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Read Mapping 

 When we have a reference genome & reads from DNA sequencing, 

which part of the genome does it come from? 

 Challenges: 

 Sanger sequencing 

 Cloning vectors 

 Millions of long (~1000 bp reads) 

 Next-Gen sequencing: 

 Billions of short reads 

 Common: sequencing errors 

 More prevalent in NGS 

 Common: contamination 

 Typically ~2-3% of reads come from different sources; i.e. human 

resequencing contaminated with yeast, E. coli, etc. 

 Common: Repeats & Duplications 

 



Read Mapping 

 Accuracy 

 Due to repeats, we need a confidence score in alignment 

 Sensitivity 

 Don’t lose information 

 Speed!!!!!!! 

 Think of the memory usage 

 Output 

 Keep all needed information, but don’t overflow your 

disks 

 All read mapping algorithms perform alignment at 

some point (read vs. reference) 

 



Sanger vs NGS: cloning vectors 

 Sanger reads may 

contain sequence 

from the cloning 

vector; thus 

mapping needs 

local alignment. 

 No cloning vectors 

in NGS, global 

alignment is fine. 

Bacterial DNA 

Target DNA 

read 



Local vs. Global Alignment 

 The Global Alignment Problem tries to find 

the best alignment from start to end for two 

sequences 

 The Local Alignment Problem tries to find the 

subsequences of two sequences that give the 

best alignment 

 Solutions to both are extensions of Longest 

Common Subsequence 



Local vs. Global Alignment (cont’d) 

• Global Alignment 

 

 

• Local Alignment—better alignment to find 

conserved segment 

    --T—-CC-C-AGT—-TATGT-CAGGGGACACG—A-GCATGCAGA-GAC 
      |  || |  ||  | | | |||    || | | |  | ||||   | 
    AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG—T-CAGAT--C 

                tccCAGTTATGTCAGgggacacgagcatgcagagac 

                     |||||||||||| 

aattgccgccgtcgttttcagCAGTTATGTCAGatc 



Local Alignment: Example 

Global alignment 

Local alignment 

Compute a “mini” 

Global Alignment 

to get Local 

Sequence 1 

S
e
q

u
e
n

c
e
 2

 



Measuring Similarity 

 Measuring the extent of similarity between 

two sequences 

 Based on percent sequence identity 

 Based on conservation 



Percent Sequence Identity 

 The extent to which two nucleotide or amino 

acid sequences are invariant 

A C  C  T G  A  G  –  A G  
A C  G  T G  –  G  C  A G 

70% identical 

mismatch 
indel 



Global Alignment 

 Hamming distance: 

 Easiest; two sequences s1, s2, where |s1|=|s2| 

 HD(s1, s2) = #mismatches 

 Edit distance 

 Include indels in alignment 

 Levenstein’s edit distance algorithm, simple 

recursion with match score = +1, 

mismatch=indel=-1; O(mn) 

 Needleman-Wunsch: extension with scoring 

matrices and affine gap penalties; O(mn) 

 



Edit Distance vs Hamming Distance 

V  = ATATATAT 

W = TATATATA 

Hamming distance:                    Edit distance:  

      d(v, w)=8                               d(v, w)=2  
                                                (one insertion and one deletion) 

 

W = TATATATA - 

V  =  -ATATATAT 

Hamming distance  
always compares  
 i-th letter of v  with 
 i-th letter of w 

Edit distance  
may compare  
 i-th letter of v  with 
 j-th letter of w 



The Global Alignment Problem 

Find the best alignment between two strings under a given scoring 
schema 

 

Input : Strings v and w and a scoring schema 

Output : Alignment of maximum score 

 
↑→ = -б 

       = 1 if match 

       = -µ if mismatch 

 

                       si-1,j-1 +1  if vi = wj 

si,j   =  max      s i-1,j-1 -µ if vi ≠ wj 

                       s i-1,j - σ  

                       s i,j-1 - σ  

m : mismatch 

penalty 

σ : indel penalty 

 



Scoring matrices 

 Different scores for different character match & 
mismatches 

 Amino acid substitution matrices 

 PAM 

 BLOSUM 

 DNA substitution matrices 

 DNA is less conserved than protein 
sequences 

 Less effective to compare coding regions at 
nucleotide level 



Scoring Matrices  

To generalize scoring, consider a (4+1) x(4+1) 
scoring matrix δ.  

In the case of an amino acid sequence alignment, the 
scoring matrix would be a (20+1)x(20+1) size.  The 
addition of 1 is to include the score for comparison 
of a gap character “-”. 

This will simplify the algorithm as follows: 

                         si-1,j-1 + δ (vi, wj) 

si,j   =    max      s i-1,j  + δ (vi, -) 

                         s i,j-1 + δ (-, wj) 

 



Scoring Indels: Naive Approach 

 A fixed penalty σ is given to every indel: 

   -σ for 1 indel,  

 -2σ for 2 consecutive  indels 

 -3σ for 3 consecutive  indels, etc. 

 

Can be too severe penalty for a series of 

100 consecutive indels 



Affine Gap Penalties 

 In nature, a series of k indels often come as a 

single event rather than a series of k single 

nucleotide events: 

Normal scoring 

would give the same 

score for both 

alignments 

This is more 

likely. 

This is less 

likely. 



Accounting for Gaps 

 Gaps- contiguous sequence of spaces in one of the 
rows 

 

 Score for a gap of length x is:  

                       -(ρ + σx) 

    where ρ >0 is the penalty for introducing a gap:  

                      gap opening penalty 

    ρ will be large relative to σ: 

                      gap extension penalty 

    because you do not want to add too much of a 
penalty for extending the gap. 



Affine Gap Penalties 

 Gap penalties: 

    -ρ-σ  when there is 1 indel 

  -ρ-2σ  when there are 2 indels 

  -ρ-3σ  when there are 3 indels, etc.  

 -ρ- x·σ (-gap opening - x gap extensions) 

 Somehow reduced penalties (as compared to 

naïve scoring) are given to runs of horizontal 

and vertical edges 



Affine Gap Penalty Recurrences 

si,j   =          s i-1,j  - σ 

       max     s i-1,j –(ρ+σ) 

 

si,j   =          s i,j-1  - σ 

       max     s i,j-1 –(ρ+σ) 

 

si,j   =         si-1,j-1 + δ (vi, wj) 

      max     s i,j   

                  s i,j 

 
 

 

Continue Gap in w (deletion) 

Start Gap in w (deletion): from 

middle 

Continue Gap in v (insertion) 

Start Gap in v (insertion):from 

middle 

Match or Mismatch 

End deletion: from top 

End insertion: from bottom 



Ukkonnen’s Approximate String 

Matching 
Regular alignment 

AUUGACAGG - - 

AU - - - CAGGCC 

Observation: 

If max allowed edit 

distance is small, 

you don’t go far 

away from the 

diagonal 

 

(global alignment 

only) 



Ukkonen’s alignment 

If maximum allowed number of indels is t, then you only need to calculate 

2t-1 diagonals around the main diagonal. 



The Local Alignment Recurrence 

• The largest value of si,j over the whole edit 

graph is the score of the best local alignment. 

 

• The recurrence: 

                      0      

si,j   = max     si-1,j-1 + δ (vi, wj) 
                     s i-1,j  + δ (vi, -) 
                     s i,j-1 + δ (-, wj) 

there is only this change 

from the original recurrence 

of a Global Alignment - 

since there is only one “free 

ride” edge entering into 

every vertex 

Smith-Waterman Algorithm 



Smith-Waterman 

 Start from the maximum score s(i,j) on the 

alignment matrix 

 Move to m(i-1, j), m(i, j-1) or m(i-1, j-1) until 

s(i,j)=0 or i=j=0 

 O(mn) 

                      0      

si,j   = max     si-1,j-1 + δ (vi, wj) 
                     s i-1,j  + δ (vi, -) 
                     s i,j-1 + δ (-, wj) 



Faster Implementations 

 GPGPU: general purpose graphics 

processing units 

 Should avoid branch statements (if-then-else) 

 FPGA: field programmable gate arrays 

 SIMD instructions: single-instruction multiple 

data 

 SSE instruction set (Intel) 

 Also available on AMD processors 

 Same instruction is executed on multiple data 

concurrently 



Alignment with SSE 

 
 Applicable to both global and 

local alignment 

 Using SSE instruction set we 
can compute each diagonal in 
parallel 

 Each diagonal will be in saved 
in a 128 bit SSE specific 
register 

 The diagonal C, can be 
computed from diagonal A and 
B in parallel 

 Number of SSE registers is 
limited, we can not hold the 
matrix, but only the two last 
diagonals is needed anyway. 

Genome seg(L-k+2) 
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READ MAPPERS 



Mapping Reads 

Problem: We are given a read, R, and a reference sequence, S. Find 

the best or all occurrences of R in S. 

 

Example: 

R = AAACGAGTTA 

S = TTAATGCAAACGAGTTACCCAATATATATAAACCAGTTATT 

 

Considering no error: one occurrence. 

Considering up to 1 substitution error: two occurrences. 

Considering up to 10 substitution errors: many meaningless 

occurrences! 

Don’t forget to search in both forward and reverse strands!!! 

 



Mapping Reads (continued) 

Variations: 

 Sequencing error 
 No error: R is a perfect subsequence of S. 

 Only substitution error: R is a subsequence of S up to a few 
substitutions. 

 Indel and substitution error: R is a subsequence of S up to a few 
short indels and substitutions. 

 Junctions (for instance in alternative splicing) 
 Fixed order/orientation 

  R = R1R2…Rn and Ri map to different non-overlapping loci in S, 
but to the  same strand and preserving the order. 

 Arbitrary order/orientation 

  R = R1R2…Rn and Ri map to different non-overlapping loci in S. 



Mapping algorithms 

 Two main “styles”: 

 Hash based seed-and-extend (hash table, suffix array, suffix tree) 

 Index the k-mers in the genome 

 Continuous seeds and gapped seeds 

 When searching a read, find the location of a k-mer in the read; then 

extend through alignment 

 Requires large memory; this can be reduced with cost to run time 

 More sensitive, but slow 

 Burrows-Wheeler Transform & Ferragina-Manzini Index based 

aligners 

 BWT is a data compression method used to compress the genome 

index 

 Perfect hits can be found very quickly, memory lookup costs increase 

for imperfect hits 

 Reduced sensitivity 



“Long” read mappers 

  BLAST, MegaBLAST, BLAT, LASTZ can be 

used for Sanger, 454, Ion Torrent 

 Hash based 

 Extension step is done using Smith-Waterman 

algorithm 

 BLAST and MegaBLAST have additional scoring 

scheme to order hits and assign confidence 

values 

 454/Ion Torrent only: PASH, Newbler 



Short read mappers 

  Hash based 

 Illumina: mrFAST, mrsFAST, MAQ, MOSAIK, 

SOAP, SHRiMP, etc. 

 MOSAIK requires ~30GB memory 

 Others limit memory usage by dividing genome into 

chunks 

 mrFAST, SHRiMP have SSE-based implementation 

 MAQ: Hamming distance only 

 SOLiD: drFAST, BFAST, SHRiMP, mapreads 

 GPGPU implementations: Saruman, Mummer-

GPU 

 



Short read mappers 

 BWT-FM based 

 Illumina: BWA, Bowtie, SOAP2 

 Human genome can be compressed into a 2.3 GB 

data structure through BWT 

 Extremely fast for perfect hits 

 Increased memory lookups for mismatch 

 Indels are found in postprocessing when paired-end 

reads are available 

 GPGPU implementations: SOAP3 (poor 

performance due to memory lookups) 

 



Read mappers: PacBio 

 BLASR aligner; tuned for PacBio error model 

(indel dominated, ~15%) 

 Two versions: 

 Suffix array (hash) based 

 BWT-FM based 



Hash Based Aligners 



Seed and extend 
 Break the read into n segments of k-mers. 

 For perfect sensitivity under edit distance e 

 There is at least one l-mer where l = 

floor(L/(e+1)); L=read length 

 For fixed l=k; n = e+1 and k ≤ L / n 

 Large k -> large memory  

 Small k -> more hash hits  

 Lets consider the read length is 36 bp, and k=12. 

 

 

  if we are looking for 2 edit distance (mismatch, indel) 

this would guaranty to find all of the hits 

 

 



Cache oblivious search 

aaaaaaa 

aaaaaac 

aaaaaag 

aaaaaat 

aaaaaca 

ttttttt 

12 679 

180 

1909 

987 

GI: Genome Index 

aaaccaa 

caacata 

ggggaaa 

ttaacaa 

ttaacat 

ttttttt 

aaaccaa ttaacat ttaacaa 

ttttttt aaaccaa ggggaaa 

read1 

read4 

Partitions              1                 2                   3 

1/1 2/4 

2/100 

1/4 

3/1 

2/1 

3/4 

RI: Read Index [sr;(part#, read#)] 

sr 



Cache oblivious search 

 GI and RI are both sorted 

 Scan GI; for all GI[i] = RI[j].sr 

 Map all partition/read_number combinations in RI[j] 

 All of the above have the same sr and its 

corresponding GI[i] list; therefore: 

 They have the same seed locations: same sequence content 

in the reference genome to extend 

 Once GI[i] and corresponding ref(GI[i].1, GI[i].2, …) are loaded 

from main memory to cache memory; then you re-use the 

faster cache memory contents; minimizing cache hits and 

main-to-cache transfers 



Cache oblivious search 

Mapper Level 2 Cache 

Misses per 

Instruction 

Instruction per 

cycle 

Bowtie 0.0016 0.94 

BWA 0.0016 0.93 

MAQ 0.0060 0.56 

mrsFAST 0.0008 1.24 



Spaced seeds 

 Instead of a k-mer with contiguous hit 

(1111..1); use space seeds 

 Seed S is defined by Length and Weight 

 0’s are “don’t care” characters 

 111111001111111100 requires 

 6 matches + 2 “don’t care”s + 8 matches + 2 “don’t 

care”s; a valid hit: 

 

 

 Length = 18;  weight = 14 

 

 

 

CGACTAGCTAGCTAGCTA 

CGACTAAGTAGCTAGCGC 



Spaced seeds 

 You can define a set of N spaced seeds for 

read length R; and weight W that guarantees 

full sensitivity with less than E number of 

mismatches without the need for alignment 

step 

 ZOOM!: Zillions of oligos mapped  

 No dynamic programming for mismatch-only 

 Index the reads with N spaced seeds depending on R 

and W 

 Scan the reference genome in the read index 

 
Lin et al. Bioinformatics, 2008 



Burrows-Wheeler 

 Store entire reference 

genome. 

 Align tag base by base 

from the end. 

 When tag is traversed, all 

active locations are 

reported. 

 If no match is found, then 

back up and try a 

substitution. 



Burrows-Wheeler Transformation 

 
1. Append to 

the input 
string a 
special char, 
$, smaller 
than all 
alphabet. 

mississippi$ 



Burrows-Wheeler Transformation (cnt’d) 

2. Generate 

all 

rotations. 

m i s s i s s i p p i $ 

i s s i s s i p p i $ m 

s s i s s i p p i $ m i 

s i s s i p p i $ m i s 

i s s i p p i $ m i s s 

s s i p p i $ m i s s i 

s i p p i $ m i s s i s 

i p p i $ m i s s i s s 

p p i $ m i s s i s s i 

p i $ m i s s i s s i p 

i $ m i s s i s s i p p 

$ m i s s i s s i p p i 



Burrows-Wheeler Transformation (cnt’d) 

3. Sort 

rotations 

according to 

the 

alphabetical 

order. 

$ m i s s i s s i p p i 

i $ m i s s i s s i p p 

i p p i $ m i s s i s s 

i s s i p p i $ m i s s 

i s s i s s i p p i $ m 

m i s s i s s i p p i $ 

p i $ m i s s i s s i p 

p p i $ m i s s i s s i 

s i p p i $ m i s s i s 

s i s s i p p i $ m i s 

s s i p p i $ m i s s i 

s s i s s i p p i $ m i 



Burrows-Wheeler Transformation (cnt’d) 

4. Output 

the last 

column. 

$ m i s s i s s i p p i 

i $ m i s s i s s i p p 

i p p i $ m i s s i s s 

i s s i p p i $ m i s s 

i s s i s s i p p i $ m 

m i s s i s s i p p i $ 

p i $ m i s s i s s i p 

p p i $ m i s s i s s i 

s i p p i $ m i s s i s 

s i s s i p p i $ m i s 

s s i p p i $ m i s s i 

s s i s s i p p i $ m i 



Burrows-Wheeler Transformation (cnt’d) 

 

ipssm$pissii 

mississippi$ 



Ferragina-Manzini Index 

First column: F 

 

Last column: L 

 

Let’s make an  

L to F map. 

 

Observation: 

The nth i in L is 

the nth i in F. 

$ m i s s i s s i p p i 

i $ m i s s i s s i p p 

i p p i $ m i s s i s s 

i s s i p p i $ m i s s 

i s s i s s i p p i $ m 

m i s s i s s i p p i $ 

p i $ m i s s i s s i p 

p p i $ m i s s i s s i 

s i p p i $ m i s s i s 

s i s s i p p i $ m i s 

s s i p p i $ m i s s i 

s s i s s i p p i $ m i 



Ferragina-Manzini Index: L to F map 

Store/compute 

a two  

dimensional  

Occ(j,‘c’) table 

of the number of 

occurrences of 

char ‘c’ up to 

position j 

(inclusive). 

 

and one 

dimensional 

Cnt(‘c’) and 
Rank(‘c’) 
tables  

$ i m p s 

i 0 1 0 0 0 

p 0 1 0 1 0 

s 0 1 0 1 1 

s 0 1 0 1 2 

m 0 1 1 1 2 

$ 1 1 1 1 2 

p 1 1 1 2 2 

i 1 2 1 2 2 

s 1 2 1 2 3 

s 1 2 1 2 4 

i 1 3 1 2 4 

i 1 4 1 2 4 

$ i m p s 

1 4 1 2 4 

Occ(j,‘c’) 

Cnt(‘c’) 

$ i m p s 

12 2 1 9 3 

Rank(‘c’) 



Ferragina-Manzini Index: L to F map 

[Cnt(‘$’) + 

Cnt(‘i’) + 

Cnt(‘m’) + 

Cnt(‘p’) = 8] 

+ [Occ(9, ‘s’)= 3] 

= 11 

1 $ m i s s i s s i p p i 

2 i $ m i s s i s s i p p 

3 i p p i $ m i s s i s s 

4 i s s i p p i $ m i s s 

5 i s s i s s i p p i $ m 

6 m i s s i s s i p p i $ 

7 p i $ m i s s i s s i p 

8 p p i $ m i s s i s s i 

9 s i p p i $ m i s s i s 

10 s i s s i p p i $ m i s 

11 s s i p p i $ m i s s i 

12 s s i s s i p p i $ m i 

‘s’ section 

before ‘s’ 

$ i m p s 

1 4 1 2 4 

Cnt(‘c’) 



Ferragina-Manzini Index: Reverse traversal 

(1) i 

(2) p 

(7) p 

(8) i 

(3) s 

(9) s 

(11) i 

(4) s 

(10) s 

(12) i 

(5) m 

(6) $ 

 

1 $ m i s s i s s i p p i 

2 i $ m i s s i s s i p p 

3 i p p i $ m i s s i s s 

4 i s s i p p i $ m i s s 

5 i s s i s s i p p i $ m 

6 m i s s i s s i p p i $ 

7 p i $ m i s s i s s i p 

8 p p i $ m i s s i s s i 

9 s i p p i $ m i s s i s 

10 s i s s i p p i $ m i s 

11 s s i p p i $ m i s s i 

12 s s i s s i p p i $ m i 



Mapping with BWT-FM 

$agcagcagact 

act$agcagcag 

agact$agcagc 

agcagact$agc 

agcagcagact$ 

cagact$agcag 

cagcagact$ag 

ct$agcagcaga 

gact$agcagca 

gcagact$agca 

gcagcagact$a 

t$agcagcagac 

a c g T 

rank 1 5 8 11 

9 

7 

4 

1 

6 

3 

10 

8 

5 

2 

11 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

SA t 

g 

c 

c 

$ 

g 

g 

a 

a 

a 

a 

c 

Auxillary data structures for efficient pattern matching: how to find 

the corresponding chars in the first column efficiently, in terms of 

both time and space. 

BWT 

a c g t 

0 0 1 1 

0 1 1 1 

0 2 1 1 

0 2 1 1 

0 2 2 1 

0 2 3 1 

1 2 3 1 

2 2 3 1 

3 2 3 1 

4 2 3 1 

4 3 3 1 

FM indices 

Original sequence 



Mapping with BWT-FM 

$agcagcagact 

act$agcagcag 

agact$agcagc 

agcagact$agc 

agcagcagact$ 

cagact$agcag 

cagcagact$ag 

ct$agcagcaga 

gact$agcagca 

gcagact$agca 

gcagcagact$a 

t$agcagcagac 

a c g t 

rank 1 5 8 11 

9 

7 

4 

1 

6 

3 

10 

8 

5 

2 

11 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

SA t 

g 

c 

c 

$ 

g 

g 

a 

a 

a 

a 

c 

BWT 

a c g t 

0 0 1 1 

0 1 1 1 

0 2 1 1 

0 2 1 1 

0 2 2 1 

0 2 3 1 

1 2 3 1 

2 2 3 1 

3 2 3 1 

4 2 3 1 

4 3 3 1 

FM indices 

gca 

Next block: 

From 1 + 0 = 1  

to 1 + (4-1) = 4 

Auxillary data structures for efficient pattern matching: how to find 

the corresponding chars in the first column efficiently, in terms of 

both time and space. 

Original sequence 



Mapping with BWT-FM 

$agcagcagact 

act$agcagcag 

agact$agcagc 

agcagact$agc 

agcagcagact$ 

cagact$agcag 

cagcagact$ag 

ct$agcagcaga 

gact$agcagca 

gcagact$agca 

gcagcagact$a 

t$agcagcagac 

a c g T 

rank 1 5 8 11 

9 

7 

4 

1 

6 

3 

10 

8 

5 

2 

11 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

SA t 

g 

c 

c 

$ 

g 

g 

a 

a 

a 

a 

c 

BWT 

a c g t 

0 0 1 1 

0 1 1 1 

0 2 1 1 

0 2 1 1 

0 2 2 1 

0 2 3 1 

1 2 3 1 

2 2 3 1 

3 2 3 1 

4 2 3 1 

4 3 3 1 

FM indices 

gca 

Next block: 

From 5 + 0 = 5  

to 5 + (2-1) = 6 

Auxillary data structures for efficient pattern matching: how to find 

the corresponding chars in the first column efficiently, in terms of 

both time and space. 

Original sequence 



Mapping with BWT-FM 

$agcagcagact 

act$agcagcag 

agact$agcagc 

agcagact$agc 

agcagcagact$ 

cagact$agcag 

cagcagact$ag 

ct$agcagcaga 

gact$agcagca 

gcagact$agca 

gcagcagact$a 

t$agcagcagac 

a c g T 

rank 1 5 8 11 

9 

7 

4 

1 

6 

3 

10 

8 

5 

2 

11 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

SA t 

g 

c 

c 

$ 

g 

g 

a 

a 

a 

a 

c 

BWT 

a c g t 

0 0 1 1 

0 1 1 1 

0 2 1 1 

0 2 1 1 

0 2 2 1 

0 2 3 1 

1 2 3 1 

2 2 3 1 

3 2 3 1 

4 2 3 1 

4 3 3 1 

FM indices 

gca 

Next block: 

From 8 + 1 = 9  

to 8 + (3-1) = 10 

Auxillary data structures for efficient pattern matching: how to find 

the corresponding chars in the first column efficiently, in terms of 

both time and space. 

Original sequence 



Inexact match 



Mapping Quality 

 MAPQ = -10 * log10(Prob(mapping is wrong)) 

For reference sequence x; read sequence z: 

p(z | x,u) = probability that z comes from position u  

                = multiplication of pe of mismatched bases of z 

 

For posterior probability p(u | x,z) assume uniform prior distribution p(u|x) 

L=|x| and l=|z|. Apply Bayesian formula: 

Calculated for one “best” hit Li et al., Genome Research, 2008 



Spliced-read mapping 

 Used for processed mRNA data 

 Reports reads that span introns.  

 Examples: TopHat, ERANGE 


