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Epigenetics 

 Epigenetics: study of all meiotically and 

mitotically heritable changes in gene 

expression that are not coded in the DNA 

sequence itself 

 DNA methylation 

 RNA associated silencing 

 Histone modification 

Nature 2004;429:457-73 



Histones 

 Proteins in eukaryotic cells that package DNA 

into nucleosomes 

nucleosome 

histone 



Histone structure 



Histone modifications 

Lund and Lohuizen Genes Dev 2004 

A: acetylation 

M: methylation 

P: phosphorilation 

U: ubiquitylation 

S: SUMOylation 



Histone modifications 

• Gene activation correlated with H3-K9 acetylation  

• Gene silencing associated with H3-K9 methylation 



Histone Modifications and Human 

Diseases 

Coffin-Lowry syndrome is a rare genetic disorder characterized by 
mental retardation and abnormalities of the head and facial and 
other areas.  It is caused by mutations in the RSK2 gene (histone 
phosphorylation) and is inherited as an X-linked dominant genetic 
trait. Males are usually more severely affected than females. 

 

Rubinstein-Taybi syndrome is characterized by short stature, 
moderate to severe intellectual disability, distinctive facial features, 

and broad thumbs and first toes. It is caused by mutations in 

CREB-binding protein (histone acetylation) 

 



Detection of histone modifications 

 ChIP: chromatin immunoprecipitation 

 Similar to MeDIP assay 

 Proteins are used to enrich for DNA that are 

packaged by modified histones 

 Collect, then 

 ChIP-on-chip: analyze with microarray 

 ChIP-seq: sequence 



ChIP-chip 

Wong and Chang, Journal of Investigative Dermatology, 2005 



ChIP-seq 

Peter J Park, Nat Rev Genet, 2009 



ChIP-seq 

Peter J Park, Nat Rev Genet, 2009 



Peaks: ChIP-chip vs ChIP-seq 

Peter J Park, Nat Rev Genet, 2009 



Peaks: ChIP-seq 

Peter J Park, Nat Rev Genet, 2009 



Peak calling 

 Segmentation algorithms 

 HMMseg, etc. 

 Dynamic Bayesian Network based segmentation: 

 Segway (Hoffman et al., Nat Methods, 2012) 

 Poisson models and binomial distribution 

 PeakSeq (Rozowsky et al., Nat Biotech, 2009) 



RNA FOLDING 



RNA folding  

 Prediction of secondary structure of an RNA 

given its sequence 

 General problem is NP-hard due to “difficult” 

substructures, like pseudoknots 

 Most existing algorithms require too much 

memory (≥O(n2)), and run time (≥O(n3)) thus 

limited to smaller RNA sequences 



RNA Basics 

 RNA bases A,C,G,U 

 Canonical Base Pairs 

 A-U 

 G-C 

 G-U 

“wobble” pairing 

 Bases can only pair with 

one other base. 

 

 

http://www.bioalgorithms.info/  

2 Hydrogen Bonds 3 Hydrogen Bonds – more stable 

http://www.bioalgorithms.info/


RNA Structural Levels 

 

Primary 

AAUCG...CUUCUUCCA 

Primary 

Secondary 
Tertiary 



RNA Basics 

 transfer RNA (tRNA) 

 messenger RNA (mRNA) 

 ribosomal RNA (rRNA) 

 small interfering RNA (siRNA) 

 micro RNA (miRNA) 

 small nucleolar RNA (snoRNA) 

http://www.genetics.wustl.edu/eddy/tRNAscan-SE/  

http://www.genetics.wustl.edu/eddy/tRNAscan-SE/
http://www.genetics.wustl.edu/eddy/tRNAscan-SE/
http://www.genetics.wustl.edu/eddy/tRNAscan-SE/


RNA families 

 Rfam : General non-coding RNA database  

(most of the data is taken from specific 

databases) 

http://www.sanger.ac.uk/Software/Rfam/ 

Includes many families of non coding RNAs  and functional 

Motifs, as well as their alignement and their secondary structures 



RNA Secondary Structure 

Hairpin 

loop 

Junction (Multiloop) 

Bulge Loop 

Single-Stranded 

Interior Loop 

Stem 

Pseudoknot 



Example: 5S rRNA 

E. coli 5S 

120 bases 

T. thermophilus 5S 

120 bases 



Example: E. coli 16S rRNA 

1542 bases 



Example: E. coli 23S rRNA 

2904 bases 



Example: HIV 

9173 bases 

Watts et al., Nature, 2009 



Binary Tree Representation of RNA 

Secondary Structure 
 Representation of  RNA structure 

using Binary tree 

 Nodes represent 

 Base pair if two bases are shown 

 Loop if base and “gap” (dash) are 

shown 

 Pseudoknots still not represented 

 Tree does not permit varying 

sequences 

 Mismatches 

 Insertions & Deletions 

Images – Eddy et al. 



Circular Representation 

Images – David Mount 



Examples of known interactions of 

RNA secondary structural elements 

Pseudoknot 

Kissing hairpins 
Hairpin-bulge 

contact 

These patterns are 

excluded from the 

prediction schemes as 

their computation is too 

intensive. 



Predicting RNA secondary structure 

 Base pair maximization 

 Minimum free energy (most common) 

 Fold, Mfold (Zuker & Stiegler) 

 RNAfold (Hofacker) 

 Multiple sequence alignment 

 Use known structure of RNA with similar 

sequence 

 Covariance 

 Stochastic Context-Free Grammars 



Sequence Alignment as a method 

to determine structure 

 Bases pair in order to form backbones and 
determine the secondary structure 

 Aligning bases based on their ability to pair with 
each other gives an algorithmic approach to 
determining the optimal structure 

 

 



Simplifying Assumptions 

 RNA folds into one minimum free-energy 

structure.  

 There are no knots (base pairs never cross). 

 The energy of a particular base pair in a 

double stranded regions is sequence 

independent 

 Neighbors do not influence the energy. 

 Was solved by dynamic programming, Zuker 

and Stiegler 1981 

 

 



Base Pair Maximization 

U 

C 

C 

A G 

G 

A 

C 

Zuker (1981) Nucleic Acids Research 9(1) 133-149 



Base Pair Maximization – Dynamic 

Programming Algorithm 

 

Simple Example: 

Maximizing Base Pairing 

http://bioalgorithms.info 

S(i,j) is the folding of the subsequence of the RNA 

strand from index i to index j which results in the 

highest number of base pairs 



Base Pair Maximization – Dynamic Programming 

Algorithm 

 Alignment Method 

 Align RNA strand to itself 

 Score increases for feasible 

base pairs 

 Each score independent 

of overall structure 

 Bifurcation adds extra 

dimension 

Initialize first two 

diagonal arrays to 0 
Fill in squares sweeping 

diagonally 

Images – Sean Eddy 

Bases cannot pair, 
similar 

to unmatched alignment 

S(i, j – 1) 

Bases can pair, similar 

to matched alignment 

S(i + 1, j) 

Dynamic Programming 

–  possible paths S(i + 1, j – 1) +1 



Base Pair Maximization – Dynamic Programming 

Algorithm 

 Alignment Method 

 Align RNA strand to itself 

 Score increases for feasible 

base pairs 

 Each score independent 

of overall structure 

 Bifurcation adds extra 

dimension 

Initialize first two 

diagonal arrays to 0 
Fill in squares sweeping 

diagonally 

Images – Sean Eddy

Reminder: 

For all k 

 

S(i,k) + S(k + 1, j) 

k = 0 : Bifurcation 

max in this case 

 

S(i,k) + S(k + 1, j) 

Reminder: 

For all k 

 

S(i,k) + S(k + 1, j) 

Bases cannot pair, 
similar 

Bases can pair, similar 

to matched alignment 
Dynamic Programming 

–  possible paths 
Bifurcation – add values 

for all k 



Base Pair Maximization - Drawbacks 

 Base pair maximization will not necessarily 
lead to the most stable structure 

 May create structure with many interior loops or 
hairpins which are energetically unfavorable 

 Comparable to aligning sequences with 
scattered matches – not biologically 
reasonable 



Energy Minimization 

 Thermodynamic Stability 

 Estimated using experimental techniques 

 Theory : Most Stable is the Most likely 

 No Pseudoknots due to algorithm limitations 

 Uses Dynamic Programming alignment technique 

 Attempts to maximize the score taking into account 

thermodynamics 

 MFOLD and ViennaRNA 



Free energy model 

Free energy of a structure is the sum of all 

interactions energies 

Each interaction energy can be calculated thermodynamically  

Free Energy(E)  = E(CG)+E(CG)+….. 



Why is MFE secondary structure 

prediction hard? 

 MFE structure can be found by 
calculating free energy of all possible 
structures 
 

 BUT the number of potential structures 
grows exponentially with the number, n, 
of bases 



RNA folding with Dynamic programming  

(Zuker and Stiegler) 

 W(i,j): MFE structure of substrand from i to j 

i j 

W(i,j) 



RNA folding with dynamic programming 

 Assume a function W(i,j) which is the MFE for the sequence 
starting at i and ending at j (i<j) 

 

 

                             

 

 

 Define scores, for example base pair (CG) =-1 non-pair(CA)=1 
(we want a negative score )   

 Consider 4 possibilities: 

 i,j are a base pair, added to the structure for i+1..j-1 

 i is unpaired, added to the structure for i+1..j 

 j is unpaired, added to the structure for i..j-1 

 i,j are paired, but not to each other;  

 Choose the minimal energy 

i (i+1) 

 

W(i,j) 

(j-1) j 



Energy Minimization Results 

 Linear RNA strand folded back on itself to create secondary 
structure 

 Circularized representation uses this requirement 

 Arcs represent base pairing 

Images – David Mount 

 All loops must have at least 3 bases in them 
 Equivalent to having 3 base pairs between all arcs 

Exception: Location where the beginning and end of RNA come 

together in circularized representation 



Trouble with Pseudoknots 

 Pseudoknots cause a breakdown in the Dynamic 
Programming Algorithm. 

 In order to form a pseudoknot, checks must be made to 
ensure base is not already paired – this breaks down the 
recurrence relations 

Images – David Mount 



Sequence dependent free-energy  
Nearest Neighbor Model 

    U U 
 

C          G  

G          C  

A          U 

G          C 

A          UCGAC  3’ 

 

 5’ 

    U U 
 

C          G  

U          A  

A          U 

G          C 

A          UCGAC  3’ 

 

 5’ 

       

Energy is influenced by the previous base pair 

 (not by the base pairs further down). 



Sequence dependent free-energy 

values of the base pairs  
     U U 

 

C          G  

G          C  

A          U 

G          C 

A          UCGAC  3’ 

 

 5’ 

    U U 
 

C          G  

U          A  

A          U 

G          C 

A          UCGAC  3’ 

 

 5’ 

Example values: 

GC     GC     GC    GC 

AU     GC     CG    UA  

-2.3    -2.9    -3.4   -2.1 

These energies are estimated experimentally from small synthetic RNAs.  

 

 



Adding Complexity to Energy 

Calculations 
 Stacking energy - Assign negative energies to 

these between base pair regions. 

 Energy is influenced by the previous base pair (not by 

the base pairs further down). 

 These energies are estimated experimentally from 

small synthetic RNAs.  

 Positive energy - added for destabilizing regions 

such as bulges, loops, etc. 

 More than one structure can be predicted 



Mfold  

 Positive energy - added for destabilizing 

regions such as bulges, loops, etc. 

 More than one structure can be predicted 



Free energy computation 

       U  U 

A               A 

       G  C 

       G  C 

   A 

       G  C 

       U  A 

       A  U 

       C  G 

       A  U 

    A        3’ 

A 

5’ 

   -0.3 

-0.3 

-1.1 mismatch of hairpin 

-2.9 stacking 

+3.3 1nt bulge -2.9 stacking 

-1.8 stacking 

5’ dangling 

-0.9 stacking 

-1.8 stacking 

-2.1 stacking 

G= -4.6 KCAL/MOL 

+5.9 4 nt loop  



Mfold  

 Positive energy - added for destabilizing 

regions such as bulges, loops, etc. 

 More than one structure can be predicted 



Frey U H et al. Clin Cancer Res 2005;11:5071-5077 

©2005 by American Association for Cancer Research 

More than one structure can be predicted for the  

same RNA 
 



Energy Minimization Drawbacks 

 Compute only one optimal structure 

 Usual drawbacks of purely mathematical 

approaches 

 Similar difficulties in other algorithms 

 Protein structure 

 Exon finding 



RNA fold prediction based on 

Multiple Alignment 

Information from multiple sequence  alignment (MSA)  can 

help to predict the probability of positions i,j to be base-

paired. 

 

 

G  C  C  U  U  C  G  G  G  C 

G  A  C  U  U  C  G  G  U  C 

G  G  C  U  U  C  G  G  C  C 



Compensatory Substitutions 

    U U 
 

C          G  

U          A  

A          U 

G          C 

A          UCGAC  3’ 

 

 

G C 

5’ 

Mutations that maintain the secondary 

structure can help predict the fold 



RNA secondary structure can be revealed by 

identification of compensatory mutations  

G  C  C  U  U  C  G  G  G  C 

G  A  C  U  U  C  G  G  U  C 

G  G  C  U  U  C  G  G  C  C 

  U  C 

U       G 

C       G 

N       N’ 

G       C 



Insight from Multiple Alignment 

Information from multiple sequence  alignment 

(MSA)  can help to predict the 

probability of positions i,j to be base-paired. 

 

 Conservation – no additional information 

 Consistent mutations (GC GU) – support 

stem 

 Inconsistent mutations – does not support 

stem. 

 Compensatory mutations – support stem. 

 



RNAalifold 
 

 Predicts the consensus secondary 

structure for a set of aligned RNA 

sequences by using modified dynamic   

programming algorithm  that add 

alignment information to the standard 

energy model 

 Improvement in prediction accuracy 

 



Alternative Algorithms - Covariaton 

 Incorporates Similarity-based method 

 Evolution maintains sequences that are important 

 Change in sequence coincides to maintain 
structure through base pairs (Covariance) 
 Cross-species structure conservation example – tRNA 

 Manual and automated approaches have 
been used to identify covarying base pairs 

 Models for structure based on results 

 Ordered Tree Model 

 Stochastic Context Free Grammar  

 

Expect areas of base 

pairing in tRNA to be  

covarying between 

various species 

Base pairing creates  

same stable tRNA  

structure in organisms 

  

Mutation in one base 

yields pairing  

impossible and breaks 

down structure 

Covariation ensures 

ability to base pair is  

maintained and RNA 

structure is conserved 



Covariance Model 

 HMM which permits flexible alignment to an RNA structure –  

 emission and transition probabilities  

 Model trees based on finite number of states  

 Match states – sequence conforms to the model: 

 MATP – State in which bases are paired in the model and sequence 

 MATL & MATR – State in which either right or left bulges in the 
sequence and the model 

 Deletion – State in which there is deletion in the sequence when 
compared to the model 

 Insertion – State in which there is an insertion relative to model 

 Transitions have probabilities 

 Varying probability – Enter insertion, remain in current state, etc 

 Bifurcation – no probability, describes path 

 



Covariance Model (CM) Training 

Algorithm 
 S(i,j) = Score at indices i and j in RNA when aligned to the 

Covariance Model 

Independent frequency of seeing the  

symbols (A, C, G, T) in locations i or j  

depending on symbol. 

 Frequencies obtained by aligning model to “training data” – consists 

of sample sequences 

 Reflect values which optimize alignment of sequences to model 

Frequency of seeing the symbols  

(A, C, G, T) together in locations i and j  

depending on symbol. 



 Calculate the probability 
score of aligning RNA to CM 

 Three dimensional matrix – 
O(n³) 
 Align sequence to given 

subtrees in CM  

 For each subsequence 
calculate all possible states 

 Subtrees evolve from 
Bifurcations 
 For simplicity Left singlet is 

default 

Images – Eddy et al. 

Alignment to CM Algorithm  



•For each calculation take into 

account the  

•Transition (T) to next state  

•Emission probability (P) in the 

state as  

determined by training data 

Bifurcation – does not have a probability 

associated with the state 

Deletion – does not have an emission  

probability (P) associated with it 

Alignment to CM Algorithm  



Covariance Model Drawbacks 

 Needs to be well trained 

 Not suitable for searches of large RNA 

 Structural complexity of large RNA cannot be 

modeled 

 Runtime 

 Memory requirements 


