
 1

Model Driven Development of Board Games

aDogan ALTUNBAY, bEser CETINKAYA, cM.Gokhan METIN

Department of Computer Engineering, Bilkent University, TURKEY

aaltunbay@cs.bilkent.edu.tr, bcetinkay@cs.bilkent.edu.tr, cm_gokhan_metin@yahoo.com

Abstract Increasing the structural complexity of the

video games development process, and the short deadlines

which are forced by the market dynamics require to improve

the productivity in terms of quality, time, and cost. In this

paper we describe a model driven software development

approach in order to aid in computer games design and

development to address these goals. As an example, we

define the related concepts of the board game domain, and

provide a board game metamodel both from scratch and

using UML profiling mechanism.

Keywords game development, metamodeling, game

ontology

1. INTRODUCTION

Game development has grown in complexity and

quality, highlighting the need for rapid and mass game

software production. For addressing these needs, the

developers rely on formal software development processes

such as waterfall or agile methodologies. Without leaving

these methodologies aside, raising the abstraction level from

the “solution domain” to the “problem domain” and using

the model-driven based approaches is useful in order to

enhance the productivity [1].

In this paper, we propose a metamodel-based

development approach for the board game domain. Board

games are relatively easier to develop compared with the

other types of games. They do not require complicated

graphical interfaces, or complex AI rules. In order to

demonstrate the model-driven software development

processes in the game domain, board game is a suitable

choice.

We introduce a meta-model and a number of related

concepts, including GameEngine, Player, Rules and etc..

We also provide a Domain-Specific Language (DSL)

grammar to express the board game domain effectively.

DSLs provide a good basis for domain-specific formal

analysis and fully-automated tool support [2].

After presenting the metamodel and related sub-

components such as abstract and concrete syntax, we

provide two example board game model which are derived

from our board game metamodel.

And finally, we come up with the necessary model-to-

model and model-to-text transformations in order to have

the final working source code for a sample part of a chess

game.

The rest of the paper is organized as follows. Section 2

presents a brief domain analysis of the game domain and the

board game domain. Section 3 provides the glossary of the

domain concepts. Section 4 describes the metamodeling

process of the domain. Section 5 gives the concept mapping

for the domain. Section 6 explains the UML profiling for the

board game domain. Section 7 and 8 describes the model to

model and model to text transformations. Section 9

concludes the report. Section 10 gives the references.

2. BOARD GAME DEVELOPMENT

Game generation and development process requires

automated systems with intelligent design of games, and

reasoning about both the abstract rule system of the game

and the visual realization of these rules [3]. There are many

researches on developing these generation systems. These

researches differ according to their basic strategies. Agent-

based meta-modeling systems [4] and development

frameworks [5] can be given as examples.

Identifying the content and composing the rules of a

game is the starting point of the game design process.

Today, computer games are becoming more complex and

establishing the correct relationships between different

application domains is vital in this process. Inside the video

game designing processes, the necessary disciplines which

are needed to be integrated might be:

 Game dynamics

 Visualization

 Software programming

 Production phase

 Sound

 Choreographic structuring

 etc.

This divide-and-conquer strategy reduces all the

complexity of game design process. The complex nature of

video game development arises because of

interdependencies between these design elements and

process of proper combination of them. Some of the

decisions made in one area cause to create different

 2

constraint in another one. For instance, specifications of

visual arts can conflict with any technical constraint or the

design might appear consistent whereas building it would be

totally impractical.

At this point, performing a clear and detailed domain

analysis will become beneficial for the game software

developers.

Domain analysis is the process of identifying the

relevant concepts of an application domain, focusing on the

reuse of these concepts. The products of the analysis process

are the reusable definitions of the domain concepts that are

common for any application of the domain. The

methodology of the analysis process may vary depending on

the application domain. However, the aim of the process

remains the same.

A good domain analysis for the board game domain

starts with asking a general question: “What is the game?”.

After answering this question, we can reduce the domain of

“Game” to our sub-domain “Board Game”.

A game is 'a physical or mental competition conducted

according to rules with the participants in direct opposition

to each other' [6]. According to this definition, there are

three main components of a game:

 players who are participating the game and in

rivalry against their opponents,

 rules which define the constraints of the game,

and

 goals that are to be reached by the players by

obeying the rules of the game.

Figure 1: Concepts and relationships of a game.

Figure 1 illustrates the main concepts of the game

domain. These concepts are abstract for all types of games.

To derive more concrete and specific concepts, we must

decrease the abstraction level of the game domain.

In the board game domain, some other concepts that are

additional to the abstract concepts of the game domain must

be taken into consideration. For example, let's consider the

game of Chess. The players must follow the rules which

regulate the positions and the movements of each of the

chess piece, the state of the player, the timing constraints of

the game, and so on.

According to this explanation, additional concepts for

the board game domain might be action, game state and

game elements.

In our work, we have identified several domain-specific

concepts for the board game domain. Namely, these

concepts are

 GameEngine,

 GameElement,

 Player,

 Event,

 Action,

 GameState,

 Goal,

 Sub-Goal,

 Non-MovableElement,

 MovableElement, and

 Rules.

Player, Goal, and Rules concepts are inherited from the

Game domain. The others are specific for the Board Game

domain.

In the following section we describe the these concepts

which are obtained as the result of our domain analysis

process.

3. GLOSSARY OF DOMAIN CONCEPTS

This section describes the domain concepts of board

game applications and relations between these concepts.

GameEngine: A game must have a GameEngine which

is responsible for running the game based on the defined

rules of the game. Inside the GameEngine, the rules of the

specific game should be defined. A GameEngine would

have multiple rules according to the domain of the game. It

would have a single or multiple states inside which

represents the current condition of a specific game.

GameEngine has at least one player or more. Moreover,

GameEngine should have one or more GameElements and

manipulates them during the game play. GameEngine would

have All instances of GameEngine must have a board in

order players to be able to play game on.

GameElement: The GameElement metaclass represents

all the objects inside a specific game. All GameElements are

obtained by a GameEngine. They are the artifacts of game.

It has two types; a game element would either be a movable

or non-movable. Moveable GameElements are the ones

which a player can manipulate by creating an action. Non-

Rival against

defines

follows motivates for
Player

Rules Goal

Opponent

 3

moveable GameElements are the ones which cannot be

manipulated by any player. In some games, GameElements

can change state from moveable to non- movable or vice

versa according to the rules of games. For instance, in chess

any element which is eliminated by rival player becomes a

non-movable element.

Player: Players are the decision makers inside a game.

Players have Movable elements which are manipulated via

Player Actions. A player can create 0 to n Actions during

the game. Some of the Actions could change the state of any

Movable Element while some of the Actions do not have

effects on. In a game at least one player must exists. Each

Player has goals, objectives and an external environment

with which they interact.

Event: Event is a condition in which the opponents

Actions are restricted. Some of the player actions would

case an event to occur for opponent player. The conditions

of Events and Actions should be defined by Rules of Game

in detail.

Action: Actions are the movements of Players. A Player

would have multiple actions during the game. Actions can

change the State of game via creating events. Actions would

also be able to manipulate the Game Elements. Player

makes decisions and applies them to the game by creating

Actions.

GameState: GameState metaclass represents the current

condition of the game at any instance. In all of the board

games, state of the game should be defined. GameState of

the game can be changed by Player Action or Event.

Goal: In any board game, goal is the state which players

try to attain by creating Actions on Game Elements. In a

game, desired goal can be achieved by either completing all

the Sub-Goals or just by completing itself. Any global Goal

would have some sub-goals which are all part of completing

winning process. Actions of player would cause any

goal/sub-goal to be completed or not.

Sub-Goal: Sub-Goal concept is defined such that in

some games it is required to achieve global goal by

completing its parts in order. Goals would have some

smaller sub-goals. In such cases, Player has to achieve all

the sub-goals in order to reach the global Goal.

Non-MovableElement: Non-MovableElements are the

ones which cannot be manipulated by any player by an

action. These are the static-artifacts of all games. Generally

they are game-specific elements. In board-games the most

Figure 2 – Board Game Metamodel

 4

common non-moveable object in games is the board on

which all the movements of GameElements are performed.

MovableElement: MovableElements are the ones which

can be manipulated by any player. Each Player may control

one or more Movable Elements via Actions. In some games

certain MovableElement have unique designations and

capabilities such as chess. In some games Movable

Elements have same capabilities such as Backgammon.

Moreover, in some games MovableElements may not

belong to a particular player such as Clue.

Rules: Rules are the constraints that define how to set

up a system before playing, relationship between the game

and the player of the game. In addition, relationship between

the Game Elements and Player are defined vie game rules.

Players have to obey the game rules. All the Actions and

their effects on GameElements are defined by the Rules.

Rules are game specific concepts which generally determine

turn over, the rights and responsibilities of players. Rules of

the games would change according to the current level of

game. All the player actions should be based on the game

rules.

4. METAMODEL

Metamodel of a domain is formed of abstract syntax of

the domain, static semantics and concrete syntax. Abstract

syntax describes the relevant concepts of the domain and the

relations between these concepts, which are performed in

the previous section. Figure 2 represents the abstract syntax

of board game application domain by the help of UML

notation. Here, each domain concepts is mapped to a

metaclass, which is the instantiation of the MOF elements in

meta-metamodel level. The relations between these concepts

are shown via associations, reflecting the description of the

domain in the previous section.

Static Semantics

Static semantics of a metamodel defines the well-

formedness rules of it. These well-formedness rules are used

for both defining constraints on how models can be formed,

and validating the models constructed upon a specific

matamodel. For example, we may need to constraint that for

each game model based on board game metamodel must

have an element named Board. Or we may need to validate

that each level of the game should consist of a different set

of rules.

Object Constraint Language(OCL) is a standard way of

defining rules in both metamodeling(M2) and

modeling(M1) levels. In figure 3, we give a possible set of

constraints in M1 level.

context GameEngine

inv:not self.Board.oclIsUndefined &

 self.Board.size() = 1

 context Player

 inv:self.movableElement.size() >= 1

 context GameEngine

inv: level.size() >= 1

 context Goal

inv:self.reject(g | self.subgoals.exists(self = g))

context Level

inv:self.reject(g | self.rules = g.rules)

Figure 3 – Static Semantics Samples

Concrete Syntax

The concrete syntax is used to represent all the domain

concepts visually, which are identified and described in the

abstract syntax.

Figure 4: A concrete syntax for the chess pieces and a

chess board.

A possible concrete syntax for the chess pieces and the

chess board is presented in Figure 4.

 5

The same concept can be visual-represented differently

in different board games. For example MovableElement,

Non-MovableElement and Rule concepts representations for

the chess game are shown in Figure 4 and 5.

But these representations cannot be used for another

board game, for example the backgammon game. To create

a common concrete syntax representation for all board

games, UML notation would be appropriate. An example

UML concrete syntax is given in Figure 6.

Figure 5: A concrete syntax for the chess game rules.

Figure 6: A UML concrete syntax for the chess game.

 6

<Game> :: = <GameEngine> , <Rules> , <Player>;

<Rules> ::= <text>

<GameEngine> ::= <GameElement> , <Rules> , <Level> , <Goal> | <GameElement> , <Rules> , <Goal>;

<GameElement> ::= <MovableElement> | <NonmovableElement>;

<GameElement> ::= <GameElement>,<MovableElement> | <GameElement>,<NonmovableElement>;

<MovableElement> ::= <Token> , <Action> , <VisibleElement> | <Token> , <Action> , <InvisibleElement>;

<VisibleElement> ::= <Token>;

<InvisibleElement> ::= <Timer>;

<NonmovableElement> ::= <Board> , <Player> , <ScoreBoard>;

<Player> ::= <State> , <MovableElement> , <Goal>;

Figure 7 – Board Games Grammar

5. CONCEPT MAPPING

Backus–Naur Form (BNF) is a formal notation used to

describe the syntax of a given language. In another word;

BNF is a formal way to describe formal languages.

In computer science, BNF is used for specifying the

syntax of programming languages, mapping of domain

specific concepts to domain-specific grammar in

metamodelling process, communication protocols, and

similar other things.

Figure 7 shows the mapping of the domain concepts to

a domain specific grammar, which is defined using BNF.

We have experienced that BNF has lack of expressing

power of all domain-specific concepts. It does not provide

the same flexibility as the metamodelling does. We believe

that this inability is raised from that BNF is designed to

express only the context-free grammar, but not domain-

specific context.

 To give an example for this situation that in our

concept mapping process, BNF was insufficient to express

the relationship between the concepts of action and event.

6. UML PROFILE FOR BOARD GAMES

Metamodeling process is a struggling process

considering the definition of abstract syntax of the

metamodel, concrete syntax which realizes the abstract

syntax, and the static semantics of the metamodel. In the

previous sections we described the problem domain and

defined a metamodel using MOF metalanguage, which is a

language for defining metamodels.

On the other hand UML gives the opportunity to extend

the UML metamodel in order to define domain specific

modeling languages. There exist a number of profiles

standardized by OMG for particular domains, including

System on Chip, Software Radio, etc.

The extension mechanism of UML allows modeler to

define stereotypes and introduce tagged values to them in a

formal way. Using profiling mechanism of the UML 2.*, we

redefine our metamodel of board game applications. Table 1

lists the stereotypes introduced with this extension process.

Figure 8 shows the UML profile that we define for

board game application domain.

Game Model Element Stereotype UML

Metaclass

GameEngine BGEngine Component

GameElement BGElement Class

Player BGPlayer Class

Event BGEvent Class

Action BGAction Class

GameState BGState State

Goal BGGoal Class

Board BGBoard Class

MovableElement BGMovableElement Class

NonmovableElement BGNonmovableElement Class

Rules BGRules Class

Table 1 – UML Profile for Board Games

 7

Sample Models

Having defined UML Profiling mechanism for Board

Games we provide two example instances for it. First one is

a M1 level model for Chess Game. In the Chess domain the

instances for metaclass "Rule" corresponds to the Chess

rules such as Castling, En Passant and Promotion. These are

special rules for chess domain. For the metaclass Movable

element there exist six instances such as Pawn, Bishop,

Knight, Rook, King, Queen which are shown in Figure 9.

For metaclass "Non-MovableElement" ChessBoard and

Timer classes are instances. In the chess domain a Player`s

action can threthen opponents kings, for this scenerio our

example model have a "Chech" class which is an instance of

"Event" metacass.

In the second example we created a model for the game

Backgammon which is shown in figure 10. In the

Backgammon domain we show only two rules for practical

reason which are "CollectChecker" and "BrokenChecker".

These classes are instances of metaclass "Rule". In this case

there exist only one kind of movable element different from

Chess which is Checker. In Backgammon domain class

"Dice" and "Board" is an instance of "Non-

MovableElement" metaclass. There exists two instances for

metaclass "State" which are "CheckerState" and

"PlayerState". In this context, a players action would create

and event "BrokeChecker" as shown in figure 10.

 Figure 8 – UML Profile for Board Games

 8

7. MODEL TO MODEL TRANSFORMATIONS

One of the key issues of Model Driven Software

Development is interoperability. There exist a number of

modeling tools in the market which are based on different

metamodels. Ability to port a model definition from one

designer tool to another one comes out as an essential

requirement.

Our metamodel of Board Games, as described in the

previous sections, is a sub domain of Games domain. Thus

it contains only the concepts and relations between them

which are required for only board games. On the other hand,

Games domain is considerably large and complex compared

to our domain model. Figure 14 shows GameDSL[9]

metamodel, which is a domain model of video games. As

can be seen in the figure, the GameDSL metamodel contains

a number of additional concepts with respect to our Board

Game metamodel. Thus, the GameDSL metamodel is more

complex compared to our metamodel.

By means of interoperability, the need of mapping sub

domain concepts to super domain concepts comes out as a

problem. To this end, we aim to transform our model

instances to models conforming GameDSL metamodel in

order to achieve general game models.

Model to model transformations, which is a basic

concept of MDSD enables us to perform this mapping of

different metamodels. Once transformations between

metamodels are defined at metamodel layer, model

instances can be transformed to instances of the target

metamodel. Then we can benefit from the tools which

implement the target metamodel. Furthermore, we can

enhance our models using these tools.

Atlas Transformation Language – ATL

ATL[7] is a model transformation language which is

developed at INRIA and provided within the Eclipse

Modeling Project[8]. ATL transformations are based on

transformation rules which define the mappings between

target and source metamodel elements.

Table 2 gives the mappings between our Board Game

metamodel and GameDSL metamodel. Transformation rules

are listed in Appendix.

BoardGame Element GameDSL Element

GameEngine Game

MovableElement ActiveEntity

NonMovableElement StaticEntity

Board ContainerObject

Level Level

Action Action

State State

Event Event

Table 2 – Mappings between BoardGame vs

GameDSL domain models.

8. MODEL TO TEXT TRANSFORMATIONS

The Model to Text transformation plays a key role in

the Model-Driven based software development process. It

addresses how to translate a model to various text artefacts

such as code, deployment specifications, reports,

documents, etc.

Essentially, the model to text standard needs to address

how to transform a model into a linearized text

representation. An intuitive way to address this requirement

is a template based approach wherein the text to be

generated from models is specified as a set of text templates

that are parameterized with model elements. The OMG

“MOF Model to Text Transformation Language RFP” aims

to achieve a standard technique for this task.

The model to text transformation process is based on

parsing the model structure outputting the desired code. As

an example to this process is working with the MOFscript

tool.

Figure 11 – GameEngine class.

Figure 12 – MOFScript template for code generation.

/**

* Default method constructor

*/

uml.Class::methodConstructor() {

 self.ownedOperation->forEach(o:uml.Operation) {

 o.visibility ' '

 if (o.returnResult.size() > 0) {

 '' + o.returnResult.first().type.name ''

 }

 else {

 'void '

 }

 o.name '('

 if (o.ownedParameter.size() > 1) {

 o.ownedParameter->forEach(g:uml.Parameter) {

 if

(g.name.equals(o.ownedParameter.last().name)) {

 g.name

 }

 else {

 g.name', '

 }

 }

 }

 else {

 o.ownedParameter->forEach(g:uml.Parameter) {

 g.name

 }

 }

 ') {

 }

 '

 }

}

 9

Figure 13 – Generated GameEngine.java file.

To work with this tool, the models have been exported

to the Eclipse Modeling Framework (EMF) format, and

using the MOFscript specific language, the desired text

outputs have been produced. We have used this tool to

generate a java file for each of the class in the chess game

model. Figure 11 illustrates the GameEngine class structure.

In Figure 12, a part of the transformation template

(methodConstructor) is shown. The generated

GameEngine.java file is given in Figure 13.

In this project, we also used model to text

transformation technique for creating a textual

representation for the chess game by using

OpenArchitectureWare (oAW) tool. oAW is a modular

MDA/MDD generator framework implemented in Java. It

supports parsing of arbitrary models, and a language family

to check and transform models as well as generate code

based on them.

The oAW framework is based on the EMF, which

again, is based on the eCore meta-modelling language.

ECore Meta-Models constitute the abstract syntax for our

model.

We created our chess game model in XML form which

conforms the game metamodel that is defined in an XML

schema (XSD). After completing this phase, a

transformation template is developed by using XPAND

language. The related code and result of this transformation

process is placed in Appendix.

9. CONCLUSIONS

 Model Driven Software Development is a

comprehensive process that enables a high level software

development methodology by encapsulating the low level

processes from developers with simplified and domain

oriented definitions. As a part of this process, metamodeling

has considerably big amount of importance, and should be

essentially focused on.

On the other hand, with respect to immature status of

modeling tools the modeling process becomes considerably

struggling. Especially the transformation phase of the

process required large amount of effort. In this study we

used Eclipse Modeling Framework, which is the most

widely used platform for modeling. However, large number

of Eclipse plug-ins provided for modeling are incubation

releases that have unresolved bugs, and these bugs makes it

difficult to focus on the modeling process.

In this paper we described a domain analysis for board

games and proposed metamodels for the domain based on

MOF and using extension mechanism of the UML

metamodel. During this process we find out that defining

concrete syntax from scratch is a difficult task and UML

concrete syntax may be used instead. The following step in

the model driven development of board games is defining

model-to-model and model-to-code transformations.

10. REFERENCES

 [1] Reyno, E.M., Cubel, J.A.C., Model-Driven Game

Development: 2D Platform Game Prototyping.

[2] Brucker, A.D., Doser, J., Metamodel-based UML

Notations for Domain-specific Languages, 4
th

 International

Workshop on Language Engineering (ATEM 2007), pp. 1-

??, 2007.

[3] Mark J. Nelson, Michael Mateas, Towards Automated

Game Design, In AI*IA 2007: Artificial Intelligence and

Human-Oriented Computing

[4] Steve Goschnick, Sandrine Balbo, Liz Sonenberg,

ShaMAN: An Agent Meta-model for Computer Games.

[5] Robin Hunicke, Marc LeBlanc, Robert Zubek, MDA: A

Formal Approach to Game Design and Game Research, In

Proceedings of the Challenges in Games AI Workshop,

Nineteenth National Conference of Artificial Intelligence.

[6] Merriam-Webster. Game. Merriam-Webster Online

Dictionary, accessed Apr. 16, 2009. http://www.merriam-

webster.com/dictionary/game.

[7] ATL Official Site: http://www.eclipse.org/gmt/atl

[8] Eclipse GMT Official Site: http://www.eclipse.org/gmt

[9] GameDSL Official Site: http://gamedsl.tuxfamily.org/

public class GameEngine {

 /**

 * Attributes

 */

 String gameName;

 GameState gameState;

 Player gamePlayers;

 MovableElement dynamicGameElements;

 NonmovableElement staticGameElements;

 Rule gameRules;

 Board board;

 /**

 * Class constructor

 */

 public GameEngine () {

 }

 /**

 * Methods

 */

 public void createGame(gameName) {

 }

 public void finishGame(gameName) {

 }

} //End of class GameEngine

 10

Figure 9 – Chess Game sample model

 11

Figure 10 – Backgammon sample model

 12
 Figure 14 – GameDSL domain model

 13

Appendix A – Code Listings

Model to Text Transformations

GAME METAMODEL DEFINED IN XML SCHEMA (METAMODEL.XSD)

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<schema xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:tns="http://www.example.org/game" elementFormDefault="qualified"

targetNamespace="http://www.example.org/game">

 <complexType name="Game">

 <sequence>

 <element name="start" type="IDREF"/>

 <element name="gameEngine" type="tns:GameEngine"/>

 </sequence>

 </complexType>

 <complexType name="GameEngine">

 <sequence>

 <element name="gameName" type="string"/>

 <element name="gameElement" type="tns:GameElement"/>

 <element name="nonmovableElement" type="tns:NonmovableElement"/>

 <element name="movableElement" type="tns:MovableElement"/>

 <element name="board" type="tns:Board"/>

 <element name="player" type="tns:Player"/>

 </sequence>

 </complexType>

 <complexType name="GameElement">

 <sequence>

 <element name="gameElementType" type="string"/>

 </sequence>

 </complexType>

 <complexType name="NonmovableElement">

 <sequence>

 <element name="name" type="string"/>

 </sequence>

 </complexType>

 <complexType name="MovableElement">

 <sequence>

 <element name="name" type="string"/>

 </sequence>

 </complexType>

 <complexType name="Board">

 <sequence>

 <element name="xCoordinates" type="string"/>

 <element name="yCoordinates" type="string"/>

 </sequence>

 </complexType>

 <complexType name="Player">

 <sequence>

 <element name="playerName" type="string"/>

 <element name="action" type="tns:Action"/>

 <element name="goal" type="tns:Goal"/>

 </sequence>

 </complexType>

 14

 <complexType name="Action">

 <sequence>

 <element name="coordinateX" type="string"/>

 <element name="coordinateY" type="string"/>

 </sequence>

 </complexType>

 <complexType name="Goal">

 <sequence>

 <element name="subGoal" type="tns:Goal"/>

 </sequence>

 </complexType>

</schema>

CHESS GAME MODEL DEFINED IN XML FILE (MODEL.XML)

<?xml version="1.0" encoding="UTF-8"?>

<game xmlns="http://www.example.org/game">

 <start>Chess Game Metamodel Structure</start>

 <gameEngine>

 <gameName>Chess Game</gameName>

 <gameElement>

 <gameElementType>Movable Elements, Nonmovable Elements</gameElementType>

 </gameElement>

 <nonmovableElement>

 <name>Board, timer</name>

 </nonmovableElement>

 <movableElement>

 <name>king, queen, rooks, bishops, knights, pawns</name>

 </movableElement>

 <board>

 <xCoordinates>a, b, c, d, e, f, g, h</xCoordinates>

 <yCoordinates>1, 2, 3, 4, 5, 6, 7, 8</yCoordinates>

 </board>

 <player>

 <playerName>Player Name</playerName>

 <action>

 <coordinateX>Player's move x-coordinate</coordinateX>

 <coordinateY>Player's move y-coordinate</coordinateY>

 </action>

 <goal>

 <subGoal></subGoal>

 </goal>

 </player>

 </gameEngine>

</game>

MODEL-TO-TEXT TRANSFORMATION TEMPLATE IN XPAND LANGUAGE (TEMPLATE.XPT)

«IMPORT metamodel»

«DEFINE Root FOR metamodel::Game»

«FILE "ChessGame.str"»

Explanation: «start»

Game Name: «gameEngine.gameName»

 15

Game Element Types: «gameEngine.gameElement.gameElementType»

Non-movable Element Types: «gameEngine.nonmovableElement.name»

Movable Element Types: «gameEngine.movableElement.name»

Board X-Coordinates: «gameEngine.board.xCoordinates»

Board Y-Coordinates: «gameEngine.board.yCoordinates»

Player Name: «gameEngine.player.playerName»

Player's Action X-Coordinate: «gameEngine.player.action.coordinateX»

Player's Action Y-Coordinate: «gameEngine.player.action.coordinateY»

«ENDFILE»

«ENDDEFINE»

Model to Model Transformations

module BoardGame2GameDSL; -- Module Template

create OUT: GameDSL from IN: BoardGame;

rule GameEngine2Game{

 from

 ge: BoardGame!GameEngine

 to

 g: GameDSL!Game(

 title <- 'Game', Author <- 'DEG', description <- 'Generated sample

chess game'

)

}

rule MovableElement2ActiveEntity{

 from

 me: BoardGame!MovableElement

 to

 ae: GameDSL!ActiveEntity(

 name <- me.name

)

}

rule NonMovableElement2StaticEntity{

 from

 nme: BoardGame!NonMovableElement

 to

 ne: GameDSL!StaticEntity(

 name <- nme.name

)

}

