
CS681: Advanced Topics in

Computational Biology

Can Alkan

EA224

calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs681/

Week 4, Lectures 1-2-3

Read Mapping

 When we have a reference genome & reads from DNA sequencing,

which part of the genome does it come from?

 Challenges:

 Sanger sequencing

 Cloning vectors

 Millions of long (~1000 bp reads)

 Next-Gen sequencing:

 Billions of short reads

 Common: sequencing errors

 More prevalent in NGS

 Common: contamination

 Typically ~2-3% of reads come from different sources; i.e. human

resequencing contaminated with yeast, E. coli, etc.

 Common: Repeats & Duplications

Read Mapping

 Accuracy

 Due to repeats, we need a confidence score in alignment

 Sensitivity

 Don’t lose information

 Speed!!!!!!!

 Think of the memory usage

 Output

 Keep all needed information, but don’t overflow your

disks

 All read mapping algorithms perform alignment at

some point (read vs. reference)

Sanger vs NGS: cloning vectors

 Sanger reads may

contain sequence

from the cloning

vector; thus

mapping needs

local alignment.

 No cloning vectors

in NGS, global

alignment is fine.

Bacterial DNA

Target DNA

read

Local vs. Global Alignment

 The Global Alignment Problem tries to find

the best alignment from start to end for two

sequences

 The Local Alignment Problem tries to find the

subsequences of two sequences that give the

best alignment

 Solutions to both are extensions of Longest

Common Subsequence

Local vs. Global Alignment (cont’d)

• Global Alignment

• Local Alignment—better alignment to find

conserved segment

 --T—-CC-C-AGT—-TATGT-CAGGGGACACG—A-GCATGCAGA-GAC
 | || | || | | | ||| || | | | | |||| |
 AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG—T-CAGAT--C

 tccCAGTTATGTCAGgggacacgagcatgcagagac

 ||||||||||||

aattgccgccgtcgttttcagCAGTTATGTCAGatc

Local Alignment: Example

Global alignment

Local alignment

Compute a “mini”

Global Alignment

to get Local

Sequence 1

S
e
q

u
e
n

c
e
 2

Measuring Similarity

 Measuring the extent of similarity between

two sequences

 Based on percent sequence identity

 Based on conservation

Percent Sequence Identity

 The extent to which two nucleotide or amino

acid sequences are invariant

A C C T G A G – A G
A C G T G – G C A G

70% identical

mismatch
indel

Global Alignment

 Hamming distance:

 Easiest; two sequences s1, s2, where |s1|=|s2|

 HD(s1, s2) = #mismatches

 Edit distance

 Include indels in alignment

 Levenstein’s edit distance algorithm, simple

recursion with match score = +1,

mismatch=indel=-1; O(mn)

 Needleman-Wunsch: extension with scoring

matrices and affine gap penalties; O(mn)

Edit Distance vs Hamming Distance

V = ATATATAT

W = TATATATA

Hamming distance: Edit distance:

 d(v, w)=8 d(v, w)=2
 (one insertion and one deletion)

W = TATATATA -

V = -ATATATAT

Hamming distance
always compares
 i-th letter of v with
 i-th letter of w

Edit distance
may compare
 i-th letter of v with
 j-th letter of w

The Global Alignment Problem

Find the best alignment between two strings under a given scoring
schema

Input : Strings v and w and a scoring schema

Output : Alignment of maximum score

↑→ = -б

 = 1 if match

 = -µ if mismatch

 si-1,j-1 +1 if vi = wj

si,j = max s i-1,j-1 -µ if vi ≠ wj

 s i-1,j - σ

 s i,j-1 - σ

m : mismatch

penalty

σ : indel penalty

Scoring matrices

 Different scores for different character match &
mismatches

 Amino acid substitution matrices

 PAM

 BLOSUM

 DNA substitution matrices

 DNA is less conserved than protein
sequences

 Less effective to compare coding regions at
nucleotide level

Scoring Matrices

To generalize scoring, consider a (4+1) x(4+1)
scoring matrix δ.

In the case of an amino acid sequence alignment, the
scoring matrix would be a (20+1)x(20+1) size. The
addition of 1 is to include the score for comparison
of a gap character “-”.

This will simplify the algorithm as follows:

 si-1,j-1 + δ (vi, wj)

si,j = max s i-1,j + δ (vi, -)

 s i,j-1 + δ (-, wj)

Scoring Indels: Naive Approach

 A fixed penalty σ is given to every indel:

 -σ for 1 indel,

 -2σ for 2 consecutive indels

 -3σ for 3 consecutive indels, etc.

Can be too severe penalty for a series of

100 consecutive indels

Affine Gap Penalties

 In nature, a series of k indels often come as a

single event rather than a series of k single

nucleotide events:

Normal scoring

would give the same

score for both

alignments

This is more

likely.

This is less

likely.

Accounting for Gaps

 Gaps- contiguous sequence of spaces in one of the
rows

 Score for a gap of length x is:

 -(ρ + σx)

 where ρ >0 is the penalty for introducing a gap:

 gap opening penalty

 ρ will be large relative to σ:

 gap extension penalty

 because you do not want to add too much of a
penalty for extending the gap.

Affine Gap Penalties

 Gap penalties:

 -ρ-σ when there is 1 indel

 -ρ-2σ when there are 2 indels

 -ρ-3σ when there are 3 indels, etc.

 -ρ- x·σ (-gap opening - x gap extensions)

 Somehow reduced penalties (as compared to

naïve scoring) are given to runs of horizontal

and vertical edges

Affine Gap Penalty Recurrences

si,j = s i-1,j - σ

 max s i-1,j –(ρ+σ)

si,j = s i,j-1 - σ

 max s i,j-1 –(ρ+σ)

si,j = si-1,j-1 + δ (vi, wj)

 max s i,j

 s i,j

Continue Gap in w (deletion)

Start Gap in w (deletion): from

middle

Continue Gap in v (insertion)

Start Gap in v (insertion):from

middle

Match or Mismatch

End deletion: from top

End insertion: from bottom

Ukkonnen’s Approximate String

Matching
Regular alignment

AUUGACAGG - -

AU - - - CAGGCC

Observation:

If max allowed edit

distance is small,

you don’t go far

away from the

diagonal

(global alignment

only)

Ukkonen’s alignment

If maximum allowed number of indels is t, then you only need to calculate

2t-1 diagonals around the main diagonal.

The Local Alignment Recurrence

• The largest value of si,j over the whole edit

graph is the score of the best local alignment.

• The recurrence:

 0

si,j = max si-1,j-1 + δ (vi, wj)
 s i-1,j + δ (vi, -)
 s i,j-1 + δ (-, wj)

there is only this change

from the original recurrence

of a Global Alignment -

since there is only one “free

ride” edge entering into

every vertex

Smith-Waterman Algorithm

Smith-Waterman

 Start from the maximum score s(i,j) on the

alignment matrix

 Move to m(i-1, j), m(i, j-1) or m(i-1, j-1) until

s(i,j)=0 or i=j=0

 O(mn)

 0

si,j = max si-1,j-1 + δ (vi, wj)
 s i-1,j + δ (vi, -)
 s i,j-1 + δ (-, wj)

Faster Implementations

 GPGPU: general purpose graphics

processing units

 Should avoid branch statements (if-then-else)

 FPGA: field programmable gate arrays

 SIMD instructions: single-instruction multiple

data

 SSE instruction set (Intel)

 Also available on AMD processors

 Same instruction is executed on multiple data

concurrently

Alignment with SSE

 Applicable to both global and

local alignment

 Using SSE instruction set we
can compute each diagonal in
parallel

 Each diagonal will be in saved
in a 128 bit SSE specific
register

 The diagonal C, can be
computed from diagonal A and
B in parallel

 Number of SSE registers is
limited, we can not hold the
matrix, but only the two last
diagonals is needed anyway.

Genome seg(L-k+2)

R

E

A

D
(L-K)

x

x

x

x x

x

x x

x

x x

x

x

C x x

x

x x

x x x C x

x x x x x

x x x x x

x x x x x

A

A

A

B

B C

READ MAPPERS

Mapping Reads

Problem: We are given a read, R, and a reference sequence, S. Find

the best or all occurrences of R in S.

Example:

R = AAACGAGTTA

S = TTAATGCAAACGAGTTACCCAATATATATAAACCAGTTATT

Considering no error: one occurrence.

Considering up to 1 substitution error: two occurrences.

Considering up to 10 substitution errors: many meaningless

occurrences!

Don’t forget to search in both forward and reverse strands!!!

Mapping Reads (continued)

Variations:

 Sequencing error
 No error: R is a perfect subsequence of S.

 Only substitution error: R is a subsequence of S up to a few
substitutions.

 Indel and substitution error: R is a subsequence of S up to a few
short indels and substitutions.

 Junctions (for instance in alternative splicing)
 Fixed order/orientation

 R = R1R2…Rn and Ri map to different non-overlapping loci in S,
but to the same strand and preserving the order.

 Arbitrary order/orientation

 R = R1R2…Rn and Ri map to different non-overlapping loci in S.

Mapping algorithms

 Two main “styles”:

 Hash based seed-and-extend (hash table, suffix array, suffix tree)

 Index the k-mers in the genome

 Continuous seeds and gapped seeds

 When searching a read, find the location of a k-mer in the read; then

extend through alignment

 Requires large memory; this can be reduced with cost to run time

 More sensitive, but slow

 Burrows-Wheeler Transform & Ferragina-Manzini Index based

aligners

 BWT is a data compression method used to compress the genome

index

 Perfect hits can be found very quickly, memory lookup costs increase

for imperfect hits

 Reduced sensitivity

“Long” read mappers

 BLAST, MegaBLAST, BLAT, LASTZ can be

used for Sanger, 454, Ion Torrent

 Hash based

 Extension step is done using Smith-Waterman

algorithm

 BLAST and MegaBLAST have additional scoring

scheme to order hits and assign confidence

values

 454/Ion Torrent only: PASH, Newbler

Short read mappers

 Hash based

 Illumina: mrFAST, mrsFAST, MAQ, MOSAIK,

SOAP, SHRiMP, etc.

 MOSAIK requires ~30GB memory

 Others limit memory usage by dividing genome into

chunks

 mrFAST, SHRiMP have SSE-based implementation

 MAQ: Hamming distance only

 SOLiD: drFAST, BFAST, SHRiMP, mapreads

 GPGPU implementations: Saruman, Mummer-

GPU

Short read mappers

 BWT-FM based

 Illumina: BWA, Bowtie, SOAP2

 Human genome can be compressed into a 2.3 GB

data structure through BWT

 Extremely fast for perfect hits

 Increased memory lookups for mismatch

 Indels are found in postprocessing when paired-end

reads are available

 GPGPU implementations: SOAP3 (poor

performance due to memory lookups)

Read mappers: PacBio

 BLASR aligner; tuned for PacBio error model

(indel dominated, ~15%)

 Two versions:

 Suffix array (hash) based

 BWT-FM based

Hash Based Aligners

Seed and extend
 Break the read into n segments of k-mers.

 For perfect sensitivity under edit distance e

 There is at least one l-mer where l =

floor(L/(e+1)); L=read length

 For fixed l=k; n = e+1 and k ≤ L / n

 Large k -> large memory

 Small k -> more hash hits

 Lets consider the read length is 36 bp, and k=12.

 if we are looking for 2 edit distance (mismatch, indel)

this would guaranty to find all of the hits

Cache oblivious search

aaaaaaa

aaaaaac

aaaaaag

aaaaaat

aaaaaca

ttttttt

12 679

180

1909

987

GI: Genome Index

aaaccaa

caacata

ggggaaa

ttaacaa

ttaacat

ttttttt

aaaccaa ttaacat ttaacaa

ttttttt aaaccaa ggggaaa

read1

read4

Partitions 1 2 3

1/1 2/4

2/100

1/4

3/1

2/1

3/4

RI: Read Index [sr;(part#, read#)]

sr

Cache oblivious search

 GI and RI are both sorted

 Scan GI; for all GI[i] = RI[j].sr

 Map all partition/read_number combinations in RI[j]

 All of the above have the same sr and its

corresponding GI[i] list; therefore:

 They have the same seed locations: same sequence content

in the reference genome to extend

 Once GI[i] and corresponding ref(GI[i].1, GI[i].2, …) are loaded

from main memory to cache memory; then you re-use the

faster cache memory contents; minimizing cache hits and

main-to-cache transfers

Cache oblivious search

Mapper Level 2 Cache

Misses per

Instruction

Instruction per

cycle

Bowtie 0.0016 0.94

BWA 0.0016 0.93

MAQ 0.0060 0.56

mrsFAST 0.0008 1.24

Spaced seeds

 Instead of a k-mer with contiguous hit

(1111..1); use space seeds

 Seed S is defined by Length and Weight

 0’s are “don’t care” characters

 111111001111111100 requires

 6 matches + 2 “don’t care”s + 8 matches + 2 “don’t

care”s; a valid hit:

 Length = 18; weight = 14

CGACTAGCTAGCTAGCTA

CGACTAAGTAGCTAGCGC

Spaced seeds

 You can define a set of N spaced seeds for

read length R; and weight W that guarantees

full sensitivity with less than E number of

mismatches without the need for alignment

step

 ZOOM!: Zillions of oligos mapped

 No dynamic programming for mismatch-only

 Index the reads with N spaced seeds depending on R

and W

 Scan the reference genome in the read index

Lin et al. Bioinformatics, 2008

Burrows-Wheeler

 Store entire reference

genome.

 Align tag base by base

from the end.

 When tag is traversed, all

active locations are

reported.

 If no match is found, then

back up and try a

substitution.

Burrows-Wheeler Transformation

1. Append to

the input
string a
special char,
$, smaller
than all
alphabet.

mississippi$

Burrows-Wheeler Transformation (cnt’d)

2. Generate

all

rotations.

m i s s i s s i p p i $

i s s i s s i p p i $ m

s s i s s i p p i $ m i

s i s s i p p i $ m i s

i s s i p p i $ m i s s

s s i p p i $ m i s s i

s i p p i $ m i s s i s

i p p i $ m i s s i s s

p p i $ m i s s i s s i

p i $ m i s s i s s i p

i $ m i s s i s s i p p

$ m i s s i s s i p p i

Burrows-Wheeler Transformation (cnt’d)

3. Sort

rotations

according to

the

alphabetical

order.

$ m i s s i s s i p p i

i $ m i s s i s s i p p

i p p i $ m i s s i s s

i s s i p p i $ m i s s

i s s i s s i p p i $ m

m i s s i s s i p p i $

p i $ m i s s i s s i p

p p i $ m i s s i s s i

s i p p i $ m i s s i s

s i s s i p p i $ m i s

s s i p p i $ m i s s i

s s i s s i p p i $ m i

Burrows-Wheeler Transformation (cnt’d)

4. Output

the last

column.

$ m i s s i s s i p p i

i $ m i s s i s s i p p

i p p i $ m i s s i s s

i s s i p p i $ m i s s

i s s i s s i p p i $ m

m i s s i s s i p p i $

p i $ m i s s i s s i p

p p i $ m i s s i s s i

s i p p i $ m i s s i s

s i s s i p p i $ m i s

s s i p p i $ m i s s i

s s i s s i p p i $ m i

Burrows-Wheeler Transformation (cnt’d)

ipssm$pissii

mississippi$

Ferragina-Manzini Index

First column: F

Last column: L

Let’s make an

L to F map.

Observation:

The nth i in L is

the nth i in F.

$ m i s s i s s i p p i

i $ m i s s i s s i p p

i p p i $ m i s s i s s

i s s i p p i $ m i s s

i s s i s s i p p i $ m

m i s s i s s i p p i $

p i $ m i s s i s s i p

p p i $ m i s s i s s i

s i p p i $ m i s s i s

s i s s i p p i $ m i s

s s i p p i $ m i s s i

s s i s s i p p i $ m i

Ferragina-Manzini Index: L to F map

Store/compute

a two

dimensional

Occ(j,‘c’) table

of the number of

occurrences of

char ‘c’ up to

position j

(inclusive).

and one

dimensional

Cnt(‘c’) and
Rank(‘c’)
tables

$ i m p s

i 0 1 0 0 0

p 0 1 0 1 0

s 0 1 0 1 1

s 0 1 0 1 2

m 0 1 1 1 2

$ 1 1 1 1 2

p 1 1 1 2 2

i 1 2 1 2 2

s 1 2 1 2 3

s 1 2 1 2 4

i 1 3 1 2 4

i 1 4 1 2 4

$ i m p s

1 4 1 2 4

Occ(j,‘c’)

Cnt(‘c’)

$ i m p s

12 2 1 9 3

Rank(‘c’)

Ferragina-Manzini Index: L to F map

[Cnt(‘$’) +

Cnt(‘i’) +

Cnt(‘m’) +

Cnt(‘p’) = 8]

+ [Occ(9, ‘s’)= 3]

= 11

1 $ m i s s i s s i p p i

2 i $ m i s s i s s i p p

3 i p p i $ m i s s i s s

4 i s s i p p i $ m i s s

5 i s s i s s i p p i $ m

6 m i s s i s s i p p i $

7 p i $ m i s s i s s i p

8 p p i $ m i s s i s s i

9 s i p p i $ m i s s i s

10 s i s s i p p i $ m i s

11 s s i p p i $ m i s s i

12 s s i s s i p p i $ m i

‘s’ section

before ‘s’

$ i m p s

1 4 1 2 4

Cnt(‘c’)

Ferragina-Manzini Index: Reverse traversal

(1) i

(2) p

(7) p

(8) i

(3) s

(9) s

(11) i

(4) s

(10) s

(12) i

(5) m

(6) $

1 $ m i s s i s s i p p i

2 i $ m i s s i s s i p p

3 i p p i $ m i s s i s s

4 i s s i p p i $ m i s s

5 i s s i s s i p p i $ m

6 m i s s i s s i p p i $

7 p i $ m i s s i s s i p

8 p p i $ m i s s i s s i

9 s i p p i $ m i s s i s

10 s i s s i p p i $ m i s

11 s s i p p i $ m i s s i

12 s s i s s i p p i $ m i

Mapping with BWT-FM

$agcagcagact

act$agcagcag

agact$agcagc

agcagact$agc

agcagcagact$

cagact$agcag

cagcagact$ag

ct$agcagcaga

gact$agcagca

gcagact$agca

gcagcagact$a

t$agcagcagac

a c g T

rank 1 5 8 11

9

7

4

1

6

3

10

8

5

2

11

1

2

3

4

5

6

7

8

9

10

11

SA t

g

c

c

$

g

g

a

a

a

a

c

Auxillary data structures for efficient pattern matching: how to find

the corresponding chars in the first column efficiently, in terms of

both time and space.

BWT

a c g t

0 0 1 1

0 1 1 1

0 2 1 1

0 2 1 1

0 2 2 1

0 2 3 1

1 2 3 1

2 2 3 1

3 2 3 1

4 2 3 1

4 3 3 1

FM indices

Original sequence

Mapping with BWT-FM

$agcagcagact

act$agcagcag

agact$agcagc

agcagact$agc

agcagcagact$

cagact$agcag

cagcagact$ag

ct$agcagcaga

gact$agcagca

gcagact$agca

gcagcagact$a

t$agcagcagac

a c g t

rank 1 5 8 11

9

7

4

1

6

3

10

8

5

2

11

1

2

3

4

5

6

7

8

9

10

11

SA t

g

c

c

$

g

g

a

a

a

a

c

BWT

a c g t

0 0 1 1

0 1 1 1

0 2 1 1

0 2 1 1

0 2 2 1

0 2 3 1

1 2 3 1

2 2 3 1

3 2 3 1

4 2 3 1

4 3 3 1

FM indices

gca

Next block:

From 1 + 0 = 1

to 1 + (4-1) = 4

Auxillary data structures for efficient pattern matching: how to find

the corresponding chars in the first column efficiently, in terms of

both time and space.

Original sequence

Mapping with BWT-FM

$agcagcagact

act$agcagcag

agact$agcagc

agcagact$agc

agcagcagact$

cagact$agcag

cagcagact$ag

ct$agcagcaga

gact$agcagca

gcagact$agca

gcagcagact$a

t$agcagcagac

a c g T

rank 1 5 8 11

9

7

4

1

6

3

10

8

5

2

11

1

2

3

4

5

6

7

8

9

10

11

SA t

g

c

c

$

g

g

a

a

a

a

c

BWT

a c g t

0 0 1 1

0 1 1 1

0 2 1 1

0 2 1 1

0 2 2 1

0 2 3 1

1 2 3 1

2 2 3 1

3 2 3 1

4 2 3 1

4 3 3 1

FM indices

gca

Next block:

From 5 + 0 = 5

to 5 + (2-1) = 6

Auxillary data structures for efficient pattern matching: how to find

the corresponding chars in the first column efficiently, in terms of

both time and space.

Original sequence

Mapping with BWT-FM

$agcagcagact

act$agcagcag

agact$agcagc

agcagact$agc

agcagcagact$

cagact$agcag

cagcagact$ag

ct$agcagcaga

gact$agcagca

gcagact$agca

gcagcagact$a

t$agcagcagac

a c g T

rank 1 5 8 11

9

7

4

1

6

3

10

8

5

2

11

1

2

3

4

5

6

7

8

9

10

11

SA t

g

c

c

$

g

g

a

a

a

a

c

BWT

a c g t

0 0 1 1

0 1 1 1

0 2 1 1

0 2 1 1

0 2 2 1

0 2 3 1

1 2 3 1

2 2 3 1

3 2 3 1

4 2 3 1

4 3 3 1

FM indices

gca

Next block:

From 8 + 1 = 9

to 8 + (3-1) = 10

Auxillary data structures for efficient pattern matching: how to find

the corresponding chars in the first column efficiently, in terms of

both time and space.

Original sequence

Inexact match

Mapping Quality

 MAPQ = -10 * log10(Prob(mapping is wrong))

For reference sequence x; read sequence z:

p(z | x,u) = probability that z comes from position u

 = multiplication of pe of mismatched bases of z

For posterior probability p(u | x,z) assume uniform prior distribution p(u|x)

L=|x| and l=|z|. Apply Bayesian formula:

Calculated for one “best” hit Li et al., Genome Research, 2008

Spliced-read mapping

 Used for processed mRNA data

 Reports reads that span introns.

 Examples: TopHat, ERANGE

