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Abstract

This paper introduces a size invariant method to recog-
nize two-dimensional binary shapes using the recursive ero-
sion transform. Using recursive morphology with multiple
structuring elements, the method takes constant time per
pixel regardless of the scale of the shape model, and also
works on noisy images without requiring noise removal.
Results from experiments on 100 noisy images show the
methodology is able to detect every shape model’s scale and
position with 13 false alarms and five misdetections out of
254 total translated and scaled models.

1. Introduction

The ultimate goal of binary shape recognition is to im-
itate the human ability to recognize a variety of different
shapes in an image. A majority of the algorithms fall under
the areas of boundary [2], feature [1], parts [6], and skele-
ton representations [7]. Many of the algorithms fail with
the introduction of noise. Others are very complex, requir-
ing large amounts of memory or processing time. The al-
gorithm in this paper works with noisy images and requires
only a small amount of memory and processing time.

The problem is defined such that a set of ideal, noise
free, binary shape models is given. The input is a noisy
image containing a handful of scaled shape models and the
goal is to determine which shape models are placed in the
noisy image and to determine their origin and scale.

2. Recursive Erosion Transform

The erosion of imageA by a structuring elementB is
denoted byA	B and is definedA	B = fx 2 Enj \b2B A�bg (1)

In equation 1, each elementa andb ofA andB is the row
and column coordinates of foreground pixels in the image
and structuring element respectively. The operationA�b
is the operation of subtracting elementb of B from every
elementa of A [4], [3].

The recursive morphology definition of the erosion trans-
form breaks the structuring element into two parts, before
the origin in top-down left-right scan order calledY , and
after calledZ. The functionf(x) equals the value at loca-
tionx in imageA and equals zero outside the image’s width
and column dimensions. The functionsg andh act upon the
coordinate elements inY andZ respectively and are initial-
ized at�1 for all elements. The erosion transform is then
defined by a two pass forward,(f 	F b)(x), and backward,(f 	B b)(x), process.(f 	F b)(x) =(0 f(x) = 0minf1; [(f 	F b)	 g](x)g otherwise(2)(f 	B b)(x) = minf(f 	F b)(x); [(f 	B b)	 h](x)g

(3)(f 	 g)(x) = miny2Y ff(x+ y)� g(y)g (4)(f 	 h)(x) = minz2Zff(x+ z)� h(z)g (5)

3 Methodology

The basis of the methodology is the property that the ero-
sion transform of any scaled shape model results in a scaled
version of the original model’s erosion transform. By this
property, the values of the original shape model’s erosion
transform and the scaled model’s erosion transform, as well



as each values’ coordinates, are related by a scaling factor.
Therefore, corresponding original model values and coor-
dinates and translated and scaled model values and coordi-
nates are related by the following equationsqm = spm (6)um = srm + tr (7)vm = scm + tc (8)

whererm,cm, andpm are the row, column and erosion
transform values of the original model,um,vm, andqm are
the row, column, and erosion transform values of the trans-
lated and scaled model,s is the scale,tr is the row trans-
lation, andtc is column translation.(rm; cm; pm) will be
called model triples and(um; vm; qm) will be called image
triples. Solving fors, tr, andtc results ins = pmqm (9)tr = um � pmrmqm (10)tc = vm � pmcmqm (11)

Using structuring elements spanning angles over 360 de-
grees results in different transforms which provide enough
information, some not changed much by noise. Also, any
noise around the boundaries of the foreground of an object
has only slight effects on values within the boundary of the
erosion transform.

4 Algorithm

The algorithm contains both an offline and online part.
The offline algorithm begins by calculating the sixteen ero-
sion transforms for a single model. The sixteen structuring
elements can be seen in Figure 2, Once these have been cal-
culated, a list of triples is generated containing the relative
maximum values in the shape model. This single relative
maximum list is separated into smaller lists containing only
those relative maxima that are closely connected. Once the
smaller lists are generated, the center pixel for each list is
determined and stored in another list. This pre-processing
is done for all models.

The online part of the algorithm proceeds by first obtain-
ing the image triple containing the global maximum ero-
sion transform value in the image and the triple containing
the global maximum erosion transform value in one of the
shape models. For the moment it is assumed these are corre-
sponding triples and the scale and translation are calculated
by equations 9, 10, and 11. The model’s existence at this
location and scale is then verified by scaling and translat-
ing all the offline triples for that model using equations 6, 7,

(a) Image (b) Noisy Image

(c) Erosion Transform of
Noisy Image

Figure 1. Example Image

and 8 and searching in a three by three pixel square for an
erosion transform value within one of the expected erosion
transform value. If for a structuring element a given ratio of
the triples match, the model matches for that structuring ele-
ment. If a given ratio of the structuring elements match, the
model exists at that translation and scale. Once a model is
detected, the bounding box of the scaled model in the image
is calculated by scaling the model row and column dimen-
sions by the estimated scale, and the model is masked out
of the image. If the model fails verification, the steps are
repeated for all other models and the scale and translation is
calculated using all erosion transforms. All these steps are
repeated until the ratio of the number of foreground pixels
over the background is less than five percent of the original
ratio or the method does not detect another model using all
models and scale and translation estimates.

5 Testing and Results

Testing the feasibility of the method required the genera-
tion of primitives, shape models, and noisy images contain-
ing translated shape models. A shape model is composed
of a set of primitives which are circles, sectors, lines, trian-
gles and quadrilaterals. For this feasibilty study the model
size is 256 by 256. The shape model is constrained such



Table 1. Confusion matrix for the tests with noise
Assigned Models Mis. Avg.Dist. Avg.Scale

32 0 0 0 0 0 0 0 0 0 0 2.6939 0.0109
0 28 0 0 0 0 0 0 0 0 0 2.2733 0.0081
0 0 30 0 0 0 0 0 0 0 3 3.3781 0.0124
0 0 0 30 0 0 0 0 0 0 0 3.1621 0.0120

Groundtruthed 0 0 0 0 16 0 0 0 0 0 0 4.1056 0.0191
Models 0 0 0 0 0 22 0 0 0 0 0 2.7724 0.0111

0 0 0 0 0 0 20 0 0 0 0 2.1297 0.0117
0 0 0 0 0 0 0 21 0 0 0 1.4366 0.0054
0 0 0 0 0 0 0 0 27 0 1 1.9564 0.0073
0 0 0 0 0 0 0 0 0 28 1 2.5694 0.0119

False Alarm 0 0 0 0 0 11 2 0 0 0

Figure 2. The sixteen structuring elements

that each primitive overlaps by less than 5%. Image genera-
tion requires scaling the shape model and randomly placing
them in the image so they do not overlap with any other
shape model already in the image. For this feasibility study,
the image size is 512 by 512 and the scales are randomly
generated between 0.3 and 1.0.

In testing, we constructed 10 different shape models,
Each consisting of randomly generated primitives placed at
random positions, From these 10 models, 100 different im-
ages were generated. The 100 images were also perturbed
with noise by adding small irrelevant models, by adding
noise to the boundaries of the shape models, and by adding
pepper noise to the background [5]. The noise around the
boundary of the object and the pepper noise was generated
using 420 for the random seedc0 = 0:002, �0 = 0:7,� = 0:7, �0 = 0:7, � = 0:7 and stElSize = 0. Ir-
relevant models were added by generating two additional
models and scaling them between .08 and .10. This was
done between two to four times. Figure 3 shows three of the
10 shape models generated an this experiment, and Figure
1, shows a generated image with and without noise. Tests
were run on images with and without noise, and the results
are summarized in Table 1.

Figure 3. Three randomly generated models

6 Conclusion

This paper presented a successful algorithm to detect
multiple scaled shape models in a noisy image. It was ac-
complished by using the recursive erosion transform since
the erosion transform of any scaled shape model results in a
scaled version of the original erosion transform. The feasi-
bility tests show the method works well with the addition of
noise. Future work includes the application of probabilistic
methods to evaluate the errors caused by noise.
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