CS681: Advanced Topics in Computational Biology

Week 7 Lectures 2-3
Can Alkan
EA224
calkan@cs.bilkent.edu.tr
http://www.cs.bilkent.edu.tr/~calkan/teaching/cs681/

Genome Assembly

Graph problems in assembly

- Hamiltonian cycle/path
- Typically used in overlap graphs
- NP-hard
- Eulerian cycle/path
- Typically used in de Bruijn graphs

The Bridge Obsession Problem

Find a tour crossing every bridge just once Leonhard Euler, 1735

Bridges of Königsberg (Kaliningrad)

Eulerian Cycle Problem

- Find a cycle that visits every edge exactly once

- Linear time

More complicated Königsberg

Hamiltonian Cycle Problem

- Find a cycle that visits every vertex exactly once
- NP - complete

Game invented by Sir William Hamilton in 1857

Traveling salesman problem

- TSP: find the shortest path that visits every vertex once
- Directed / undirected
- NP-complete
- Exact solutions:
- Held-Karp: $\mathrm{O}\left(\mathrm{n}^{2} 2^{\mathrm{n}}\right)$
- Heuristic
- Lin-Kernighan

Assembly problem

- Genome assembly problem is finding shortest common superstring of a set of sequences (reads):
- Given strings $\left\{\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{n}\right\}$; find the superstring T such that every s_{i} is a substring of T
- NP-hard problem
- Greedy approximation algorithm
- Works for simple (low-repeat) genomes

Shortest Superstring Problem: Example

The Shortest Superstring problem
Set of strings: $\{000,001,010,011,100,101,110,111\}$
Concatenation
Superstring
000001010011100101110111

Reducing SSP to TSP

- Define overlap (s_{i}, s_{j}) as the length of the longest prefix of s_{j} that matches a suffix of s_{i}. aaaggcatcaaatctaaaggcatcaaa
aaaggcatcaaatctaaaggcatcaaa
overlap=12

Reducing SSP to TSP

- Define overlap $\left(s_{i}, s_{j}\right)$ as the length of the longest prefix of s_{j} that matches a suffix of s_{i}. aaaggcatcaaatctaaaggcatcaaa
aaaggcatcaaatctaaaggcatcaaa
- Construct a graph with n vertices representing the n strings $s_{1}, s_{2}, \ldots ., s_{n}$.
- Insert edges of length overlap (s_{i}, s_{j}) between vertices s_{i} and s_{j}.
- Find the shortest path which visits every vertex exactly once. This is the Traveling Salesman Problem (TSP), which is also NP - complete.

Reducing SSP to TSP (conta)

SSP to TSP: An Example

 $S=\{$ ATC , CCA CAG, TCC, AGT $\}$SSP
AGT
CCA
ATC
ATCCAGT
TCC
CAG

ATCCAGT

Assembly paradigms

Overlap-layout-consensus

- greedy (TIGR Assembler, phrap, CAP3...)
- graph-based (Celera Assembler, Arachne)
- SGA for NGS platforms
- Eulerian path on de Bruijn graphs(especially useful for short read sequencing)
- EULER, Velvet, ABySS, ALLPATHS-LG, Cortex, etc.

Overlap-Layout-Consensus

- Traditional assemblers: Phrap, Arachne, Celera etc.
- Short reads: Edena, SGA
- Generally more expensive computationally
- Pairwise global alignments
- However, as reads get longer (>200bp ?) produce better results
- They use the alignments of entire reads not isolated k-mer overlaps

Overlap-Layout-Consensus

Assemblers: ARACHNE, PHRAP, CAP, TIGR, CELERA

Overlap: find potentially overlapping reads

Layout: merge reads into contigs and contigs into scaffolds

Consensus: derive the DNA sequence and correct read errors

A quick example

TAGTCGAGGCTTTAGATCCGATGAGGCTTTAGAGACAG

```
    AGTCGAG CTTTAGA CGATGAG CTTTAGA
        GTCGAGG TTAGATC ATGAGGC GAGACAG
            GAGGCTC ATCCGAT AGGCTTT GAGACAG
    AGTCGAG TAGATCC ATGAGGC TAGAGAA
TAGTCGA CTTTAGA CCGATGA TTAGAGA
    CGAGGCT AGATCCG TGAGGCT AGAGACA
TAGTCGA GCTTTAG TCCGATG GCTCTAG
    TCGACGC GATCCGA GAGGCTT AGAGACA
TAGTCGA TTAGATC GATGAGG TTTAGAG
    GTCGAGG TCTAGAT ATGAGGC TAGAGAC
        AGGCTTT ATCCGAT AGGCTTT GAGACAG
AgTCGAG TTAGATT ATGAGGC AGAGACA
            GGCTTTA TCCGATG TTTAGAG
    CGAGGCT TAGATCC TGAGGCT GAGACAG
AgTCGAG TTTAGATC ATGAGGC TTAGAGA
    GAGGCTT GATCCGA GAGGCTT GAGACAG
```


A quick example

A quick example

A quick example

A quick example

Overlap

- Find the best match between the suffix of one read and the prefix of another
- Due to sequencing errors, need to use dynamic programming to find the optimal overlap alignment
- Apply a filtration method to filter out pairs of fragments that do not share a significantly long common substring

Overlapping Reads

- Sort all k-mers in reads (k ~24)
- Find pairs of reads sharing a k-mer
- Extend to full alignment - throw away if not >95\% similar

Overlapping Reads and Repeats

- A k-mer that appears N times, initiates N^{2} comparisons
- For an Alu that appears 10^{6} times $\rightarrow 10^{12}$ comparisons - too much
- Solution:

Discard all k-mers that appear more than $t \times$ Coverage, $(t \sim 10)$

Finding Overlapping Reads

Create local multiple alignments from the overlapping reads

Finding Overlapping Reads (cont'd)

- Correct errors using multiple alignment

- Score alignments
- Accept alignments with good scores

Layout

- Repeats are a major challenge
- Do two aligned fragments really overlap, or are they from two copies of a repeat?
- Solution: repeat masking - hide the repeats!!!
- Masking results in high rate of misassembly (up to 20\%)
- Misassembly means alot more work at the finishing step

Merge Reads into Contigs

Merge reads up to potential repeat boundaries

Repeats, Errors, and Contig Lengths

- Repeats shorter than read length are OK
- Repeats with more base pair differencess than sequencing error rate are OK
- To make a smaller portion of the genome appear repetitive, try to:
- Increase read length
\square Decrease sequencing error rate

Error Correction

Role of error correction:

Discards $\sim 90 \%$ of single-letter sequencing errors
decreases error rate
\Rightarrow decreases effective repeat content
\Rightarrow increases contig length

Link Contigs into Scaffolds

Normal density

Too dense:
Overcollapsed?

Inconsistent links:
Overcollapsed?

Link Contigs into Scaffolds(cont'd)

Find all links between unique contigs

Connect contigs incrementally, if ≥ 2 links

Link Contigs into Scaffolds (contd)

Fill gaps in scaffolds with paths of overcollapsed contigs

Link Contigs into Scaffolds (contd)

Define T: contigs linked to either A or B
Fill gap between A and B if there is a path in
G passing only from contigs in T

Consensus

- A consensus sequence is derived from a profile of the assembled fragments
- A sufficient number of reads is required to ensure a statistically significant consensus
- Reading errors are corrected

Derive Consensus Sequence

TAGATTACACAGATTACTGACTTGATGGCGTAA CTA

Derive multiple alignment from pairwise read alignments

Derive each consensus base by weighted voting

Celera Assembler

Trim \& Screen

Find all overlaps ≥ 40 bp allowing 6% mismatch.

implies
TRUE
A

OR

$$
\xrightarrow{-}
$$

REPEAT-
INDUCED

Celera Assembler

Trim \& Screen

Overlapper

Unitiger

Scaffolder

Repeat Res I, ID
Compute all overlap consistent sub-assemblies: Unitigs (Uniquely Assembled Contig)

Celera Assembler

Edge Types:

 E.G.:

The Unitig Reduction

1. Remove "Transitively Inferrable" Overlaps:

B

The Unitig Reduction

2. Collapse "Unique Connector" Overlaps:

Identifying Unique DNA Stretches

Unique DNA unitig

Arrival Intervals

Repetitive DNA unitig

Discriminator Statistic is log-odds ratio of probability unitig is unique DNA versus 2-copy DNA.

Celera Assembler

Trim \& Screen

Scaffolder

Repeat Res I, ID

Scaffold U-unitigs with confirmed pairs

Celera Assembler

Trim \& Screen

Fill repeat gaps with doubly anchored positive

Overlap Graph: Hamiltonian Approach

Each vertex represents a read from the original sequence. Vertices from repeats are connected to many others.

Find a path visiting every VERTEX exactly once: Hamiltonian path problem

Overlap Graph: Eulerian Approach

Placing each repeat edge together gives a clear progression of the path through the entire sequence.

Find a path visiting every EDGE exactly once:
Eulerian path problem

Multiple Repeats

Repeat1	Repeat2	Repeat1	Repeat2			

Can be easily constructed with any number of repeats

Pre-assembly

NGS ERROR CORRECTION

Ideally

reference
...ATGTTTT...
...ACGTATT...
...ATGTTTT...
...ACGTTTT...
...ATGTTTT...
...ATGTTCT...
... ACGTTAATGTTTTAGTATCGGAAATTACG...
..ATGTTTT... ...ATGTTTT... .ATGTTTT... ...ATGTTTT... ...ACGTATT... ..ACGTTTT...

Challenges

- Unknown reference genome
- Billions of reads
- Non-uniform error distribution
- Non-uniform genome sampling
- Polymorphisms
- Repeats

Approaches

- Spectrum alignment problem:
- Chaisson et al., 2004, 2008; Chin et al., 2009; Quake (Kelley et al., 2010); Reptile (Yang et al., 2010)
- Suffix tree:
- SHREC (Schroder et al., 2009)
- SHREC (Salmela and Schroder, 2010)
- Alignment based:
- CORAL (Salmela, 2011)
- Most incorporate the base quality values

COUNTING KMERS

Counting k-mers for assembly

- Error correction
- Erroneous reads will have low-frequency k-mers
- Contamination detection
- Sequence from DNA contamination will be represented at a very low coverage
- Repeat detection
- Very high frequency k-mers: repeat/duplication
- Handle accordingly
- k-mers in NGS data sets can easily overwhelm memory capacity

Counting k-mers

- Given sequencing reads count how many times each k-mer occurs
- De Bruijn graph assemblers
- Euler (Pevzner et al. 2001)

ATGAAGTGGG

- Velvet (Zerbino et al. 2008)
- Allpaths (Butler et al. 2008)
- ABySS (Simpson et al. 2009)
- SOAPDenovo (Li et al. 2010)
- Error Correction: Quake (Kelley et al. 2010)
- k-mer counters: Jellyfish (Marçais et al. 2011), BFCounter (Melsted et al., 2011)

Memory usage

- Simple method

Store each k-mer in a hash table with a counter

- Memory needed
- store canonical k-mers
- 2 bits for each of A, C, G, T
- k/4 bytes per k-mer (k=31, 8 bytes)
- 1-2 bytes per counter
- +10\% hash table overhead
- For a genome of size G, expect to see up to G distinct k-mers (2.5-3 billion for Human)
- $\sim 36 \mathrm{~Gb}$ of memory

Number of k-mers

- This ignores the effect of sequencing errors
- 31-mers in reads aligned to Chr21
- Illumina 100×100 32 -fold coverage
- Mapped 31-mers to reference
- 99.9\% of unique k-mers are errors

31-mer count distribution on Chromosome 21

Removing unique k -mers

Number of 31-mers

Fold coverage

Bloom filter

- Bloom filter encodes a set of k-mers
- Uses a bit array B of length m and d hash functions
- to insert x, we set $B\left[h_{i}(x)\right]=1$, for $i=1, \ldots, d$
a to query y, we check if $B\left[h_{i}(y)\right]$ all equal 1 , for $\mathrm{i}=1, \ldots, \mathrm{~d}$
- Need an estimate for n, the number of k-mers to insert

Bloom filter example

- a and b are inserted in to a Bloom filter with $\mathrm{m}=10, \mathrm{n}=2, \mathrm{~d}=3$

0	1	0	1	1	0	1	0	1	0

- c is not in the set, since some bits are 0

- d has not been inserted, but is still reported in the set, a false positive
- Bloom filters have no false negatives

Bloom filter

- Storing n k -mers in m bit array with d hash functions has a false positive rate of

$$
\approx\left(1-e^{-d n / m}\right)^{d}
$$

- Given n and m , the optimal d is $\approx \mathrm{m} / \mathrm{n} \ln (2)$
- Examplem = 8n, d=5 gives 2.16\% fpr

$$
\begin{aligned}
& m=6 n, d=4 \text { gives } 5.6 \% \mathrm{fpr} \\
& \mathrm{~m}=4 \mathrm{n}, \mathrm{~d}=3 \text { gives } 14.6 \% \mathrm{fpr}
\end{aligned}
$$

- m=8n, corresponds to storing 1 byte per k-mer

Algorithm

- Use a Bloom filter and a hash table

Hash table

Seicstnd
Presess

TGGG	\vdots
AGTG	\vdots
GTGA	\vdots
GTGG	\vdots

Algorithm

- This scheme guarantees
- k-mers seen twice will be in the hash table
a some unique k-mers will slip through
- second pass gives accurate counts and allows to discard false positives
- Memory usage
- full for k-mers in hash table (~ 9 bytes)
- minimal for k -mers in bloom filter (\sim. 5-1 bytes)

Results whole genome

- 25-mers in 36 bp reads
- 2.37 billion distinct 25 -mers in hg18
- 12.18 billion 25 -mers in the sequencing data
- 9.35 billion unique
- 2.83 billion with coverage 2 or greater

Program	Time (hrs)	Memory (G)
BFCounter	23.82	42
Naïve	>26.83	>128

NEXT: DE BRUIJN GRAPHS

