
©The McGraw-Hill Companies, 2006

IMPLEMENTING METHODS

(Chapter 4)

©The McGraw-Hill Companies, 2006

Implementing methods
Introduction
• A method is a part of a class, and contains a particular

set of instructions
• So far all the classes you have written have contained

just one method, the main method
• Normally, a method will perform a single well-defined

task

Examples
• A method could perform to calculate the area of a circle
• A method to display a particular message on the screen
• A method to convert a temperature from Fahrenheit to

Celsius

©The McGraw-Hill Companies, 2006

Calling a method
• When we get a method to perform its task we

say that we are calling the method

• When we call a method, what we are actually
doing is telling the program to
– jump to a new place (where the method instructions

are stored)
– carry out the set of instructions that it finds there
– when it has finished, return and carry on where it

left off

©The McGraw-Hill Companies, 2006

Declaring and defining methods
• Program 4.1 prompts the user to enter his or her

first name, family name and town

• Each time the prompt is displayed, it is followed
by a message

• We have had to type out the two lines that
display the confidentiality message three times

• Instead we could have written a method

©The McGraw-Hill Companies, 2006

import java.util.*;
public class DataEntry{

public static void main(String[] args){
Scanner sc = new Scanner(System.in);
String firstName, familyName, town;
System.out.println("First name");
System.out.println("Note that all information is confidential");
System.out.println("No personal details will be shared");
firstName = sc.next();
System.out.println("Family name");
System.out.println("Note that all information is confidential");
System.out.println("No personal details will be shared");
familyName = sc.next();
System.out.println("Town");
System.out.println("Note that all information is confidential");
System.out.println("No personal details will be shared");
town = sc.next();

}
}

Program 4.1

©The McGraw-Hill Companies, 2006

Declaring and defining methods

• The body of this method (between the two curly
brackets) contains the instructions

• The first line, which declares the method, is called
the method header

private static void displayMessage(){
System.out.println("Note that all information is confidential");
System.out.println("No personal details will be shared");

}

©The McGraw-Hill Companies, 2006

Explanation of words in method header

private
• Placing private in front of the method name means that

the method cannot be accessed by any other class

• If you wanted the methods of your class to be used by
other classes, you would declare your method as public

• The method above is here purely to "help" the main
method of this class, and so we declare it as private

• A private method such as this, which is not accessible
to other classes, is often referred to as a helper method

©The McGraw-Hill Companies, 2006

Explanation of words in method header

static
• The meaning of this will not be explained fully until

chapter 7

• For now, you just need to know is that this method has
to be static, because it is going to be called from
another method (that is, the main method) that is also
static

©The McGraw-Hill Companies, 2006

Explanation of words in method header

void
• It is possible for a method to send back some information

once it terminates

• This particular method does not need to do so

• The word void indicates that the method does not send
back any information

©The McGraw-Hill Companies, 2006

Explanation of words in method header

displayMessage()
• This is the name that we have chosen to give our method
• It is followed by a pair of empty brackets
• If we want to send information into a method we list, in

these brackets, the types of data that we are going to
send in

• Here, however, we do not have to send in any data, and
the brackets are left empty

private static void displayMessage(){
System.out.println("Note that all information is confidential");
System.out.println("No personal details will be shared");

}

©The McGraw-Hill Companies, 2006

Calling a method
• To call a method in Java (i.e. to get it to do its job), we

simply use its name, along with the following brackets,
which in the above case are empty

• We re-write program 4.1, replacing the appropriate lines
of code with the simple message call (program 4.2)

• The method is defined separately after the main method

• It could have come before it, since the order in which
methods are presented doesn't matter to the compiler

• When the program is run, it always starts with main

©The McGraw-Hill Companies, 2006

import java.util.*;
public class DataEntry{

public static void main(String[] args){
Scanner sc = new Scanner(System.in);
String firstName, familyName, town;
System.out.println("First name");
displayMessage();
firstName = sc.next();
System.out.println("Family name");
displayMessage();
familyName = sc.next();
System.out.println("Town");
displayMessage();
town = sc.next();

}
private static void displayMessage(){

System.out.println("Note that all information is confidential");
System.out.println("No personal details will be shared");

}
}

Program 4.2

©The McGraw-Hill Companies, 2006

import java.util.*;

// a program that calculates and displays the cost
// of a product after tax has been added

public class FindCost3{

public static void main(String[] args){
Scanner sc = new Scanner(System.in);
System.out.print("Initial price: ");
double price = sc.nextDouble();
System.out.print("Tax rate: ");
double tax = sc.nextDouble();

price = price * (1 + tax / 100);

System.out.println(“After tax = " + price);
}

}

A reminder of program 1.4

©The McGraw-Hill Companies, 2006

Method input and output

• We will create a method that performs this calculation

• We could call this method at various points within the
program

• Each time we do so, we can do the calculation for different
values of the price and the tax

• We will need a way to send in these values to the method

• We also need to arrange for the method to tell us the
result of adding the new tax

©The McGraw-Hill Companies, 2006

Explanation of method header

• We are declaring a method of type double

• The type of a method refers to its return type

• It is possibly to declare methods of any type - int,
boolean, char and so on

• The return type could even be a class such as String

• Within the brackets we are declaring two variables, both
of type double

©The McGraw-Hill Companies, 2006

Explanation of method header

• Variables declared in this way are known as the formal
parameters of the method

• They are going to hold, respectively, the values of the
price and the tax that are going to be sent in from the
calling method

• These variables could be given any name we choose,
but we have called them priceIn and taxIn respectively

©The McGraw-Hill Companies, 2006

Explanation of method body

• return ends the method
– As soon as the program encounters this word, the

method terminates, and control of the program jumps
back to the calling method

• return sends back a value
– In this case, it sends back the result of the calculation

– If the method is of type void, then there is no need
to include a return instruction

©The McGraw-Hill Companies, 2006

import java.util.*;

public class FindCost5{
public static void main(String[] args){

Scanner sc = new Scanner(System.in);
System.out.print("Initial price: ");
double price = sc.nextDouble();
System.out.print("Tax rate: ");
double tax = sc.nextDouble();

price = addTax(price,tax);
System.out.println("Cost after tax = " + price);

}
private static double addTax(double priceIn,

 double taxIn){
return priceIn * (1 + taxIn / 100);

}
}

Program 4.3

©The McGraw-Hill Companies, 2006

Analysis of program 4.3
• The line that calls the method is:

• There are two items in the brackets;
– These are the actual values that we are sending into

our method
– They are therefore referred to as the actual

parameters of the method
– Their values are copied onto the formal parameters in

the called method

©The McGraw-Hill Companies, 2006

How does the program knows which values
in the actual parameter list are copied onto
which variables in the formal parameter list?

• The answer to this is that it is the order that is
important

• In FindCost example, the value of price is copied onto
priceIn; the value of tax is copied onto taxIn

• Although the variable names have been conveniently
chosen, the names themselves have nothing to do with
which value is copied to which variable

©The McGraw-Hill Companies, 2006

Using the return value
• The addTax method returns the result that we are

interested in, namely the new price of the item

• We need to do is to assign this value to the variable
price. As you have already seen we have done this in the
same line in which we called the method:

• A method that returns a value can be used just as if it
were a variable of the same type as the return value

©The McGraw-Hill Companies, 2006

Using the return value

• Above, we have used it in an assignment statement

• It could also, for example, be dropped into a println
statement, just as if it were a simple variable of type
double

©The McGraw-Hill Companies, 2006

More examples of methods
Calculate the square of a number
• We will name the method square

• It should accept a single value of type double

• It will return a double

• The single instruction will return the result of multiplying
the number by itself

©The McGraw-Hill Companies, 2006

We can use this method in another part
of the program
• We can declare and initialize two variables as follows

• We want to assign the square of a to a double variable
x and the square of b to a double variable y

• After these instructions, x would hold the value 6.25 and
y the value 81.0

©The McGraw-Hill Companies, 2006

A method that returns the greater of
two integers
• The method will be called max

• It will accept two integer values, and will return the
bigger value of the two

• It will require two integer parameters

• It will return an integer

©The McGraw-Hill Companies, 2006

A method that reports on whether or not
a particular integer is an even number

• We will call the method isEven
– It will accept a single parameter of type int

– It will need to return a value of true if the number is
even or false if it is not; so the return type is going
to be boolean

©The McGraw-Hill Companies, 2006

• A boolean method such as the one above can
often be used as the test in a selection or loop

• To test if a number is odd

©The McGraw-Hill Companies, 2006

Notes
• A method cannot change the original value of a

variable that was passed to it as a parameter

• The reason for this is that all that is being
passed to the method is a copy of whatever this
variable contains - in other words, just a value

• The method does not have access to the original
variable

• Whatever value is passed is copied to the
parameter in the called method

©The McGraw-Hill Companies, 2006

public class ParameterDemo{

public static void main(String[] args){
int x = 10;
demoMethod(x);
System.out.println(x);

}
private static void demoMethod(int x){

x = 25;
System.out.println(x);

}
}

What is the output?

©The McGraw-Hill Companies, 2006

public class ParameterDemo{

public static void main(String[] args){
int x = 10;
demoMethod(x);
System.out.println(x);

}
private static void demoMethod(int x){

x = 25;
System.out.println(x);

}
}

25
10

©The McGraw-Hill Companies, 2006

Variable scope
• Variables are only "visible" within the pair of curly

brackets in which they have been declared
– If they are referred to in a part of the program outside these

brackets, then you will get a compiler error

• Variables that have been declared inside the brackets
of a particular method are called local variables
– Variables price and tax are said to be local to the main

method

• We say the variables have a scope
– Their visibility is limited to a particular part of the program

– If price or tax were referred to in the addTax method, they
would be out of scope

©The McGraw-Hill Companies, 2006

©The McGraw-Hill Companies, 2006

©The McGraw-Hill Companies, 2006

Summary
• A method can access variables that have been

declared as formal parameters

• A method can access variables that have been
declared locally - in other words that have been
declared within the curly brackets of the method

• As you will learn in chapter 7, a method has
access to variables declared as attributes of the
class

• A method cannot access any other variables

©The McGraw-Hill Companies, 2006

Method overloading
• You have already encountered the term overloading in

previous chapters, in connection with operators. For
example,
– The division operator (/) can be used for two distinct purposes:

• division of integers

• division of real numbers

– The + operator can be used for:
• addition

• concatenating two strings

• So the same operator can behave differently depending
on what it is operating on - operators can be overloaded

• Methods too can be overloaded

©The McGraw-Hill Companies, 2006

Consider the max method again

• The max method accepts two integers and returns the
greater of the two

• What if we wanted to find the greatest of three integers?

©The McGraw-Hill Companies, 2006

• What if we wanted to find the greatest of three integers?

• We could write a new method with the following header

• Both methods have the same name but the parameter list
is different; each one will behave differently

– We have given this method the same name as before

– This time it has three parameters instead of two

• We can declare and call both methods within the same
class

©The McGraw-Hill Companies, 2006

Polymorphism
• When two or more methods, distinguished by their

parameter lists, have the same name but perform
different functions we say that they are overloaded

• Method overloading is one example of what is known as
polymorphism

• Polymorphism literally means having many forms, and it
is an important feature of object-oriented programming
languages

• It refers to the phenomenon of having methods and
operators with the same name performing different
functions

©The McGraw-Hill Companies, 2006

Polymorphism
How, when we call an overloaded method,
does the program knows which one we
mean?

• It is determined by the actual parameters that
accompany the method call

• They are matched with the formal parameter
list, and the appropriate method will be called.

©The McGraw-Hill Companies, 2006

public class findMax{
public static void main(String[] args){

System.out.println("max: " + max(10, 56));
System.out.println("max: " + max(2, 6, 9));

}
private static int max(int first,int second){

if (first > second)
return first;

else
return second;

}
private static int max(int first,int second,int third){

int result = first;
if (second > result)

result = second;
if (third > result)

result = third;
return result;

}
}

©The McGraw-Hill Companies, 2006

An alternative way to implement the
second version of max

• We could start off by finding the maximum of the
first two integers, using the first version of max

• We could then do the same thing again, comparing
the result of this with the third number

©The McGraw-Hill Companies, 2006

Consider program 4.8
• The program allows a user to process the sale of tickets

for some event.

• Four menu options are offered:
– Option 1: Displays the total amount of money required to

purchase a number of tickets; children are charged half-price

– Option 2: Display the total amount of money required to purchase
a number of tickets; the total cost is added to the grand total

– Option 3: Display the grand total

– Option 4: Terminate the program

• You can see that we have had to declare a new Scanner
object in each method - now that you understand the
notion of variable scope, you should understand why we
have had to do this

©The McGraw-Hill Companies, 2006

import java.util.*;

public class TicketVendor{

 public static void main(String[] args){
 final double PRICE = 30; // price of an adult ticket
 double total = 0, cost;
 char choice;
 do{
 choice = displayMenu();
 switch (choice){
 case '1' : calculateCost(PRICE);
 break;
 case '2' : cost = calculateCost(PRICE);
 total += cost;
 break;
 case '3' : displayTotal(total);
 break;
 case '4' : break;
 default : System.out.println("Invalid choice");
 }
 } while (choice != '4');
 }

Program 4.8

©The McGraw-Hill Companies, 2006

 private static char displayMenu(){
 Scanner sc = new Scanner(System.in);
 System.out.println("1. Get cost of tickets");
 System.out.println("2. Record purchase of tickets");
 System.out.println("3. View total received so far");
 System.out.println("4. Quit");
 System.out.println();
 System.out.println("Enter a number from 1 - 4");
 return sc.next().charAt(0);
 }

Program 4.8

©The McGraw-Hill Companies, 2006

 // calculates and displays the cost of tickets
 private static double calculateCost(double priceIn){
 Scanner sc = new Scanner(System.in);
 int adult, child;
 double cost;

 System.out.print("How many adult tickets required? ");
 adult = sc.nextInt();
 System.out.print("How many child tickets required? ");
 child = sc.nextInt();
 cost = (adult + 0.5 * child) * priceIn;
 System.out.println("Total cost will be " + cost);
 return cost;

}

 // displays the current total
 private static void displayTotal(double totalIn){
 System.out.println("Total received " + totalIn);
 }

}

Program 4.8

