CS681: Advanced Topics in Computational Biology

Week 6 Lectures 2-3
Can Alkan
EA224
calkan@cs.bilkent.edu.tr
http://www.cs.bilkent.edu.tr/~calkan/teaching/cs681/

Structural Variation Classes

Sequence signatures of structural variation

- Read pair analysis
- Deletions, small novel insertions, inversions, transposons
- Size and breakpoint resolution dependent to insert size
- Read depth analysis
- Deletions and duplications only
- Relatively poor breakpoint resolution
- Split read analysis
- Small novel insertions/deletions, and mobile element insertions

- 1bp breakpoint resolution
- Local and de novo assembly
- SV in unique segments
- 1bp breakpoint resolution

READ PAIR

Read Pair analysis

Novel Sequence Insertion

Inversion

Interspersed Duplication

Tandem Duplication

Span size distribution

NA18507 Paired-End Reads Span Length Histogram

Span size $=$ fragment length $=$ insert size
Concordant = read pairs that map in expected orientation \& size Discordant $=$ read pairs that map different than what is expected

Span size distribution: not-so-good

Span size distribution: bad

Span size distribution: bad

Length Histogram

Read pair based SV callers

- Unique mapping:
- BreakDancer, GenomeSTRiP, SPANNER, PEMer (454), Corona (SOLiD), etc.
- Multiple mapping:
- VariationHunter, CommonLAW, MoDIL, MoGUL, HYDRA
- Multi-genome callers (pooled)
- GenomeSTRiP, MoGUL, CommonLAW

BreakDancer

- Unique mapping from MAQ/BWA, etc.
- Two versions:
- BreakDancerMax
- >100bp
- BreakDancerMini
- 10 - 100 bp

BreakDancerMax

- Unique mapping only; filter low MAPQ
- Classify inserts as:
- Normal, deletion, insertion, inversion, intratranslocation, inter-translocation
- If not "normal", name as ARP (anomalous read pair)
- Call SV if at least 2 ARPs are at the same location
- Assign confidence score

Chen et al., Nature Methods, 2009

BreakDancerMax Confidence Score

Degree of clustering: Probability of having more than the observed number of inserts in a given region

$$
\boldsymbol{P}\left(\boldsymbol{n}_{i} \geq \quad \tau_{i}\right) \begin{aligned}
& \text { i: type of insert } \\
& n_{i}: \text { Poisson random variable with mean } \lambda_{i} \text {, number of observed type } i \text { inserts }
\end{aligned}
$$

Estimation of λ_{i}

$$
\lambda=\frac{\left\lceil N_{i}\right.}{G}
$$

s: size of the region ARPs are anchored N_{i} : total number or ARPs of type i in the data G: length of the reference genome

Aim: find statistically significant SVs; i.e. $\mathrm{p}<0.0001$

VariationHunter

- VariationHunter-SC: Maximum parsimony approach; using all discordant map locations; finds an optimal set of SVs through a combinatorial algorithm based on set-cover
- VariationHunter-Pr: Probabilistic version; tries to maximize the probability score of detected SVs

Definitions

Paired-end read
$P E:=\left(P E_{L}, P E_{R}\right)$
PE-Alignment
(PE, L(PE), R(PE), O(PE))
$\mathrm{O}(\mathrm{PE})$: mapping orientation:

- "+/-": normal
- "+/+" or "-/-": inversion
- "-/+": tandem duplication
$S V=\left(P_{L}, P_{R}, L_{\min }, L_{\max }\right)$

Mathematical model

Let $L_{\text {min }}, L_{\text {max }}$ be minimum and maximum size of the predicted variant

A Structural Variation is defined by event:

$$
S V=\left(P_{L}, P_{R}, L_{\min }, L_{\max }\right)
$$

A PE-Alignment $\mathrm{APE}=(\mathrm{PE}, \mathrm{L}(\mathrm{PE}), \mathrm{R}(\mathrm{PE}), \mathrm{O}(\mathrm{PE}))$ supports an insertion $S V=\left(P_{L}, P_{R}, L_{\text {min }}, L_{\text {max }}\right)$ if:

$$
\begin{gathered}
L(P E) \leq P_{L} \\
R(P E) \geq P_{R} \\
L_{\text {min }} \geq \Delta_{\text {min }}-(R(P E)-L(P E)) \\
L_{\text {max }} \leq \Delta_{\text {max }}-(R(P E)-L(P E))
\end{gathered}
$$

Valid clusters

A set of PE-Alignments that support the same structural variation event SV
A cluster C is a valid cluster supporting insertions if:
$\exists x, \forall P E \in{ }^{\prime}: L(A P E)<o c<?(A P E)$
\exists isLen, $\forall P E \in ': \Delta$ in $-R(A P E)-j(A P E))<' n s L e n<\rfloor$ ax $-R(A P E)-j(A P E))$

Valid clusters

A set of PE-Alignments that support the same structural variation event SV
A cluster C is a valid cluster supporting insertions if:
$\exists x, \forall P E \in \quad: L(A P E)<o c<\{(A P E)$
$\exists \imath$ sLen $, \forall P E \in \quad: \Delta$ in $-\{(A P E)+j(A P E)<' n s L e n<\rfloor$ ax $-\{(A P E)+j(A P E)$

Maximal Valid Clusters for Insertions

A Maximal Valid Cluster is a valid cluster that no additional APE can be added without violating the validity of the cluster

1. Find all the Maximal sets of overlapping paired-end alignments
2. For each maximal set S_{k} found in Step 1, find all the maximal subsets s_{i} in S_{k} that the insertion size (InsLen) they suggest is overlapping
3. Among all the sets s_{i} found in Step 2, remove any set which is a proper subset of another chosen set

MEI sequence signature

- Strand rules: MEI-mapping " + " reads and MEI mapping "-" reads should be in different orientations:
- +/- and -/+ clusters; or +/+ and -/- clusters (inverted MEI)
- Span rules: $\mathrm{A}=(\mathrm{A} 1, \mathrm{~A} 2)$; $\mathrm{B}=(\mathrm{B} 1, \mathrm{~B} 2) ; \mathrm{C}=(\mathrm{C} 1, \mathrm{C} 2)$; $\mathrm{D}=(\mathrm{D} 1, \mathrm{D} 2)$
- |A1-B1|~|A2-B2| and |C1-D1|~|C2-D2| (simplified; we have 8 rules)
- Location and 2-breakpoint rule:

$$
\exists l o c, \forall P E: \operatorname{RightMost}(+<l o c<\operatorname{LeftMost}(-
$$

Problem and Solutions

Problem: Among all the maximal valid clusters, which ones are correct? Aim: Assign a single PE-Alignment to all paired-end reads

- Maximum Parsimony Structural Variation
- Find a minimum number of SVs such that all the paired-end reads are covered
- Similar to SET-COVER problem
- Greedy algorithm. Approximation factor $\mathbf{O}(\log (n))$
- Calculating the probabilities of each potential structural variation.

$$
\begin{aligned}
& \operatorname{Pr}\left(S V_{j}\right)={ }^{7}\left(\forall \geq \in \quad E: \operatorname{Pr}\left(\text { pe supports } S V_{j}\right) ; L \min ; L \max \right) \\
& \operatorname{Pr}\left(\text { pe supports } S V_{j}\right)=J(\operatorname{SeqSim}(\text { pe, } S V j) ; \forall V: \operatorname{Pr}(S V)
\end{aligned}
$$

- Iterative heuristic method to find a solution

SPLIT READ

Split Read analysis

Mobile Element Insertion

Inversion

Interspersed Duplication

Tandem Duplication

Split Read based algorithms

- Unique mapping:
- Pindel (Ye et al. Bioinformatics, 2009)
- SRiC (for the 454 platform; Zhang et al., BMC Bioinformatics, 2011)
- Multiple mapping:
- SPLITREAD (Karakoc et al., Nature Methods, 2012)
- Specialized for RNA alternative splicing:
- TopHat (Trapnell et al., Bioinformatics, 2009)

Pindel: pattern growth approach

Pattern growth

$$
\begin{aligned}
& S=A T C A A G T A T G C T T A G C \\
& P=A T G C A
\end{aligned}
$$

Search A:
ATCAAGTATGCTTAGC
Search T in Projected Database of A: ATCAAGTATGCTTAGC

Search G in Projected Database of AT: ATCAAGTATGCTTAGC

Projected database of A : 1,4,5,8,14

Projected database of AT: 1,8

Projected database of ATG: 8

ATG appears only once: minimum unique substring of pattern P
Search C in Projected Database of ATG: ATCAAGTATGCTTAGC

Projected database of ATGC:
8
No ATGCA. Therefore, ATGC is the maximum unique substring of pattern P

Pindel

1. Read in the location and the direction of the mapped read from the mapping result obtained in the preprocessing step;
2. Define the 3 ' end of the mapped read as anchor point;
3. Use pattern growth algorithm to search for minimum and maximum unique substrings from the 3 ' end of the unmapped read within the range of two times of the insert size from the anchor point;
4. Use pattern growth to search for minimum and maximum unique substrings from the 5^{\prime} end of the unmapped read within the range of read length + Max_D_Size starting from the already mapped 3 ' end of the unmapped read obtained in step 3;
5. Check whether a complete unmapped read can be reconstructed combining the unique substrings from 5^{\prime} and 3^{\prime} ends found in steps 3 and 4 . If yes, store it in the database U. Note that exact matches and complete reconstruction of the unmapped read are required so that neither gap nor substitution is allowed.

- Large Max_D_Size -> slow execution

MULTIPLE SIGNATURE

Multiple signature algoritms

- SPANNER (Stewart et al., unpublished)
- Find candidates with RP
- Filter with RD
- Genome STRiP (Handsaker et al., Nat Genet, 2011)
- Discovery: as above; also integrate multiple genomes in a population
- Genotyping also includes SR
- CNVer (Medvedev et al., Genome Res, 2010)
- Build a graph with RP; edge weights by RD
- Solve minimum-cost-flow

CNVer

Medvedev et al., Genome Res, 2010

CNVer

A

- Build "donor graph" from RP data
- Partition reference genome (self-alignment)
- Probabilistic score to flows in donor graph
- Length, copy count (unknown variable f_{e}), and depth (RD data)
- Find minimum cost flow
- Where flow is divergent from reference: CNVs

ASSEMBLY

Assembly analysis

Assembly analysis

- Collect all reads; and assemble into contigs/scaffolds using:
- Velvet, EULER, ABySS, Cortex, SOAPdenovo, ALLPATHS-LG, etc.
- Align to reference, and find SV
- SV-specific framework:
- Nove/Seq: Poor man's method: Going through the trash that the mapper left

NovelSeq

Hajirasouliha et al., Bioinformatics, 2010

NovelSeq: merging OEA + orphan

Novel insertion $\{$ OEA $(+)$, orphan, OEA $(-)\}$

Overlaps between $\{O E A(+)$, OEA $(-)\}$ and orphan contigs

Maximum Weighted Matching

Hungarian Method

GENOTYPING SV

BreakSeq

Generation of junction sequences

Read overlaps <10 bp to one side of the breakpoint is discarded and read matches also to the reference genome is classified as non-unique match

Diagnostic k-mer genotyping

Require 1 match to build36 and 0 matches to fosmid sequences

Require 1 match to fosmid sequences and 0 matches to build36

To be genotyped a variant must be represented by at least 1 insertion and at least 1 deletion k-mer $72 \%(110 / 152)$ of targeted variants are uniquely identifiable with $\mathrm{k}=36$ and match criteria that permit 1 substitution

Genotyping insertions with NGS

T_{I}, T_{D} : number of diagnostic k mers for the insertion and deletion alleles
R_{I}, R_{D} are the number of matching reads

$$
I=\frac{R_{I}}{T_{I}} \quad D=\frac{R_{D}}{T_{D}}
$$

breakpoint search score $=2\left(\frac{I}{I+D}\right)$

RESULTS \& OPEN PROBLEMS

SV calling in 1000 Genomes

Low coverage data

Approach	Algorithm name	Plat-form	Genomes analyzed	SV types discovered (sizerange of validated SVs in basepairs)	SV calls made	SVs validated	FDR (PCR)	$\begin{gathered} \text { FDR } \\ \text { (array) } \end{gathered}$	FDR (hierarch.)
¢	N/A	Illumina	8	DEL (200-77,700)	10,965	1,049	-	0.535	0.535^{*}
	Event-wise testing	Illumina	162	DEL ($200-67,500$)	10,019	3,436	-	0.234	0.234^{*}
	CNVnator	Illumina	65	DEL (200-402,150)	5,507	402	-	0.695	0.695*
凹	Spanner	Illumina	138	TEINS (56-6,049)	3,276	182	0.052	-	0.052
	Spanner	Illumina	138	DEL ($53-195,139)$	5,555	4,615	0.054	0.067	0.059
	PEMer	SOLiD	25	DEL (773-184,792)	2,177	1,188	0.258	0.434	0.380
	BreakDancer	Illumina	138	DEL ($51-959,495$)	7,643	4,425	0.337	0.271	0.320
	N/A	Illumina	144	DEL ($210-959,499$)	8,011	5,541	0.214	0.245	0.227
ヘ̛	Mosaik	454	22	TEINS (300-6,000)	2,833	172	0.044	-	0.044*
	Pindel	Illumina	145	DEL (51-47,040)	11,189	5,400	0.211	0.309	0.229
	SriC	454	5)EL (54-6,047); INS (51-268	10,697	74	0.575	-	0.575*
Z	Spanner	Illumina	138	TANDUP (55-64,230)	407	55	0.125	-	0.125*
	Genome STRiP	Illumina	168	DEL (100-471,351)	7,015	5,852	0.057	0.019	0.037

SV calling in 1000 Genomes: sensitivity

Low coverage data

Supplementary Table 6A. Sensitivity in discovering deletions for different methods, assessed in NA12156(*)

Approach	Callset Origin	Algorithm	Sequencing platform	Kidd ($\mathrm{n}=54$)	$\begin{aligned} & \text { Conrad } \\ & (\mathrm{n}=353) \end{aligned}$	$\begin{aligned} & \text { McCarroll } \\ & (\mathrm{n}=118) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Mills } \\ & (\mathrm{n}=151) \end{aligned}$
$\stackrel{\text { ® }}{\text { ® }}$	SD	Event-wise testing	Illumina	0.46	0.65	0.70	0.06
	YL	CNVnator	Illumina	0.20	0.19	0.31	0.09
$\stackrel{\square}{\square}$	BC	Spanner	Illumina	0.26	0.19	0.17	0.21
	SI	N/A	Illumina	0.30	0.28	0.25	0.21
	YL	PEMer	SOLiD	0.11	0.28	0.09	0.03
	WU	BreakDancer	Illumina	0.20	0.20	0.18	0.17
	LN	Pindel	Illumina	0.13	0.08	0.13	0.10
Q	BI	Genome STRiP	Illumina	0.63	0.50	0.40	0.21

Mills et al., Nature, 2011

SV calling in 1000 Genomes

High coverage data

Approach	Algorithm name	Platform	Genomes	SV types discovered (size-range of validated SVs in basepairs)	$\begin{gathered} \text { SV } \\ \text { calls } \end{gathered}$	valid ated	$\begin{gathered} \text { FDR } \\ \text { (PCR) } \end{gathered}$	$\begin{gathered} \text { FDR } \\ \text { (array) } \end{gathered}$	FDR (hierar ch.)
-	Event-wise testing	Illumina	6	DEL (200-221,800); DUP (200-415,700)	5,762	1,952	0	0.230	0.230
	CNVnator	Illumina	6	DEL (100-412,475)	17,036	2,361	-	0.142	0.142
凹	AB large indel tool	SOLiD	1	DEL (67-83,391)	1,138	480	0.188	0.084	0.143
	AB large indel tool	SOLiD	1	INS (448-2,213)	632	42	0.176	-	0.176
	Spanner	Illumina	6	TEINS (51-6,012)	2,013	179	0.022	-	0.022
	Spanner	Illumina	6	DEL (50-192,167)	4,718	3,619	0.100	0.033	0.087
	PEMer	454	1	DEL (941-960,004)	1,062	483	0.095	0.363	0.363
	VariationHunter	Illumina	6	DEL ($52-498,738$)	11,028	4,231	0.103	0.419	0.190
	BreakDancer	Illumina	6	DEL ($51-1,035,808$)	5,973	3,587	0.115	0.145	0.121
	N/A	Illumina	6	DEL (276-959,518)	3,419	2,584	0.136	0.085	0.121
$\stackrel{\sim}{\sim}$	Mosaik	454	2	TEINS (300-6,000)	1,463	172	0.055	-	0.055
	Pindel	Illumina	6	DEL ($51-46,384$)	3,879	2,960	0.201	0.127	0.189
	N/A	454	1	DEL (51-703,404); INS (52-295)	32,187	3,845	0.545	0.519	0.543
0	SOAPdenovo	Illumina	6	DEL (64-3,907)	160	55	0.531	0.531	0.497
	SOAPdenovo	Illumina	6	INS (55-4,116)	3,894	22	0.810	-	0.810
	Cortex	Illumina	1	DEL(52-39,512); DUP(83-2,090)	2,787	896	0.415	0.415	0.410
	Cortex	Illumina	1	INS(50-828)	389	84	0.398	-	0.398
	NovelSeq	Illumina	6	INS (200-8,224)	657	30	0.791	-	0.791
2	Spanner	Illumina	6	TANDUP (55-64,230)	256	88	0.049	-	0.049

SV calling in 1000 Genomes: sensitivity

High coverage data

Supplementary Table 6B. Sensitivity in discovering deletions for different methods, assessed in NA12878(*)

Approach	Callset Origin	Algorithm name	Sequencing platform	$\begin{aligned} & \text { Kidd } \\ & (\mathrm{n}=58) \end{aligned}$	$\begin{aligned} & \text { Conrad } \\ & (n=373) \end{aligned}$	$\begin{aligned} & \text { McCarroll } \\ & (n=130) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Mills } \\ & (\mathrm{n}=81) \end{aligned}$
우ㅈㅏㅜ	SD	Event-wise testing	Illumina	0.67	0.56	0.80	0.05
	UW	mrFAST	Illumina	0.16	0.07	0.22	0.00
	YL	CNVnator	Illumina	0.91	0.84	0.88	0.24
$\stackrel{\square}{\square}$	BC	Spanner	Illumina	0.45	0.50	0.32	0.44
	SI	N/A	Illumina	0.50	0.55	0.42	0.24
	UW	VariationHunter	Illumina	0.55	0.53	0.50	0.30
	WU	BreakDancer	Illumina	0.50	0.55	0.44	0.40
	YL	PEMer	454	0.91	0.45	0.72	0.10
$\stackrel{\Upsilon}{\circlearrowleft}$	LN	Pindel	Illumina	0.28	0.38	0.25	0.28
	YL	N/A	454	0.55	0.54	0.44	0.52

Mills et al., Nature, 2011

No method is comprehensive

Open problems

- Identify inversions and translocations
- Discover SVs in repeat- and duplication-rich regions
- Accurate \& comprehensive detection of CNVs with a single algorithm
- High sensitivity
- High specificity

