CS681: Advanced Topics in Computational Biology

Week 2, Lectures 2-3
Can Alkan
EA224
calkan@cs.bilkent.edu.tr
http://www.cs.bilkent.edu.tr/~calkan/teaching/cs681/

Microarrays (refresher)

- Targeted approach for:
- SNP / indel detection/genotyping
- Screen for mutations that cause disease
- Gene expression profiling
- Which genes are expressed in which tissue?
- Which genes are expressed "together"
- Gene regulation (chromatin immunoprecipitation)
- Fusion gene profiling
- Alternative splicing
- CNV discovery \& genotyping
- 50 K to 4.3 M probes per chip

Gene clustering (revisit)

- Clustering genes with respect to their expression status:
- Not the signal clustering on microarray
- Clustering the information gained by microarray
- Assume you did 5 experiments in t_{1} to t_{5}
- Measure expression 5 times (different conditions / cell types, etc.)

Gene clustering (revisit)

Experiment	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
Genes	$g 1, g 5$	$g 2, g 3$	$g 1, g 3, g 4$, $g 5$	$g 2, g 3, g 4$	$g 1, g 4, g 5$

Genes	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
1	-				
2	0	-			
3	1	2	-		
4	1	1	1	-	
5	3	0	1	2	-

($\mathrm{g} 1, \mathrm{~g} 5$), g 4) and ($\mathrm{g} 2, \mathrm{~g} 3$)

CNV Genotyping vs Discovery

- Discovery is done per-sample, genome-wide, and without assumptions about breakpoints
\square consequently, sensitivity is compromised to facilitate tolerable FDR
- Genotyping is targeted to known loci and applies to all samples simultaneously
\square good sensitivity and specificity are required
\square knowledge that a CNV is likely to exist and borrowing information across samples reduces the number of probes needed

Array CGH

Array comparative genomic hybridization
Feuk et al, Nat Rev. Genet. 2006

CNV detection with Array CGH

- Signal intensity $\log _{2}$ ratio:
-No difference: $\log _{2}(2 / 2)=0$
-Hemizygous deletion in test: $\log _{2}(1 / 2)=-1$
-Duplication (1 extra copy) in test: $\log _{2}(3 / 2)=0.59$
-Homozygous duplication (2 extra copies) in test: $\log _{2}(4 / 2)=1$
- HMM-based segmentation algorithms to call CNVs

HMMSeg: Day et al, Bioinformatics 2007

CNV detection with Array CGH

- Advantages:
-Low cost, high throughput screening of deletions, insertions (when content is known), and copy-number polymorphism -Robust in CNV detection in unique DNA
- Disadvantages:
-Targeted regions only, needs redesign for "new" genome segments of interest
_Unreliable and noisy in high-copy duplications
-Reference effect: All calls are made against a "reference sample"
-Inversions, and translocations are not detectable

Array CGH Data

Deletion

Duplication

Analyzing Array CGH: Segmentation

- "Summarization"
- Partitioning a continuous information into discrete sets: segments
- Hidden Markov Models

Segment $1 \quad$ Segment 2

Hidden Markov Model (HMM)

- Can be viewed as an abstract machine with k hidden states that emits symbols from an alphabet Σ.
- Each state has its own probability distribution, and the machine switches between states according to this probability distribution.
- While in a certain state, the machine makes 2 decisions:
- What state should I move to next?
- What symbol - from the alphabet Σ - should I emit?

Why "Hidden"?

- Observers can see the emitted symbols of an HMM but have no ability to know which state the HMM is currently in.
- Thus, the goal is to infer the most likely hidden states of an HMM based on the given sequence of emitted symbols.

HMM Parameters

Σ : set of emission characters.

$$
\begin{aligned}
& \text { Ex.: } \Sigma=\{H, T\} \text { for coin tossing } \\
& \qquad \Sigma=\{1,2,3,4,5,6\} \text { for dice tossing }
\end{aligned}
$$

Q: set of hidden states, each emitting symbols from Σ.
$Q=\{F, B\}$ for coin tossing

HMM Parameters (cont'd)

$\mathrm{A}=\left(\mathrm{a}_{k}\right): \mathbf{a}|\mathrm{Q}| \mathrm{x}|\mathrm{Q}|$ matrix of probability of changing from state k to state l.

$$
\begin{array}{ll}
a_{F F}=0.9 & a_{F B}=0.1 \\
a_{B F}=0.1 & a_{B B}=0.9
\end{array}
$$

$E=\left(e_{k}(b)\right): \mathbf{a}|\mathrm{Q}| \times|\Sigma|$ matrix of probability of emitting symbol b while being in state k.

$$
\begin{array}{ll}
e_{F}(0)=1 / 2 & e_{F}(1)=1 / 2 \\
e_{B}(0)=1 / 4 & e_{B}(1)=1 / 4
\end{array}
$$

Fair Bet Casino Problem

- The game is to flip coins, which results in only two possible outcomes: Head or Tail.
- The Fair coin will give Heads and Tails with same probability $1 / 2$.
- The Biased coin will give Heads with prob. $3 / 4$.

The "Fair Bet Casino" (cont'd)

- Thus, we define the probabilities:
- $P(H \mid F)=P(T \mid F)=1 / 2$
$\square P(H \mid B)=3 / 4, P(T \mid B)=1 / 4$
\square The dealer/cheater changes between Fair and Biased coins with probability 10\%

The Fair Bet Casino Problem

- Input: A sequence $x=x_{1} x_{2} x_{3} \ldots x_{n}$ of coin tosses made by two possible coins (\boldsymbol{F} or \boldsymbol{B}).
- Output: A sequence $\pi=\pi_{1} \pi_{2} \pi_{3} \ldots \pi_{n}$, with each π_{i} being either F or B indicating that x_{i} is the result of tossing the Fair or Biased coin respectively.

HMM for Fair Bet Casino

- The Fair Bet Casino in HMM terms:
$\Sigma=\{0,1\}$ (0 for Tails and 1 Heads)
$Q=\{F, B\}-F$ for Fair $\& B$ for Biased coin.
- Transition Probabilities A *** Emission Probabilities E

	Fair	Biased
Fair	$a_{F F}=0.9$	$a_{F B}=0.1$
Biased	$a_{B F}=0.1$	$a_{B B}=0.9$

	Tails(0)	Heads(1)
Fair	$e_{F}(0)=1 / 2$	$e_{F}(1)=1 / 2$
Biased	$e_{B}(0)=$ $1 / 4$	$e_{B}(1)=$ $3 / 4$

HMM for Fair Bet Casino (cont'd)

HMM model for the Fair Bet Casino Problem

Hidden Paths

- A path $\pi=\pi_{1} \ldots \pi_{n}$ in the HMM is defined as a sequence of states.
- Consider path $\pi=$ FFFBBBBBFFF and sequence $x=$ 01011101001

Hidden Paths

- A path $\pi=\pi_{1} \ldots \pi_{n}$ in the HMM is defined as a sequence of states.
- Consider path $\pi=$ FFFBBBBBFFF and sequence $x=$ 01011101001

Transition probability from state Π_{i-1} to state Π_{i}

$\mathrm{P}(x \mid \pi)$ Calculation

- $P(x \mid \pi)$: Probability that sequence x was generated by the path π :

$$
\begin{gathered}
\mathrm{P}(x \mid \pi)=\mathrm{P}\left(\pi_{0} \rightarrow \pi_{1}\right) \cdot \Pi_{i=1}^{n} \mathrm{P}\left(x_{i} \mid \pi_{i}\right) \cdot \mathrm{P}\left(\pi_{i} \rightarrow \pi_{i+1}\right) \\
=a_{\pi_{0}, \pi_{1}} \cdot \Pi e_{\pi_{i}}\left(x_{i}\right) \cdot a_{\pi_{i} \pi_{i+1}}
\end{gathered}
$$

$\mathrm{P}(x \mid \pi)$ Calculation

- $P(x \mid \pi)$: Probability that sequence x was generated by the path π :

$$
\begin{aligned}
\mathrm{P}(x \mid \pi)= & \mathrm{P}\left(\pi_{0} \rightarrow \pi_{1}\right) \cdot \Pi \mathrm{P}\left(x_{i} \mid \pi_{i}\right) \cdot \mathrm{P}\left(\pi_{i} \rightarrow \pi_{i+1}\right) \\
& =a_{\pi_{0,}, \pi_{1}} \cdot \Pi e_{\pi_{i}}\left(x_{i}\right) \cdot a_{\pi_{i}, \pi_{i+1}} \\
& =\prod_{\text {if we count from } m=0 \text { instead of } i=1}\left(x_{i+1}\right) \cdot a \pi_{i+1}
\end{aligned}
$$

Decoding Problem

- Goal: Find an optimal hidden path of states given observations.
- Input: Sequence of observations $x=x_{1} \ldots x_{n}$ generated by an $\operatorname{HMM} M(\Sigma, Q, A, E)$
- Output: A path that maximizes $P(x \mid \pi)$ over all possible paths π.

Manhattan grid for Decoding Problem

- Andrew Viterbi used the Manhattan grid model to solve the Decoding Problem.
- Every choice of $\pi=\pi_{1} \ldots \pi_{n}$ corresponds to a path in the graph.
- The only valid direction in the graph is eastward.
- This graph has $|Q|^{2}(n-1)$ edges.
- |Q|=number of possible states; $n=$ path length

Edit Graph for Decoding Problem

Decoding Problem as Finding a Longest Path in a DAG

- The Decoding Problem is reduced to finding a longest path in the directed acyclic graph (DAG) above.
- Notes: the length of the path is defined as the product of its edges' weights, not the sum.

Decoding Problem (cont'd)

- Every path in the graph has the probability $P(x \mid \pi)$.
- The Viterbi algorithm finds the path that maximizes $P(x \mid \pi)$ among all possible paths.
- The Viterbi algorithm runs in $O\left(n|Q|^{2}\right)$ time.

Decoding Problem: weights of edges

i-th term $=e_{\pi_{i}}\left(x_{i}\right) \cdot a_{\pi_{i}, \pi_{i+1}}=e_{l}\left(x_{i+1}\right) \cdot \mathbf{a}_{k l}$ for $\pi_{i}=k, \pi_{i+1}=l$

The weight $w=e_{,}\left(x_{i+1}\right) \cdot a_{k l}$

Decoding Problem (contd)

- Initialization:
- $s_{\text {begin, } 0}=1$
- $s_{k, 0}=0$ for $k \neq$ begin.
- Let π^{*} be the optimal path. Then,

$$
\mathrm{P}\left(x \mid \pi^{*}\right)=\max _{k \in Q}\left\{s_{k, n} \cdot a_{k, \text { end }}\right\}
$$

Viterbi Algorithm

- The value of the product can become extremely small, which leads to overflowing.
- To avoid overflowing, use log value instead.

$$
s_{k, i+1}=\log e_{l}\left(x_{i+1}\right)+\max _{k \in Q}\left\{s_{k, i}+\log \left(a_{k l}\right)\right\}
$$

HMM for segmentation

- HMMSeg (Day et al., Bioinformatics, 2007)
- general-purpose
- Two states: up/down
- Viterbi decoding
- Wavelet smoothing (Percival \& Walden, 2000)

Multi datatype functional domains

DNA replication timing RNA transcription

Histone modification (-)
Histone modification (+)
DNA replication timing RNA transcription

Histone modification (-)
Histone modification (+)
Viterbi segmentation

CNVs using SNP microarrays

- Input: set of SNPs from a microarray experiment
- Assume there are 2 possible bases for a location: C and T
- A-allele: Possibility \#1 (usually the reference base)
- B-allele: Possibility \#2 (alternative allele)
\square LogR ratio: normalized signal intensity

Example: Deletion

a

Example: Duplication

SNP-based Common CNV Genotyping

SNP-Conditional
Mixture Modeling (SCIMM) for
Deletion
Genotyping

Uses the EM algorithm to define copy number
$(0,1,2)$ for each sample

Snp-Conditional OUTlier (SCOUT) Detection

Birdsuite

Korn et al., Nature Genet, 2008

SV detection with SNP arrays

- HMM based approaches that make use of:
-the allele frequency of SNPs, -the distance between neighboring SNPs, -the signal intensities -detection: PennCNV (Wang et al. 2007), CBS (Olshen et al. 2004), CNVFinder (Fiegler et al. 2006), cnvPartition (Illumina), QuantiSNP (Colella et al. 2007), SCOUT (Mefford et al. 2009)
- Genotyping in large cohorts: SCIMM (Cooper et al. 2008), BirdsEye (Korn et al. 2008), ÇOKGEN (Yavaş et al. 2010)
- Limited to deletions and insertions (Copy number variants - CNVs)

Microarrays (summary)

- Advantages:
- Cheap
- Fast
- Good for genotyping thousands of individuals
- Disadvantages:
- Resolution (finding exact breakpoints)
- Targeted - i.e. no probes -> no detection
- Relies on reference genome
- No balanced events (inversion, translocation)
- No transposon insertions
- No novel sequence insertions
- No high-copy segmental duplications -> Signal saturation

Other methods

- PCR: polymerase chain reaction
- Run on a gel, sort by length, compare with known length (indels)
- Follow up with sequencing (SNPs)
- qRT-PCR: quantitative real time PCR
- Count molecules (CNV)
- FISH: Fluorescent in situ hybridization (large events)

CNP with FISH

- Accurate in low-copy number
- Unreliable for >10 copies
- Noisy in high-copy number

CNP with FISH

- Accurate in low-copy number
- Unreliable for >10 copies
- Noisy in high-copy number

Inversions with FISH

Next week forward:

HIGH THROUGHPUT SEQUENCING

