
CS681: Advanced Topics in

Computational Biology

Can Alkan

EA224

calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs681/

Week 7 Lectures 2-3

Genome Assembly

Test genome

Random shearing and

Size-selection

Sequencing

Contigs/

scaffolds

Assemble

Graph problems in assembly

 Hamiltonian cycle/path

 Typically used in overlap graphs

 NP-hard

 Eulerian cycle/path

 Typically used in de Bruijn graphs

The Bridge Obsession Problem

Bridges of Königsberg (Kaliningrad)

Find a tour crossing every bridge just once

Leonhard Euler, 1735

Pregel

River

Eulerian Cycle Problem

 Find a cycle that

visits every edge

exactly once

 Linear time

More complicated Königsberg

Hamiltonian Cycle Problem

 Find a cycle that

visits every vertex

exactly once

 NP – complete

Game invented by Sir

William Hamilton in 1857

Traveling salesman problem

 TSP: find the shortest path that visits every

vertex once

 Directed / undirected

 NP-complete

 Exact solutions:

 Held-Karp: O(n22n)

 Heuristic

 Lin-Kernighan

Assembly problem

 Genome assembly problem is finding

shortest common superstring of a set of

sequences (reads):

 Given strings {s1, s2, …, sn}; find the superstring T

such that every si is a substring of T

 NP-hard problem

 Greedy approximation algorithm

 Works for simple (low-repeat) genomes

Shortest Superstring Problem: Example

Reducing SSP to TSP

 Define overlap (si, sj) as the length of the longest prefix of
sj that matches a suffix of si.

 aaaggcatcaaatctaaaggcatcaaa

 aaaggcatcaaatctaaaggcatcaaa

 overlap=12

Reducing SSP to TSP

 Define overlap (si, sj) as the length of the longest prefix of
sj that matches a suffix of si.

 aaaggcatcaaatctaaaggcatcaaa

 aaaggcatcaaatctaaaggcatcaaa

 Construct a graph with n vertices representing the n strings
s1, s2,…., sn.

 Insert edges of length overlap (si, sj) between vertices si
and sj.

 Find the shortest path which visits every vertex exactly
once. This is the Traveling Salesman Problem (TSP),
which is also NP – complete.

Reducing SSP to TSP (cont’d)

SSP to TSP: An Example

S = { ATC, CCA, CAG, TCC, AGT }

 SSP

 AGT

 CCA

 ATC

 ATCCAGT

 TCC

 CAG

 ATCCAGT

TSP ATC

CCA

TCC

AGT

CAG

2

2 2 2

1

1

1
0

1

1

Assembly paradigms

 Overlap-layout-consensus

 greedy (TIGR Assembler, phrap, CAP3...)

 graph-based (Celera Assembler, Arachne)

 SGA for NGS platforms

 Eulerian path on de Bruijn graphs(especially

useful for short read sequencing)

 EULER, Velvet, ABySS, ALLPATHS-LG, Cortex,

etc.

Slide from Mihai Pop

Overlap-Layout-Consensus

 Traditional assemblers: Phrap, Arachne,

Celera etc.

 Short reads: Edena, SGA

 Generally more expensive computationally

 Pairwise global alignments

 However, as reads get longer (>200bp ?)

produce better results

 They use the alignments of entire reads not

isolated k-mer overlaps

Overlap-Layout-Consensus

Assemblers: ARACHNE, PHRAP, CAP, TIGR, CELERA

Overlap: find potentially overlapping reads

Layout: merge reads into contigs and

 contigs into scaffolds

Consensus: derive the DNA

sequence and correct read errors
..ACGATTACAATAGGTT..

A quick example
TAGTCGAGGCTTTAGATCCGATGAGGCTTTAGAGACAG

 AGTCGAG CTTTAGA CGATGAG CTTTAGA

 GTCGAGG TTAGATC ATGAGGC GAGACAG

 GAGGCTC ATCCGAT AGGCTTT GAGACAG

 AGTCGAG TAGATCC ATGAGGC TAGAGAA

TAGTCGA CTTTAGA CCGATGA TTAGAGA

 CGAGGCT AGATCCG TGAGGCT AGAGACA

TAGTCGA GCTTTAG TCCGATG GCTCTAG

 TCGACGC GATCCGA GAGGCTT AGAGACA

TAGTCGA TTAGATC GATGAGG TTTAGAG

 GTCGAGG TCTAGAT ATGAGGC TAGAGAC

 AGGCTTT ATCCGAT AGGCTTT GAGACAG

 AGTCGAG TTAGATT ATGAGGC AGAGACA

 GGCTTTA TCCGATG TTTAGAG

 CGAGGCT TAGATCC TGAGGCT GAGACAG

 AGTCGAG TTTAGATC ATGAGGC TTAGAGA

 GAGGCTT GATCCGA GAGGCTT GAGACAG

A quick example

 AGTCGAG CTTTAGA CGATGAG CTTTAGA

 GTCGAGG TTAGATC ATGAGGC GAGACAG

 GAGGCTC ATCCGAT AGGCTTT GAGACAG

 AGTCGAG TAGATCC ATGAGGC TAGAGAA

TAGTCGA CTTTAGA CCGATGA TTAGAGA

 CGAGGCT AGATCCG TGAGGCT AGAGACA

TAGTCGA GCTTTAG TCCGATG GCTCTAG

 TCGACGC GATCCGA GAGGCTT AGAGACA

TAGTCGA TTAGATC GATGAGG TTTAGAG

 GTCGAGG TCTAGAT ATGAGGC TAGAGAC

 AGGCTTT ATCCGAT AGGCTTT GAGACAG

 AGTCGAG TTAGATT ATGAGGC AGAGACA

 GGCTTTA TCCGATG TTTAGAG

 CGAGGCT TAGATCC TGAGGCT GAGACAG

 AGTCGAG TTTAGATC ATGAGGC TTAGAGA

 GAGGCTT GATCCGA GAGGCTT GAGACAG

A quick example

 AGTCGAG CTTTAGA CGATGAG

 GTCGAGG TTAGATC ATGAGGC GAGACAG

 GAGGCTC ATCCGAT

 TAGAGAA

TAGTCGA CCGATGA TTAGAGA

 CGAGGCT AGATCCG TGAGGCT AGAGACA

 GCTTTAG TCCGATG

 TCGACGC GATCCGA

 GATGAGG

 TCTAGAT

 AGGCTTT

 GGCTTTA

 TAGATCC

A quick example

 AGTCGAG CTTTAGA CGATGAG

 GTCGAGG TTAGATC ATGAGGC GAGACAG

 GAGGCTC ATCCGAT

 TAGAGAA

TAGTCGA CCGATGA TTAGAGA

 CGAGGCT AGATCCG TGAGGCT AGAGACA

 GCTTTAG TCCGATG

 TCGACGC GATCCGA

 GATGAGG

 TCTAGAT

 AGGCTTT

 GGCTTTA

 TAGATCC

A quick example
TAGTCGA

 AGTCGAG

 GTCGAGG

 CGAGGCT

 GAGGCTC

 AGGCTTT TCTAGAT

 GGCTTTA TTAGATC

 GCTTTAG TAGATCC

 CTTTAGA AGATCCG

 GATCCGA

 ATCCGAT

 TCCGATG

 CCGATGA

TTAGAGA CGATGAG

 TAGAGAA GATGAGG

 AGAGACA ATGAGGC

 GAGACAG TGAGGCT

Overlap

 Find the best match between the suffix of one

read and the prefix of another

 Due to sequencing errors, need to use

dynamic programming to find the optimal

overlap alignment

 Apply a filtration method to filter out pairs of

fragments that do not share a significantly

long common substring

Overlapping Reads

TAGATTACACAGATTAC

TAGATTACACAGATTAC

|||||||||||||||||

• Sort all k-mers in reads (k ~ 24)

• Find pairs of reads sharing a k-mer

• Extend to full alignment – throw away if not

>95% similar

T GA

TAGA

| ||

TACA

TAGT

||

Overlapping Reads and Repeats

 A k-mer that appears N times, initiates N2
comparisons

 For an Alu that appears 106 times 1012
comparisons – too much

 Solution:

 Discard all k-mers that appear more than

 t Coverage, (t ~ 10)

Finding Overlapping Reads

Create local multiple alignments from the
overlapping reads

TAGATTACACAGATTACTGA
TAGATTACACAGATTACTGA
TAG TTACACAGATTATTGA
TAGATTACACAGATTACTGA
TAGATTACACAGATTACTGA
TAGATTACACAGATTACTGA
TAG TTACACAGATTATTGA
TAGATTACACAGATTACTGA

Finding Overlapping Reads (cont’d)

• Correct errors using multiple alignment

TAGATTACACAGATTACTGA
TAGATTACACAGATTACTGA
TAG TTACACAGATTATTGA
TAGATTACACAGATTACTGA
TAGATTACACAGATTACTGA

C: 20
C: 35
T: 30
C: 35
C: 40

C: 20
C: 35
C: 0
C: 35
C: 40

• Score alignments

• Accept alignments with good scores

A: 15
A: 25

A: 40
A: 25

-

A: 15
A: 25

A: 40
A: 25

A: 0

Layout

 Repeats are a major challenge

 Do two aligned fragments really overlap, or
are they from two copies of a repeat?

 Solution: repeat masking – hide the
repeats!!!

 Masking results in high rate of misassembly
(up to 20%)

 Misassembly means alot more work at the
finishing step

Merge Reads into Contigs

Merge reads up to potential repeat boundaries

repeat region

Repeats, Errors, and Contig Lengths

 Repeats shorter than read length are OK

 Repeats with more base pair differencess
than sequencing error rate are OK

 To make a smaller portion of the genome
appear repetitive, try to:

 Increase read length

 Decrease sequencing error rate

Error Correction

Role of error correction:

 Discards ~90% of single-letter sequencing

errors

 decreases error rate

 decreases effective repeat content

 increases contig length

Link Contigs into Scaffolds

Too dense:

Overcollapsed?

Inconsistent links:

Overcollapsed?

Normal density

Link Contigs into Scaffolds(cont’d)

Find all links between unique contigs

Connect contigs incrementally, if 2 links

Link Contigs into Scaffolds (cont’d)

Fill gaps in scaffolds with paths of

overcollapsed contigs

Link Contigs into Scaffolds (cont’d)

Contig A
Contig B

Define T: contigs linked to either A or B

Fill gap between A and B if there is a path in

G passing only from contigs in T

Consensus

 A consensus sequence is derived from a

profile of the assembled fragments

 A sufficient number of reads is required to

ensure a statistically significant consensus

 Reading errors are corrected

Derive Consensus Sequence

Derive multiple alignment from pairwise read

alignments

TAGATTACACAGATTACTGA TTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAAACTA
TAG TTACACAGATTATTGACTTCATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGGGTAA CTA

TAGATTACACAGATTACTGACTTGATGGCGTAA CTA

Derive each consensus base by weighted

voting

Repeat Res I, IIRepeat Res I, II

Celera Assembler

OverlapperOverlapper

UnitigerUnitiger

ScaffolderScaffolder

AA

BB

impliesimplies

AA

BB

TRUE

OROR

AA BB

REPEAT-

INDUCED

Find all overlaps Find all overlaps 40bp allowing 6% 40bp allowing 6%

mismatch. mismatch.

Trim & ScreenTrim & Screen

Repeat Res I, IIRepeat Res I, II

Celera Assembler

Compute all overlap consistent subCompute all overlap consistent sub--assemblies:assemblies:

 Unitigs (Uniquely Assembled Contig)

OverlapperOverlapper

UnitigerUnitiger

ScaffolderScaffolder

Trim & ScreenTrim & Screen

Celera Assembler

Edge Types:

AA

BB

AA

BB

AA

BB

BB

BB

BB

AA

AA

AA

Regular DovetailRegular Dovetail

Prefix DovetailPrefix Dovetail

Suffix DovetailSuffix Dovetail

E.G.:E.G.: Edges are annotated Edges are annotated

with deltas of with deltas of

overlapsoverlaps

The Unitig Reduction

1. Remove “Transitively Inferrable” Overlaps:1. Remove “Transitively Inferrable” Overlaps:

AA

BB

CC AA
BB

CC

The Unitig Reduction

2. Collapse “Unique Connector” Overlaps:2. Collapse “Unique Connector” Overlaps:

AA BB

AA

BB

412412 352352

4545

Arrival IntervalsArrival Intervals

Discriminator Statistic is logis log--odds ratio of probability unitig odds ratio of probability unitig

is unique DNA versus 2is unique DNA versus 2--copy DNA.copy DNA.

Definitely Unique Definitely

Repetitive
Don’t Know

--1010 +10+10 00

Dist. For Unique
Dist. For Repetitive

Unique DNA unitig Repetitive DNA unitig

Identifying Unique DNA Stretches

Repeat Res I, IIRepeat Res I, II

Celera Assembler

OverlapperOverlapper

UnitigerUnitiger

ScaffolderScaffolder

 Scaffold UScaffold U--unitigs with confirmed pairsunitigs with confirmed pairs

Mated reads

Trim & ScreenTrim & Screen

Repeat Res I, IIRepeat Res I, II

Celera Assembler

OverlapperOverlapper

UnitigerUnitiger

ScaffolderScaffolder

 Fill repeat gaps with doubly anchored positive Fill repeat gaps with doubly anchored positive

unitigsunitigs

Unitig>0Unitig>0

Trim & ScreenTrim & Screen

Overlap Graph: Hamiltonian Approach

Repeat Repeat Repeat

Find a path visiting every VERTEX exactly once: Hamiltonian path problem

Each vertex represents a read from the original sequence.

Vertices from repeats are connected to many others.

Overlap Graph: Eulerian Approach

Repeat Repeat Repeat

Find a path visiting every EDGE

exactly once:

Eulerian path problem

Placing each repeat edge

together gives a clear

progression of the path

through the entire sequence.

Multiple Repeats

Repeat1 Repeat1 Repeat2 Repeat2

Can be easily

constructed with any

number of repeats

NGS ERROR CORRECTION

Pre-assembly

Ideally

…ATGTTTT…

…ACGTATT…

…ACGTTTT…

…ATGTTTT…

…ATGTTCT…

…ATGTTTT…

... ACGTTAATGTTTTAGTATCGGAAATTACG…

…ATGTTTT…

…ATGTTTT…

…ATGTTTT…

…ATGTTTT…

…ACGTATT…

…ACGTTTT…

reference

Challenges

 Unknown reference genome

 Billions of reads

 Non-uniform error distribution

 Non-uniform genome sampling

 Polymorphisms

 Repeats

Approaches

 Spectrum alignment problem:

 Chaisson et al., 2004, 2008; Chin et al., 2009; Quake

(Kelley et al., 2010); Reptile (Yang et al., 2010)

 Suffix tree:

 SHREC (Schroder et al., 2009)

 SHREC (Salmela and Schroder, 2010)

 Alignment based:

 CORAL (Salmela, 2011)

 Most incorporate the base quality values

COUNTING KMERS

Counting k-mers for assembly

 Error correction

 Erroneous reads will have low-frequency k-mers

 Contamination detection

 Sequence from DNA contamination will be

represented at a very low coverage

 Repeat detection

 Very high frequency k-mers: repeat/duplication

 Handle accordingly

 k-mers in NGS data sets can easily overwhelm

memory capacity

 Given sequencing reads
count how many times
each k-mer occurs

 De Bruijn graph assemblers
 Euler (Pevzner et al. 2001)

 Velvet (Zerbino et al. 2008)

 Allpaths (Butler et al. 2008)

 ABySS (Simpson et al. 2009)

 SOAPDenovo (Li et al. 2010)

 Error Correction: Quake (Kelley et al. 2010)

 k-mer counters: Jellyfish (Marçais et al. 2011),
BFCounter (Melsted et al., 2011)

Counting k-mers

ATGAAGTGGG

k-mers ATGA
TGAA

GAAG
AAGT

TGGG

AGTG
GTGG

Memory usage
 Simple method

Store each k-mer in a

hash table with a counter

 Memory needed
 store canonical k-mers

 2 bits for each of A,C,G,T

 k/4 bytes per k-mer (k=31, 8 bytes)

 1-2 bytes per counter

 +10% hash table overhead

 For a genome of size G, expect to see up to G
distinct k-mers (2.5-3 billion for Human)

 ~ 36 Gb of memory

Number of k-mers

 This ignores the effect of sequencing errors

 31-mers in reads

aligned to Chr21

 Illumina 100x100

32-fold coverage

 Mapped 31-mers

to reference

 99.9% of unique

k-mers are errors

Removing unique k-mers

Bloom filter

 Bloom filter encodes a set of k-mers

 Uses a bit array B of length m and d hash

functions

 to insert x, we set B[hi(x)] = 1, for i=1,…,d

 to query y, we check if B[hi(y)] all equal 1,

for i=1,…,d

 Need an estimate for n, the number of k-mers

to insert

Bloom filter example

• a and b are inserted in to

a Bloom filter with

m = 10, n=2, d=3

• c is not in the set, since

some bits are 0

• d has not been inserted, but is still

reported in the set, a false positive

• Bloom filters have no false negatives

d

b a

c

Bloom filter

 Storing n k-mers in m bit array with d hash

functions has a false positive rate of

≈(1-e-d n/m)d

 Given n and m, the optimal d is ≈m/n ln(2)

 Example m = 8n, d=5 gives 2.16% fpr

 m = 6n, d=4 gives 5.6% fpr

 m = 4n, d=3 gives 14.6% fpr

 m=8n, corresponds to storing 1 byte per k-mer

Algorithm

 Use a Bloom filter and a hash table

Bloom filter

Hash table

ATGAAGTGGG

k-mers ATGA
TGAA

GAAG
AAGT

TGGG

AGTG
GTGG

AGTGGGTGAA

k-mers AGTG
GTGG

TGGG
GGGT

TGAA

GGTG
GTGA

AGTG

GTGG

TGGG

GTGA

0

0

0

0 1

1

1

2

2

2

1

First

Pass

Second

Pass

Algorithm

 This scheme guarantees

 k-mers seen twice will be in the hash table

 some unique k-mers will slip through

 second pass gives accurate counts and allows to

discard false positives

 Memory usage

 full for k-mers in hash table (~ 9 bytes)

 minimal for k-mers in bloom filter (~ .5-1 bytes)

Results whole genome

 25-mers in 36 bp reads

 2.37 billion distinct 25-mers in hg18

 12.18 billion 25-mers in the sequencing data

 9.35 billion unique

 2.83 billion with coverage 2 or greater

Program Time (hrs) Memory (G)

BFCounter 23.82 42

Naïve > 26.83 >128

NEXT: DE BRUIJN GRAPHS

