CS681: Advanced Topics in Computational Biology

Week 7 Lectures 2-3

Can Alkan EA224 calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs681/

Genome Assembly

Graph problems in assembly

Hamiltonian cycle/path

- Typically used in overlap graphs
- NP-hard
- Eulerian cycle/path
 - Typically used in de Bruijn graphs

The Bridge Obsession Problem

Find a tour crossing every bridge just once Leonhard Euler, 1735

Bridges of Königsberg (Kaliningrad)

Eulerian Cycle Problem

 Find a cycle that visits every edge exactly once

1

Linear time

More complicated Königsberg

Hamiltonian Cycle Problem

- Find a cycle that visits every vertex exactly once
- NP complete

Game invented by Sir William Hamilton in 1857

Traveling salesman problem

- TSP: find the shortest path that visits every vertex once
 - Directed / undirected
 - NP-complete
 - Exact solutions:
 - Held-Karp: O(n²2ⁿ)
 - Heuristic
 - Lin-Kernighan

Assembly problem

- Genome assembly problem is finding shortest common superstring of a set of sequences (reads):
 - Given strings {s₁, s₂, ..., s_n}; find the superstring T such that every s_i is a substring of T
 - NP-hard problem
 - Greedy approximation algorithm
 - Works for simple (low-repeat) genomes

Shortest Superstring Problem: Example

The Shortest Superstring problem

Set of strings: {000, 001, 010, 011, 100, 101, 110, 111}

Reducing SSP to TSP

Define overlap (s_i, s_j) as the length of the longest prefix of s_j that matches a suffix of s_i.
 aaaggcatcaaatctaaaggcatcaaa

aaaggcatcaaatctaaaggcatcaaa

overlap=12

Reducing SSP to TSP

Define overlap (s_i, s_j) as the length of the longest prefix of s_j that matches a suffix of s_j.

aaaggcatcaaatctaaaggcatcaaa

aaaggcatcaaatctaaaggcatcaaa

- Construct a graph with *n* vertices representing the *n* strings s₁, s₂,..., s_n.
- Insert edges of length overlap (s_i, s_j) between vertices s_i and s_j.
- Find the shortest path which visits every vertex exactly once. This is the Traveling Salesman Problem (TSP), which is also NP – complete.

Reducing SSP to TSP (cont'd)

SSP to TSP: An Example

S = { ATC, CCA, CAG, TCC, AGT }

Assembly paradigms

- Overlap-layout-consensus
 - greedy (TIGR Assembler, phrap, CAP3...)
 - graph-based (Celera Assembler, Arachne)
 - SGA for NGS platforms
- Eulerian path on de Bruijn graphs(especially useful for short read sequencing)
 EULER, Velvet, ABySS, ALLPATHS-LG, Cortex, etc.

Overlap-Layout-Consensus

- Traditional assemblers: Phrap, Arachne, Celera etc.
- Short reads: Edena, SGA
- Generally more expensive computationally
 Pairwise global alignments
- However, as reads get longer (>200bp ?) produce better results
 - They use the alignments of entire reads not isolated k-mer overlaps

Overlap-Layout-Consensus

Assemblers: ARACHNE, PHRAP, CAP, TIGR, CELERA

Overlap: find potentially overlapping reads

Layout: merge reads into contigs and contigs into scaffolds

Consensus: derive the DNA sequence and correct read errors

..ACGATTACAATAGGTT.

TAGTCGAGGCTTTAGATCCGATGAGGCTTTAGAGACAG

AGTCGAG CTTTAGA CGATGAG CTTTAGA GTCGAGG TTAGATC ATGAGGC GAGACAG GAGGCTC ATCCGAT AGGCTTT GAGACAG AGTCGAG TAGATCC ATGAGGC TAGAGAA TAGTCGA CTTTAGA CCGATGA TTAGAGA CGAGGCT AGATCCG TGAGGCT AGAGACA TAGTCGA GCTTTAG TCCGATG GCTCTAG TCGACGC GATCCGA GAGGCTT AGAGACA TAGTCGA TTAGATC GATGAGG TTTAGAG GTCGAGG TCTAGAT ATGAGGC TAGAGAC AGGCTTT ATCCGAT AGGCTTT GAGACAG AGTCGAG TTAGATT ATGAGGC AGAGACA GGCTTTA TCCGATG TTTAGAG CGAGGCT TAGATCC TGAGGCT GAGACAG AGTCGAG TTTAGATC ATGAGGC TTAGAGA GAGGCTT GATCCGA GAGGCTT GAGACAG

AGTCGAG CTTTAGA CGATGAG CTTTAGA GTCGAGG TTAGATC ATGAGGC GAGACAG GAGGCTC ATCCGAT AGGCTTT GAGACAG AGTCGAG TAGATCC ATGAGGC TAGAGAA TAGTCGA CTTTAGA CCGATGA TTAGAGA CGAGGCT AGATCCG TGAGGCT AGAGACA TAGTCGA GCTTTAG TCCGATG GCTCTAG TCGACGC GATCCGA GAGGCTT AGAGACA TAGTCGA TTAGATC GATGAGG TTTAGAG GTCGAGG TCTAGAT ATGAGGC TAGAGAC AGGCTTT ATCCGAT AGGCTTT GAGACAG AGTCGAG TTAGATT ATGAGGC AGAGACA GGCTTTA TCCGATG TTTAGAG CGAGGCT TAGATCC TGAGGCT GAGACAG AGTCGAG TTTAGATC ATGAGGC TTAGAGA GAGGCTT GATCCGA GAGGCTT GAGACAG

- Find the best match between the suffix of one read and the prefix of another
- Due to sequencing errors, need to use dynamic programming to find the optimal overlap alignment
- Apply a filtration method to filter out pairs of fragments that do not share a significantly long common substring

Overlapping Reads

- Sort all k-mers in reads (k ~ 24)
- Find pairs of reads sharing a k-mer
- Extend to full alignment throw away if not >95% similar

TACA TAGATTACACAGATTAC T GA

Overlapping Reads and Repeats

- A k-mer that appears N times, initiates N² comparisons
- For an Alu that appears 10⁶ times → 10¹² comparisons too much

Solution:

Discard all *k*-mers that appear more than $t \times \text{Coverage}$, $(t \sim 10)$

Finding Overlapping Reads

Create local multiple alignments from the overlapping reads

Finding Overlapping Reads (cont'd)

Correct errors using multiple alignment

- Score alignments
- Accept alignments with good scores

- Repeats are a major challenge
- Do two aligned fragments really overlap, or are they from two copies of a repeat?
- Solution: repeat masking hide the repeats!!!
- Masking results in high rate of misassembly (up to 20%)
- Misassembly means alot more work at the finishing step

Merge Reads into Contigs

Repeats, Errors, and Contig Lengths

- Repeats shorter than read length are OK
- Repeats with more base pair differencess than sequencing error rate are OK
- To make a smaller portion of the genome appear repetitive, try to:
 - Increase read length
 - Decrease sequencing error rate

Error Correction

Role of error correction:

- Discards ~90% of single-letter sequencing errors
 - decreases error rate
 - \Rightarrow decreases effective repeat content
 - \Rightarrow increases contig length

Link Contigs into Scaffolds

Too dense: Overcollapsed?

Link Contigs into Scaffolds(cont'd)

Find all links between unique contigs

Connect contigs incrementally, if ≥ 2 links

Link Contigs into Scaffolds (cont'd)

Fill gaps in scaffolds with paths of overcollapsed contigs

Link Contigs into Scaffolds (cont'd)

Define T: contigs linked to either A or B

Fill gap between A and B if there is a path in G passing only from contigs in T

- A consensus sequence is derived from a profile of the assembled fragments
- A sufficient number of reads is required to ensure a statistically significant consensus

Reading errors are corrected

Derive Consensus Sequence

TAGATTACACAGATTACTGA TTGATGGCGTAA CTA TAGATTACACAGATTACTGACTTGATGGCGTAAACTA TAG TTACACAGATTATTGACTTCATGGCGTAA CTA TAGATTACACAGATTACTGACTTGATGGCGTAA CTA TAGATTACACAGATTACTGACTTGATGGGGGTAA CTA

TAGATTACACAGATTACTGACTTGATGGCGTAA CTA

Derive multiple alignment from pairwise read alignments

Derive each consensus base by weighted voting

Celera Assembler

Celera Assembler

Compute all overlap consistent sub-assemblies: Unitigs (Uniquely Assembled Contig)

Celera Assembler

Edge Types:

The Unitig Reduction

1. Remove "Transitively Inferrable" Overlaps:

The Unitig Reduction

2. Collapse "Unique Connector" Overlaps:

Identifying Unique DNA Stretches

Discriminator Statistic is log-odds ratio of probability unitig is unique DNA versus 2-copy DNA.

Celera Assembler

Scaffold U-unitigs with confirmed pairs

Celera Assembler

Overlap Graph: Hamiltonian Approach

Each vertex represents a read from the original sequence. Vertices from repeats are connected to many others. Repeat Repeat

Repeat

Find a path visiting every VERTEX exactly once: Hamiltonian path problem

Overlap Graph: Eulerian Approach

Eulerian path problem

Multiple Repeats

Can be easily constructed with any number of repeats

Pre-assembly

NGS ERROR CORRECTION

Ideally

	reference
ATGTTTT A	ACGTTAATGTTTTAGTATCGGAAATTACG ATGTTTT ATGTTTT
ACGTATT	ATGTTTT ATGTTTT
ATGTTTT ACGTTTT	ACGTATT ACGTTTT
ATGTTTT	
1707707	

...ATGTTCT...

Challenges

- Unknown reference genome
- Billions of reads
- Non-uniform error distribution
- Non-uniform genome sampling
- Polymorphisms
- Repeats

Approaches

Spectrum alignment problem:

 Chaisson et al., 2004, 2008; Chin et al., 2009; Quake (Kelley et al., 2010); Reptile (Yang et al., 2010)

Suffix tree:

- SHREC (Schroder et al., 2009)
- SHREC (Salmela and Schroder, 2010)
- Alignment based:
 - CORAL (Salmela, 2011)
- Most incorporate the base quality values

COUNTING KMERS

Counting k-mers for assembly

Error correction

- Erroneous reads will have low-frequency k-mers
- Contamination detection
 - Sequence from DNA contamination will be represented at a very low coverage

Repeat detection

- Very high frequency k-mers: repeat/duplication
- Handle accordingly
- k-mers in NGS data sets can easily overwhelm memory capacity

Counting k-mers

- Given sequencing reads count how many times each k-mer occurs
- De Bruijn graph assemblers
 - Euler (Pevzner et al. 2001)
 - Velvet (Zerbino et al. 2008)
 - Allpaths (Butler et al. 2008)
 - ABySS (Simpson et al. 2009)
 - SOAPDenovo (Li et al. 2010)
- Error Correction: Quake (Kelley et al. 2010)
- k-mer counters: Jellyfish (Marçais et al. 2011), BFCounter (Melsted et al., 2011)

ATGAAGTGGG k-mers ATGA TGAA GAAG AAGT AGTG GTGG TGGG

Memory usage

Simple method

Store each k-mer in a hash table with a counter

Memory needed

- store canonical k-mers
- 2 bits for each of A,C,G,T
- k/4 bytes per k-mer (k=31, 8 bytes)
- 1-2 bytes per counter
- +10% hash table overhead
- For a genome of size G, expect to see up to G distinct k-mers (2.5-3 billion for Human)
- ~ 36 Gb of memory

Number of k-mers

- This ignores the effect of sequencing errors
- 31-mers in reads aligned to Chr21
- Illumina 100x10032-fold coverage
- Mapped 31-mers to reference
- 99.9% of unique k-mers are errors

45 44.5 31-mers in hq18 31-mers not in ha18 44 Vumber of 31-mers (millions) 1.5 1 .5 0 10 20 30 40 0 50

31-mer count distribution on Chromosome 21

31–mer coverage

Removing unique k-mers

Number of 31-mers

Fold coverage

Bloom filter

- Bloom filter encodes a set of k-mers
- Uses a bit array B of length m and d hash functions
 - to insert x, we set $B[h_i(x)] = 1$, for i=1,...,d
 - to query y, we check if B[h_i(y)] all equal 1, for i=1,...,d
- Need an estimate for n, the number of k-mers to insert

Bloom filter example

- a and b are inserted in to a Bloom filter with m = 10, n=2, d=3
- c is not in the set, since some bits are 0

- d has not been inserted, but is still reported in the set, a false positive
- Bloom filters have no false negatives

Bloom filter

Storing n k-mers in m bit array with d hash functions has a false positive rate of

≈(1-e^{-d n/m})^d

- Given n and m, the optimal d is ≈m/n ln(2)
- Examplem = 8n, d=5 gives 2.16% fpr m = 6n, d=4 gives 5.6% fpr m = 4n, d=3 gives 14.6% fpr
- m=8n, corresponds to storing 1 byte per k-mer

Use a Bloom filter and a hash table

Algorithm

This scheme guarantees

- k-mers seen twice will be in the hash table
- some unique k-mers will slip through
- second pass gives accurate counts and allows to discard false positives
- Memory usage
 - □ full for k-mers in hash table (~ 9 bytes)
 - minimal for k-mers in bloom filter (~ .5-1 bytes)

Results whole genome

- 25-mers in 36 bp reads
- 2.37 billion distinct 25-mers in hg18
- 12.18 billion 25-mers in the sequencing data
 - 9.35 billion unique
 - 2.83 billion with coverage 2 or greater

Program	Time (hrs)	Memory (G)
BFCounter	23.82	42
Naïve	> 26.83	>128

NEXT: DE BRUIJN GRAPHS