 
Figure 8.  A small part of the check file used by oAW 

Finally a template file is defined in order for mapping 
model elements to text segments (XML nodes). A root entry 
point is mentioned in the workflow file so that transformation 
engine can initiate transformation properly. As part of the 
XML template, figure 9 can be given. Xtend is a very handy 
standard of oAW that betters users’ hands. It enables in-line 
coding, reduces code repetitions so increases reusability and 
helps separate template from underlying logic. 
 

 
Figure 9.  Small segment from XML template 

The define block above is central to template declaration. 
Here an outlet so-called xml is used to beautify the generated 
output. The outlet definition is located in the workflow file 
concerning the intended needs. The model on which 
transformation will work can be shown as follows. The model, 
as easily seen, is nothing but the one in the previous pretty 
simple example stated out in figure 3. We have only three 
components: one active and two passive elements. No network 
is incorporated but some features are enclosed. 



 
Figure 10.  The model of the simple circuit mentioned in figure 3. 

The resultant XML is an aggregation of the elements 
above to the file. It fully uses the extensibility of xml and 
makes the circuit model human-readable and portable across 
the schematic capture tools (not intelligible as much as the 
original concrete syntax but still seems fine comparing to the 
model above). As part of the output file, figure 11 can be 
addressed.  

 

 
Figure 11.  Part of the output XML file. 

B. Model to Model Transformation 

 
A circuit containing many components might perform 

exactly the same way as another one having fewer elements. 
This is because of the fact that many equivalent circuits may 
satisfy the same input-output relation. Since it is a naive and 
vast resource consuming exercise to utilize several circuit 
elements when fewer elements are applicable, it may be highly 
cost and resource effective to deduce the number elements 
used in a network. At that point, a model-to-model 
transformation mapping electrical circuit domain itself can be 
applied to reduce the number of elements contained thus 
resulting with a simplified circuit.  

Given a circuit at the outset, the model-to-model 
transformation simplifies the circuit and yields the production 

of a simplified circuit. Sometimes, however, a network of 
elements is intentionally placed instead of an equivalent 
network having fewer elements. This might possibly be for 
fulfilling some technical constraints like power consumption, 
net impedance and so on. In this project the strategy used is far 
apart from complex processes that require the execution of a 
series of algorithms and necessitate some calculations to be 
done. 

The tool used for model-to-model transformations in this 
study is ATL. The transformation in this study basically 
cancels the unnecessary short-connections and thus, reduces 
the size and complexity of any circuit. The algorithm used is 
self-explanatory. If a DataFlow object has a src and dst bound 
to the any two terminals of the same component then simply 
cancel the flow and simplify the circuit. 

ATL has a refining execution mode that is quite beneficial 
especially for transformation mapping a meta-model itself as 
in our case. In this mode the input model is modified if 
necessary.  And the rest of the model is retained in the output. 
Thanks to the refining mode, excessive coding is eliminated. 
So the code is kept light and clean. The final version of the 
ATL code is in Appendix D. 

The model demonstrated below in has a short connection. 
The resistor in the circuit is shorted leading the component to 
be cancelled out.  The transformation is fed by the input model 
in figure 12 and produces the resultant circuit in figure 13. 

 
Figure 12.  The input model with the resistor shorted. 

 
Figure 13.  The resultant model with no short. 



VIII. CONCLUSIONS 

This project helped me grasp many key aspects of 
model-driven software development. First of all, the central 
role of a DSL: DSL’s are quite beneficial in that they better 
cover the problem domain and save a great effort while 
developing solutions. They, however, require an upfront 
investment and in many aspects are not easy to construct. I 
have faced with many difficulties while striving to build the 
meta-model. Mainly, the confusion of M2 and M1 was a tricky 
problem. To get over this problem, I visited domain analysis 
process again and again till its completion. Many kinds of 
resources including textbooks, published articles and web 
were gone into because expertise and a perfect domain 
analysis will be handy to come up with a precise meta-model 
defined. 

 
Not only that, immature tools were also annoying. 

During the project, Eclipse Modeling Framework (EMF) [10] 
threw several exceptions and unexpectedly halted many times. 
It is even incapable of drawing and placing associations 
correctly and rendering the graph properly. These are all 
indicating that EMF still needs to be improved. At the first 
milestone the meta-modeling tools that I used were mostly 
Eclipse plug-ins that have still been incubating. After suffering 
from immature and instable environments, I seized 
MagicDraw UML, a stable modeling tool, workaround that 
supports model exportation in several formats including XMI. 
Then, using UML2Ecore bridge and XMI model exported 
from MagicDraw, I managed to refine the meta-model quite 
easily with automatically generated constraint check file in 
pocket.  

 
As a consequence derived, I can say that meta-modeling 

is a quite time consuming process and requires a thorough 
attention employed with right tools chosen.  There is always 
possibility of level confusion yielding the creation of an ill-
behaved meta-model, which will be eliminated by a seamless 
domain analysis and expertise in the target domain. 

 
Other than those, it was captivating to use modeling in a 

field other than computer science, it is widely used in 
computer science though. As models and modeling are to an 
extent assets of systemic approach; it was of paramount 
significance to apply this systemic approach in electrical 
engineering, it was exciting to witness the possible use of 
model-driven approach in electrical engineering. 

 
As far as the two methodologies used to create DSL are 

concerned, meta-modeling from scratch is interestingly easier 
than that of UML2 Profiling. The main reason making UML 
Profiling harder to understand is eminently the lack of 
sufficient UML background. In spite of the fact that I am good 
at modeling on UML, I still needed to spend some note-worth 
time to grasp the notion of profiling, stereotyping and other 
UML basics. The other reason that makes UML Profiling 
harder is associated to the tools used for the creation of 
models. Many tools have better and enhanced support for 

MOF when compared to UML2 Profiling. And the final reason 
of going for meta-model from scratch is its higher readability. 
Models created from scratch is much simpler and reader-
friendly than UML profiling does. 
 

Another lesson taken out of this project is concerning 
the expressiveness of textual and graphical representation of 
models. The comparison of textual and graphical 
representations can be easily made through model-to-text 
transformation described earlier in this report. XML decreases 
the level of understandability, readability and traceability 
whiling bettering portability and providing a means of 
interoperability. The outcome here is that textual 
representation (XML) can be used across divergent tools while 
using graphical one for the end-users. For textual 
representation, it is since the interoperability is of incredible 
consideration and again computers have no readability 
problem as in the case with human-beings. Likewise, as 
graphical representation in this case is more user-friendly and 
expressive, readable and intelligible, it is better to serve them 
as long as users come into play. 

 
For model transformations play a key role in MDSD, it 

was vital to understand the idea behind them. Starting with 
model-to-text transformation I tried to comprehend them all. 
An M2T transformation is used to output an XML file storing 
the circuit info. OpenArchitectureWare is used for this 
purpose. Its extended list of samples and hands-on practices 
made it simpler to learn the tool. Since there is no common 
ground for the schematic capture tools or a consensus on an 
open file format, the output XML schema is created by my 
own with a separate effort. The schema is designed to be as 
extensive as possible through the Feature meta-class. I had no 
difficulty while generating the file. However, the visualization 
of the generated XML file unfortunately is not possible due to 
the lack of open standards in the industry and of course to the 
deficiency of tools built upon such open standards. As for 
model-to-text, I couldn’t realize the transformed models 
generated by model-to-model transformation simply because 
of the same fact: lack of standards and tools supporting them. 
M2M transformation is made using Atlas Transformation 
Language (ATL). It was a pretty nice experience to evolve a 
given circuit using a transformation definition that is defined 
within a specific scope. Since the scope is highly restricted in 
this case, programmers are not forced to know any other 
concept that is beyond the scope. Rather, they are forced to be 
to the point. Eminently, this way MDSD increases the 
productivity and quality of the product, which is one of the 
most important observations that I inferred from the project. 
 
 The bottom line is that MDSD seems a promising 
field of study that will definitely update the face of software 
engineering in the near future. I am really glad to meet this 
revolutionary approach through this project by means of 
MDSD course. 
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APPENDIX A 

Plot of the meta-model from scratch. 

APPENDIX B 

Plot of the meta-model using UML profiling. 

APPENDIX C 

Textual representation of the UML profiling. 

APPENDIX D 

Complete oAW code for model-to-text transformation 

APPENDIX E 

Complete XML output of model-to-text transformation 

APPENDIX F 

ATL transformation code.

 


