CS681: Advanced Topics in Computational Biology

Week 4, Lectures 1-2-3
Can Alkan
EA224
calkan@cs.bilkent.edu.tr
http://www.cs.bilkent.edu.tr/~calkan/teaching/cs681/

Read Mapping

- When we have a reference genome \& reads from DNA sequencing, which part of the genome does it come from?
- Challenges:
- Sanger sequencing
- Cloning vectors
- Millions of long (~1000 bp reads)
- Next-Gen sequencing:
- Billions of short reads
- Common: sequencing errors
- More prevalent in NGS
- Common: contamination
- Typically $\sim 2-3 \%$ of reads come from different sources; i.e. human resequencing contaminated with yeast, E. coli, etc.
- Common: Repeats \& Duplications

Read Mapping

- Accuracy
- Due to repeats, we need a confidence score in alignment
- Sensitivity
- Don't lose information
- Speed!!!!!!!
- Think of the memory usage
- Output
- Keep all needed information, but don't overflow your disks
- All read mapping algorithms perform alignment at some point (read vs. reference)

Sanger vs NGS: cloning vectors

- Sanger reads may contain sequence from the cloning vector; thus mapping needs local alignment.
- No cloning vectors in NGS, global alignment is fine.

Local vs. Global Alignment

- The Global Alignment Problem tries to find the best alignment from start to end for two sequences
- The Local Alignment Problem tries to find the subsequences of two sequences that give the best alignment
- Solutions to both are extensions of Longest Common Subsequence

Local vs. Global Alignment (contd)

- Global Alignment

- Local Alignment-better alignment to find conserved segment
tccCAGTTATGTCAGgggacacgagcatgcagagac \|llllllll|l
aattgccgccgtcgttttcagCAGTTATGTCAGatc

Local Alignment: Example

Sequence 1

Measuring Similarity

- Measuring the extent of similarity between two sequences
- Based on percent sequence identity
\square Based on conservation

Percent Sequence Identity

- The extent to which two nucleotide or amino acid sequences are invariant

Global Alignment

- Hamming distance:
- Easiest; two sequences s_{1}, s_{2}, where $\left|s_{1}\right|=\left|s_{2}\right|$
- HD $\left(\mathrm{s}_{1}, \mathrm{~s}_{2}\right)=$ \#mismatches
- Edit distance
- Include indels in alignment
- Levenstein's edit distance algorithm, simple recursion with match score $=+1$, mismatch=indel=-1; O(mn)
- Needleman-Wunsch: extension with scoring matrices and affine gap penalties; O(mn)

Edit Distance vs Hamming Distance

Hamming distance always compares
$i^{\text {-th }}$ letter of v with
$i^{- \text {th }}$ letter of w

Hamming distance:
$d(v, w)=8$

Edit distance may compare
$i^{\text {-th }}$ letter of v with
j-th letter of w
$\mathbf{V}=-$ ATATATAT
$\mathbf{w}=$ TATATATA -
Edit distance:
$d(v, w)=2$
(one insertion and one deletion)

The Global Alignment Problem

Find the best alignment between two strings under a given scoring schema

Input : Strings \mathbf{v} and \mathbf{w} and a scoring schema Output : Alignment of maximum score
$\uparrow \rightarrow=-\sigma$
$=1$ if match

μ : mismatch penalty σ : indel penalty

Scoring matrices

- Different scores for different character match \& mismatches
- Amino acid substitution matrices
- PAM
- BLOSUM
- DNA substitution matrices
- DNA is less conserved than protein sequences
- Less effective to compare coding regions at nucleotide level

Scoring Matrices

To generalize scoring, consider a (4+1) $x(4+1)$ scoring matrix δ.
In the case of an amino acid sequence alignment, the scoring matrix would be a $(20+1) \times(20+1)$ size. The addition of 1 is to include the score for comparison of a gap character "-".

This will simplify the algorithm as follows:

$$
s_{i, j}=\max \left\{\begin{array}{l}
s_{i-1, j-1}+\delta\left(v_{i}, w_{j}\right) \\
s_{i-1, j}+\delta\left(v_{i j},-\right) \\
s_{i, j-1}+\delta\left(-, w_{j}\right)
\end{array}\right.
$$

Scoring Indels: Naive Approach

- A fixed penalty σ is given to every indel:
- $-\sigma$ for 1 indel,
$\square-2 \sigma$ for 2 consecutive indels
- -3σ for 3 consecutive indels, etc.

Can be too severe penalty for a series of 100 consecutive indels

Affine Gap Penalties

- In nature, a series of k indels often come as a single event rather than a series of k single nucleotide events:

$$
\begin{aligned}
& \text { ATA__GC } \\
& \text { ATATTGC }
\end{aligned}
$$

This is more likely.

Normal scoring
δ
would give the same This is less score for both alignments
likely.

Accounting for Gaps

- Gaps- contiguous sequence of spaces in one of the rows
- Score for a gap of length x is:

$$
-(\rho+\sigma x)
$$

where $\rho>0$ is the penalty for introducing a gap:
gap opening penalty
ρ will be large relative to σ :
gap extension penalty
because you do not want to add too much of a penalty for extending the gap.

Affine Gap Penalties

- Gap penalties:
- $-\rho-\sigma$ when there is 1 indel
- $-\rho-2 \sigma$ when there are 2 indels
- $-\rho-3 \sigma$ when there are 3 indels, etc.
- $-\rho-x \cdot \sigma$ (-gap opening - x gap extensions)
- Somehow reduced penalties (as compared to naïve scoring) are given to runs of horizontal and vertical edges

Affine Gap Penalty Recurrences

$$
\begin{aligned}
& \stackrel{\downarrow}{s}_{i, j}=\left\{\begin{array}{l}
\downarrow \\
\stackrel{s}{i-1, j}-\sigma \\
s_{i-1, j}-(\rho+\sigma)
\end{array}\right. \\
& \vec{s}_{i, j}=\left\{\begin{array}{l}
\vec{s}_{i, j-1}-\sigma \\
s_{i, j-1}-(\rho+\sigma)
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { End insertion: from bottom }
\end{aligned}
$$

Ukkonnen's Approximate String

Matching

Regular alignment
Observation:
If max allowed edit distance is small, you don't go far away from the diagonal
(global alignment only)

		\mathbf{A}	\mathbf{U}	\mathbf{U}	\mathbf{G}	\mathbf{A}	\mathbf{C}	\mathbf{A}	\mathbf{G}	\mathbf{G}
	$\mathbf{0}$	1	2	3	4	5	6	7	8	9
\mathbf{A}	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	2	3	4	5	6	7	8
\mathbf{U}	2	1	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	4	5	6	7
\mathbf{C}	3	2	$\mathbf{1}$	1	2	3	3	4	5	6
\mathbf{A}	4	3	2	2	2	2	3	$\mathbf{3}$	4	5
\mathbf{G}	5	4	3	3	2	3	3	4	3	4
\mathbf{G}	6	5	4	4	3	3	4	4	4	3
\mathbf{C}	7	6	5	5	4	4	3	4	5	4
\mathbf{C}	8	7	6	6	5	5	4	4	5	5

AUUGACAGG --
AU---CAGGCC

Ukkonen's alignment

	Sequence 1								
				∞	∞	∞	∞	∞	∞
					∞	∞	∞	∞	∞
						∞	∞	∞	∞
q	∞						∞	∞	∞
n	∞	∞						∞	∞
	∞	∞	∞						∞
	∞	∞	∞	∞					
	∞	∞	∞	∞	∞				
	∞	∞	∞	∞	∞	∞			

If maximum allowed number of indels is \boldsymbol{t}, then you only need to calculate $\mathbf{2 t - 1}$ diagonals around the main diagonal.

The Local Alignment Recurrence

- The largest value of $s_{i, j}$ over the whole edit graph is the score of the best local alignment.
- The recurrence:

$$
s_{i j}=\max \left\{\begin{array}{l}
0 \\
s_{i-1, j-1}+\delta\left(v_{v_{j}} w_{j}\right) \\
\left.s_{i-l, j}+\delta\left(v_{j p}-\right)^{\prime}\right) \\
s_{i, j-1}+\delta\left(-, w_{j}\right)
\end{array}\right.
$$

there is only this change from the original recurrence of a Global Alignment since there is only one "free ride" edge entering into every vertex

Smith-Waterman

$$
s_{i, j}=\max \left\{\begin{array}{l}
0 \\
s_{i-l-j-1}+\delta\left(v_{j}, w_{i}\right) \\
i_{i-1, j}+\delta\left(v_{j}-\right) \\
c_{i, j-1}+\delta\left(-, w_{j}\right)
\end{array}\right.
$$

- Start from the maximum score $s(i, j)$ on the alignment matrix
- Move to $m(i-1, j), m(i, j-1)$ or $m(i-1, j-1)$ until $s(i, j)=0$ or $i=j=0$
- $\mathrm{O}(\mathrm{mn})$

Faster Implementations

- GPGPU: general purpose graphics processing units
- Should avoid branch statements (if-then-else)
- FPGA: field programmable gate arrays
- SIMD instructions: single-instruction multiple data
- SSE instruction set (Intel)
- Also available on AMD processors
- Same instruction is executed on multiple data concurrently

Alignment with SSE

- Applicable to both global and local alignment
- Using SSE instruction set we can compute each diagonal in parallel
- Each diagonal will be in saved in a 128 bit SSE specific register
- The diagonal C, can be computed from diagonal A and B in parallel
- Number of SSE registers is limited, we can not hold the matrix, but only the two last diagonals is needed anyway.

READ MAPPERS

Mapping Reads

Problem: We are given a read, R, and a reference sequence, S. Find the best or all occurrences of R in S.

Example:
R = AAACGAGTTA
$\mathrm{S}=\mathrm{TTAATGCAAACGAGTTACCCAATATATATAAACCAGTTATT}$

Considering no error: one occurrence.
Considering up to 1 substitution error: two occurrences.
Considering up to 10 substitution errors: many meaningless occurrences!
Don't forget to search in both forward and reverse strands!!!

Mapping Reads (continued)

Variations:

- Sequencing error
- No error: R is a perfect subsequence of S.
- Only substitution error: R is a subsequence of S up to a few substitutions.
- Indel and substitution error: R is a subsequence of S up to a few short indels and substitutions.
- Junctions (for instance in alternative splicing)
- Fixed order/orientation
$R=R_{1} R_{2} \ldots R_{n}$ and R_{i} map to different non-overlapping loci in S, but to the same strand and preserving the order.
- Arbitrary order/orientation
$R=R_{1} R_{2} \ldots R_{n}$ and R_{i} map to different non-overlapping loci in S.

Mapping algorithms

- Two main "styles":
- Hash based seed-and-extend (hash table, suffix array, suffix tree)
- Index the k-mers in the genome
- Continuous seeds and gapped seeds
- When searching a read, find the location of a k-mer in the read; then extend through alignment
- Requires large memory; this can be reduced with cost to run time
- More sensitive, but slow
- Burrows-Wheeler Transform \& Ferragina-Manzini Index based aligners
- BWT is a data compression method used to compress the genome index
- Perfect hits can be found very quickly, memory lookup costs increase for imperfect hits
- Reduced sensitivity
"Long" read mappers
- BLAST, MegaBLAST, BLAT, LASTZ can be used for Sanger, 454, Ion Torrent
- Hash based
- Extension step is done using Smith-Waterman algorithm
- BLAST and MegaBLAST have additional scoring scheme to order hits and assign confidence values
- 454/Ion Torrent only: PASH, Newbler

Short read mappers

- Hash based
- Illumina: mrFAST, mrsFAST, MAQ, MOSAIK, SOAP, SHRiMP, etc.
- MOSAIK requires ~30GB memory
- Others limit memory usage by dividing genome into chunks
- mrFAST, SHRiMP have SSE-based implementation
- MAQ: Hamming distance only
- SOLiD: drFAST, BFAST, SHRiMP, mapreads
- GPGPU implementations: Saruman, MummerGPU

Short read mappers

- BWT-FM based
- Illumina: BWA, Bowtie, SOAP2
- Human genome can be compressed into a 2.3 GB data structure through BWT
- Extremely fast for perfect hits
- Increased memory lookups for mismatch
- Indels are found in postprocessing when paired-end reads are available
- GPGPU implementations: SOAP3 (poor performance due to memory lookups)

Read mappers: PacBio

- BLASR aligner; tuned for PacBio error model (indel dominated, ~15\%)
- Two versions:
- Suffix array (hash) based
- BWT-FM based

Hash Based Aligners

 Break into contigs of length < ~30 Mbp

(a)

(b)

(c)

Seed and extend

- Break the read into n segments of k-mers.
- For perfect sensitivity under edit distance e
- There is at least one l-mer where $\mathrm{I}=$ floor($L /(\mathrm{e}+1)$); $L=$ read length
- For fixed $l=k ; n=e+1$ and $k \leq L / n$
- Large k -> large memory
- Small k -> more hash hits
- Lets consider the read length is 36 bp , and $\mathrm{k}=12$.

- if we are looking for 2 edit distance (mismatch, indel) this would guaranty to find all of the hits

Cache oblivious search

Cache oblivious search

- Gl and RI are both sorted
- Scan GI; for all G[i] = RI[j].sr
- Map all partition/read_number combinations in RI[j]
- All of the above have the same $s r$ and its corresponding GI[i] list; therefore:
- They have the same seed locations: same sequence content in the reference genome to extend
- Once $\mathrm{GI}[\mathrm{i}]$ and corresponding ref(GI[i].1, GI[i].2, ...) are loaded from main memory to cache memory; then you re-use the faster cache memory contents; minimizing cache hits and main-to-cache transfers

Cache oblivious search

Mapper	Level 2 Cache Misses per Instruction	Instruction per cycle
Bowtie	0.0016	0.94
BWA	0.0016	0.93
MAQ	0.0060	0.56
mrsFAST	0.0008	1.24

Spaced seeds

- Instead of a k-mer with contiguous hit (1111..1); use space seeds
- Seed S is defined by Length and Weight
- 0's are "don't care" characters
- 111111001111111100 requires
- 6 matches + 2 "don't care"s + 8 matches + 2 "don't care"s; a valid hit:

> CGACTAGCTAGCTAGCTA CGACTAAGTAGCTAGCGC

- Length $=18$; weight $=14$

Spaced seeds

- You can define a set of N spaced seeds for read length R; and weight W that guarantees full sensitivity with less than E number of mismatches without the need for alignment step
- ZOOM!: Zillions of oligos mapped
- No dynamic programming for mismatch-only
- Index the reads with N spaced seeds depending on R and W
- Scan the reference genome in the read index

Burrows-Wheeler

- Store entire reference genome.
- Align tag base by base from the end.
- When tag is traversed, all active locations are reported.
- If no match is found, then back up and try a substitution.

Burrows-Wheeler Transformation

1. Append to the input string a special char, \$, smaller than all mississippi\$ alphabet.

Burrows-Wheeler Transformation (cnt'd)
2. Generate all rotations.

\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$
\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}
\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}
\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}
\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}
\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}
\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}
\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}
\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}
\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}
\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}
$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}

Burrows-Wheeler Transformation (cnt'd)
3. Sort rotations according to the alphabetical order.

$\$$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}
\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}
\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}
\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}
\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}
\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$
\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}
\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}
\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}
\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}
\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}
\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}

Burrows-Wheeler Transformation (cnt'd)
4. Output the last column.

$\$$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}
\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}
\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}
\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}
\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}
\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\$$
\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}
\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}
\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}
\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}
\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}
\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}

Burrows-Wheeler Transformation (cnt'd)

mississippi\$

Ferragina-Manzini Index

First column: F
Last column: L
Let's make an L to F map.

Observation:
The $\mathrm{n}^{\text {th }} \mathrm{i}$ in L is the $\mathrm{n}^{\text {th }} \mathrm{i}$ in F .

$\$$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	i
\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}
\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}
\mathbf{s}	\mathbf{s}										
\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}
\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$
\mathbf{m}											
\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$
\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}
\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}
\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}
\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}
\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}
\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}

Ferragina-Manzini Index: L to F map

Store/compute a two dimensional Occ(j, 'c') table of the number of occurrences of char 'c' up to position j (inclusive).
and one
dimensional
Cnt('c') and
Rank('c') tables

	$\$$	i	m	p	s
i	0	1	0	0	0
p	0	1	0	1	0
s	0	1	0	1	1
s	0	1	0	1	2
m	0	1	1	1	2
$\$$	1	1	1	1	2
p	1	1	1	2	2
i	1	2	1	2	2
s	1	2	1	2	3
s	1	2	1	2	4
i	1	3	1	2	4
i	1	4	1	2	4

Occ(j,'c')

Cnt('c')

$\$$	i	m	p	s
1	4	1	2	4

Rank('c')

$\$$	i	m	p	s
12	2	1	9	3

Ferragina-Manzini Index: L to F map

Ferragina-Manzini Index: Reverse traversal
(1)
(2) p
(7) p
(8) i
(3) s
(9) s
(11) i
(4) s
(10) s
(12) i
(5) m
(6) $\$$

		m												(i)
2		-												
3		-				5								
4		s		5	i	p	p			,	m	i	s	s
5	i	s		s	i		5		i	p	p	i	\$	\$ m
6	m	i			s	i	s		5	+	p	p	i	\$
7		,			m		.							
8		,			$\stackrel{3}{3}$	m								
9	s	i		p	p	i	\$		m	i	s	s	i	s
10	s				s	i	p		p	i	s	m	i	s
11	s				p	p			\$ m	m	i	s	s	s i
12														

Mapping with BWT-FM

Auxillary data structures for efficient pattern matching: how to find the corresponding chars in the first column efficiently, in terms of both time and space.

Original sequence

	SA	\$agcagcagact	t
1	9	act\$agcagcag	g
2	7	agact\$agcagc	c
3	4	agcagact\$agc	C
4	1	agcagcagact\$	\$
5	6	cagact\$agcag	9
6	3	cagcagact\$ag	g
7	10	ct\$agcagcaga	a
8	8	gact\$agcagca	a
9	5	gcagact\$agca	a
10	2	gcagcagact \mathbf{a}	a
11	11	t\$agcagcagac	c

a	c	g	t
0	0	1	1
0	1	1	1
0	2	1	1
0	2	1	1
0	2	2	1
0	2	3	1
1	2	3	1
2	2	3	1
3	2	3	1
4	2	3	1
4	3	3	1

FM indices

Mapping with BWT-FM

Auxillary data structures for efficient pattern matching: how to find the corresponding chars in the first column efficiently, in terms of both time and space.

Original sequence

	a	c	g	t
rank	1	5	8	11

Original sequence			BW
		gca	
	SA	\$agcagcagact	t
1	9	āc̄t\$āḡc̄āgcā $\overline{\mathbf{g}}^{-}$	g
2	7	agact\$agcagc	C
3	4	agcagact\$agc	c
4	1	L agcagcagact\$	\$
5	6	cagact\$agcag	g
6	3	cagcagact\$ag	g
7	10	ct\$agcagcaga	a
8	8	gact\$agcagca	a
9	5	gcagact\$agca	a
10	2	gcagcagact \mathbf{a}	a
11	11	t\$agcagcagac	c

a	c	g	t
0	0	1	1
0	1	1	1
0	2	1	1
0	2	1	1
0	2	2	1
0	2	3	1
1	2	3	1
2	2	3	1
3	2	3	1
4	2	3	1
4	3	3	1

FM indices

Next block:
From $1+0=1$
to $1+(4-1)=4$

Mapping with BWT-FM

Auxillary data structures for efficient pattern matching: how to find the corresponding chars in the first column efficiently, in terms of both time and space.

Original sequence

	a	c	g	T
rank	1	5	8	11

Original sequence			BW
		gca	
	SA	\$agcagcagact	t
1	9	act\$agcagcag	g
2	7	agact\$agcagc	C
3	4	agcagact\$agc	C
4	1	'L agcagcagact\$ _	\$
5	6	- cagact\$agcag	9
6	3	cagcagact\$ag	9
7	10	ct\$agcagcaga	a
8	8	gact\$agcagca	a
9	5	gcagact\$agca	a
10	2	gcagcagact\$a	a
11	11	t\$agcagcagac	c

a	c	g	t
0	0	1	1
0	1	1	1
0	2	1	1
0	2	1	1
0	2	2	1
0	2	3	1
1	2	3	1
2	2	3	1
3	2	3	1
4	2	3	1
4	3	3	1

FM indices

Next block:
From $5+0=5$
to $5+(2-1)=6$

Mapping with BWT-FM

Auxillary data structures for efficient pattern matching: how to find the corresponding chars in the first column efficiently, in terms of both time and space.

Original sequence
BWT

	a	c	g	T
rank	1	5	8	11

a	c	g	t
0	0	1	1
0	1	1	1
0	2	1	1
0	2	1	1
0	2	2	1
0	2	3	1
1	2	3	1
2	2	3	1
3	2	3	1
4	2	3	1
4	3	3	1

FM indices

Next block:
From $8+1=9$
to $8+(3-1)=10$

Inexact match

Mapping Quality

- $\mathrm{MAPQ}=-10 * \log _{10}(\operatorname{Prob}($ mapping is wrong $))$

For reference sequence x; read sequence z :
$p(z \mid x, u)=$ probability that z comes from position u
$=$ multiplication of p_{e} of mismatched bases of z
For posterior probability $\mathbf{p}(\mathbf{u} \mid \mathbf{x}, \mathbf{z})$ assume uniform prior distribution $\mathbf{p}(\mathbf{u} \mid \mathbf{x})$ $L=|\mathrm{x}|$ and $l=|\mathrm{z}|$. Apply Bayesian formula:

$$
\begin{gathered}
p_{s}(u \mid x, z)=\frac{p(z \mid x, u)}{\sum_{v=1}^{L-l+1} p(z \mid x, v)} \\
Q_{s}(u \mid x, z)=-10 \log _{10}\left[1-p_{s}(u \mid x, z)\right]
\end{gathered}
$$

Spliced-read mapping

Processed mRNA

- Used for processed mRNA data
- Reports reads that span introns.
- Examples: TopHat, ERANGE

