CS681: Advanced Topics in Computational Biology

Week 2, Lecture 1

Can Alkan EA224 calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs681/

Microarrays

- Targeted approach for:
 - SNP / indel detection/genotyping
 - Screen for mutations that cause disease
 - Gene expression profiling
 - Which genes are expressed in which tissue?
 - Which genes are expressed "together"
 - Gene regulation (chromatin immunoprecipitation)
 - Fusion gene profiling
 - Alternative splicing
 - CNV discovery & genotyping

•

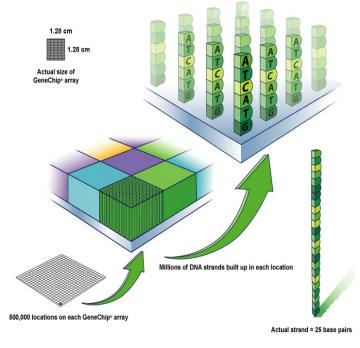
50K to 4.3M probes per chip

Microarray experiments

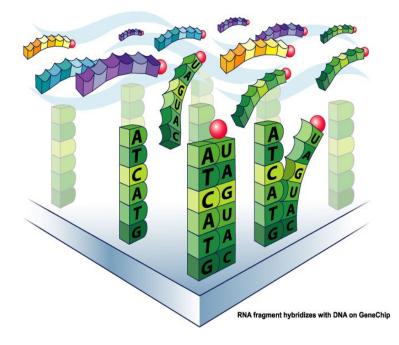
Produce DNA library

- □ If working on RNA, then make cDNA from mRNA
- Attach phosphor (marker) to DNA/cDNA
- Different color phosphors are available to compare many samples at once
- Hybridize DNA/cDNA over the micro array
- Scan the microarray with a phosphorilluminating laser
- Illumination reveals hybridization
- Scan microarray multiple times for the different color phosphor's

DNA Microarray



RNA fragments with fluorescent tags from sample to be tested

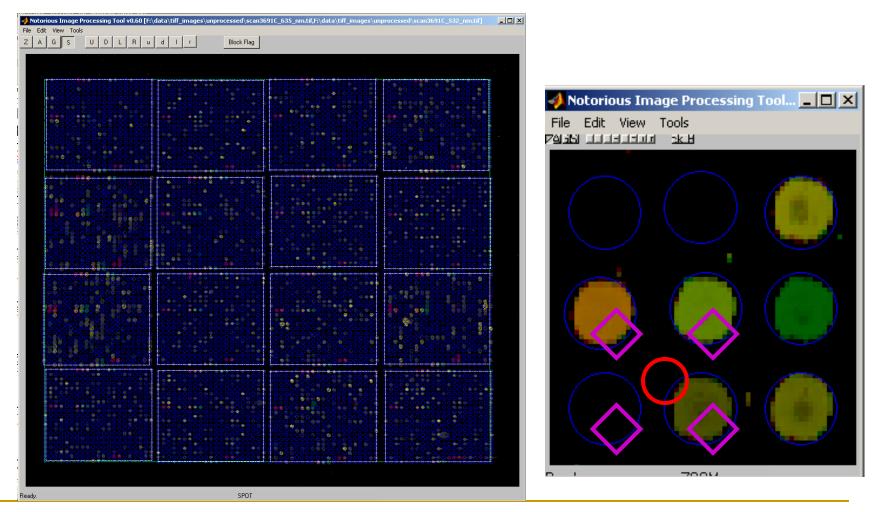


Millions of DNA strands build up on each location.

Tagged probes become hybridized to the DNA chip's microarray.

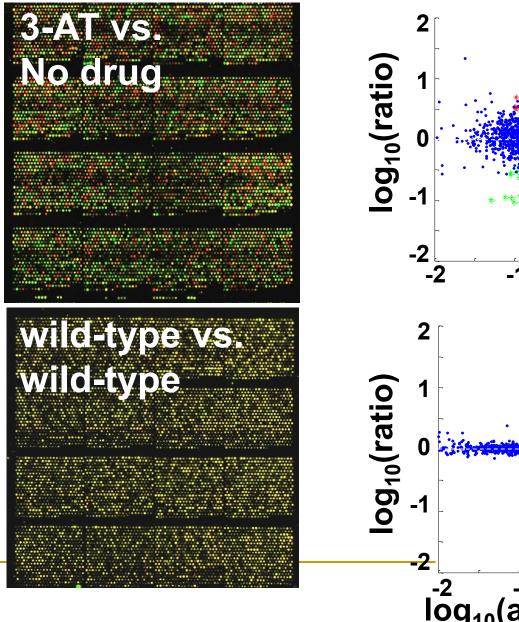
Image processing and normalization: what is microarray data?

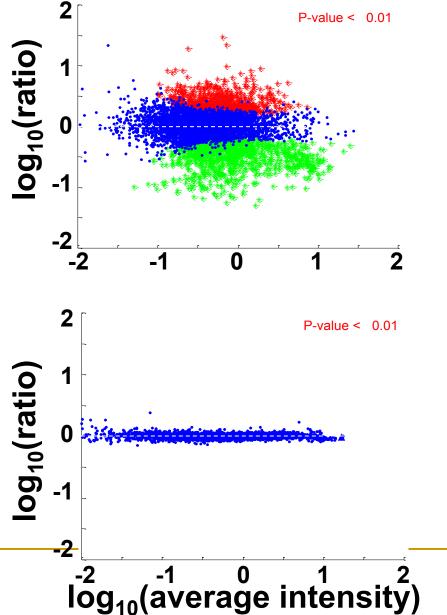
Microarray data is summary information from image files that come out of the scanner. Image processing: line up grids, flag bad spots, quantify.



Segmentation & clustering algorithms

Data





Microarray Vendors

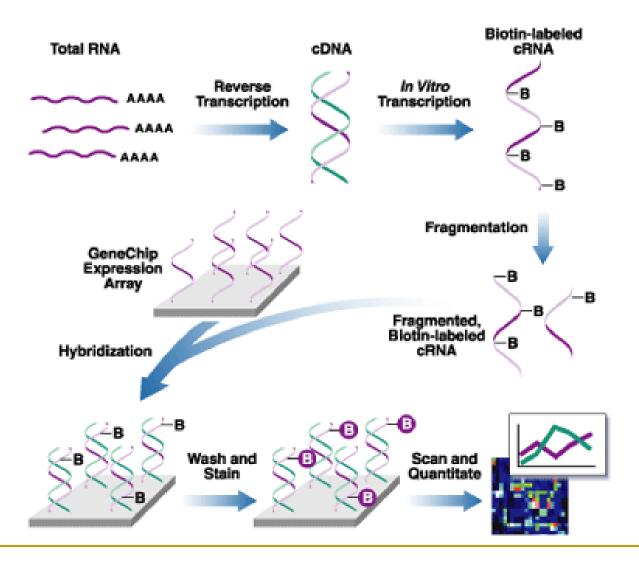
Illumina

- Omni5 chip 1000 Genomes: 4.3M markers
- Agilent
- NimbleGen
- Affymetrix
- All similar principles; different markers
- Custom designs can be made

Using Microarrays (SNP genotyping)

- Microarrays designed with oligonucleotides that harbor "target" SNPs.
- Comprehensively and rapidly study single nucleotide polymorphisms in human genomes
- Current SNP arrays feature 2 million genetic markers
- Analysis based on image processing and statistical methods

Microarray Experiments (gene expression)



www.affymetrix.com

Using Microarrays (gene expression)



Using Microarrays (cont'd)

- Green: expressed only from control
- Red: expressed only from experimental cell
- Yellow: equally expressed in both samples
- Black: NOT expressed in either control or experimental cells

Clustering algorithms

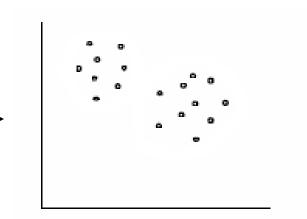
- Clustering can be used for:
 - Primary analysis: cluster signals in microarray image to
 - Merge real signals from the same molecule
 - Separate real signals from noise
 - Secondary analysis:
 - Grouping probes: which probes are hybridized together?
 - Good for probes that might be repetitive in the genome/transcriptome
 - Gene expression: which genes are expressed together?

Many other bioinformatic applications exist

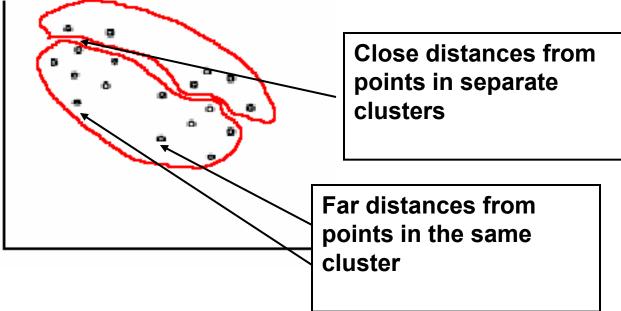
Homogeneity and Separation Principles

- Homogeneity: Elements within a cluster are close to each other
- Separation: Elements in different clusters are further apart from each other
 - ...clustering is not an easy task!

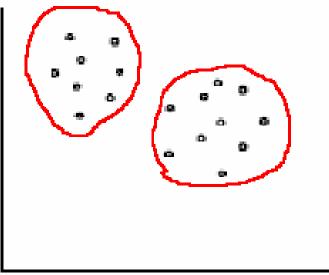
Given these points a clustering algorithm might make two distinct clusters as follows



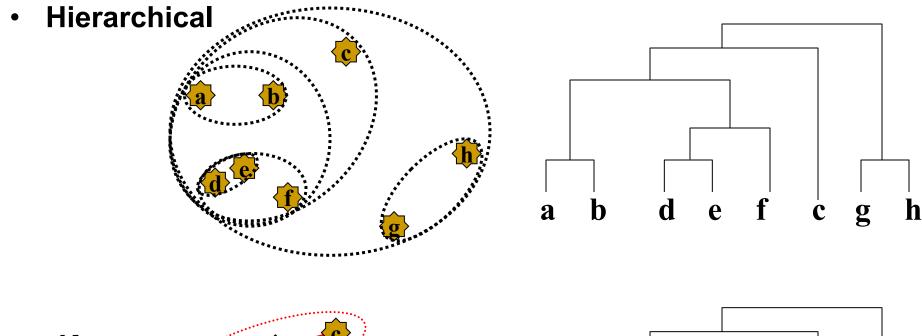
This clustering violates both Homogeneity and Separation principles

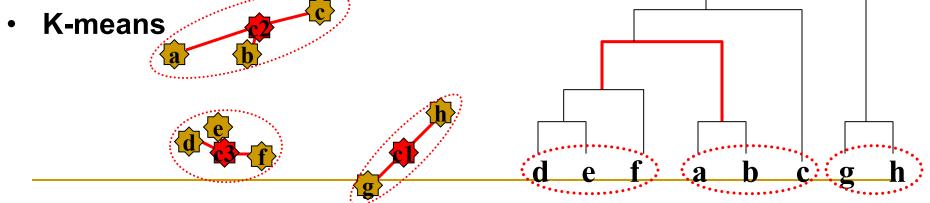


This clustering satisfies both Homogeneity and Separation principles



Clustering Algorithms

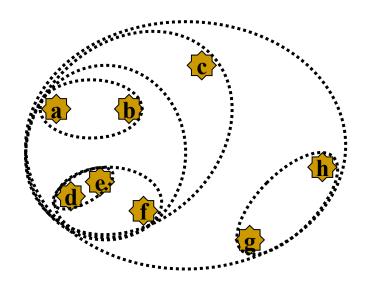




Hierarchical clustering

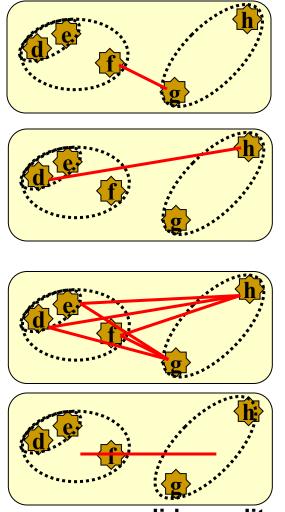
Bottom-up algorithm:

- Initialization: each point in a separate cluster
- At each step:
 - Choose the pair of closest clusters
 - Merge
- The exact behavior of the algorithm depends on how we define the distance CD(X,Y) between clusters X and Y
- Avoids the problem of specifying the number of clusters

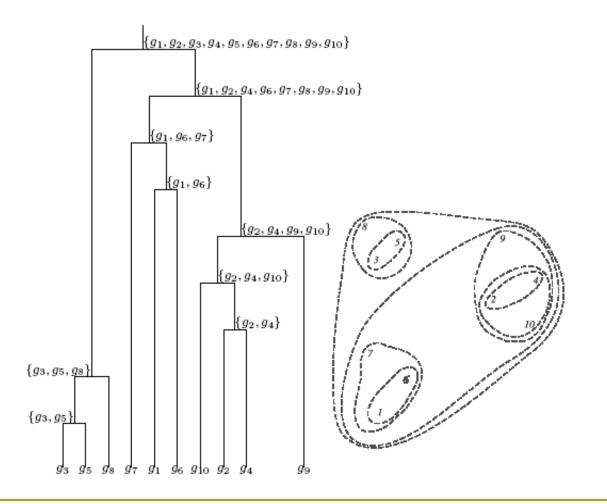


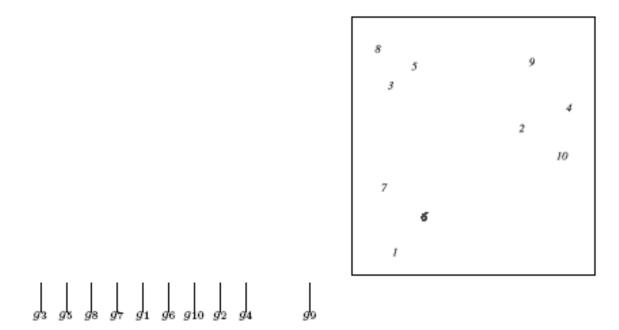
Distance between clusters

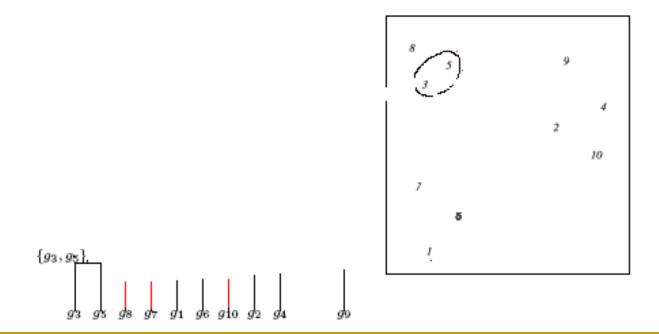
- CD(X,Y)=min_{x ∈X, y ∈Y} D(x,y)
 Single-link method
- CD(X,Y)=max_{x ∈X, y ∈Y} D(x,y)
 Complete-link method
- CD(X,Y)=avg_{x ∈X, y ∈Y} D(x,y)
 Average-link method
- CD(X,Y)=D(avg(X) , avg(Y))
 Centroid method

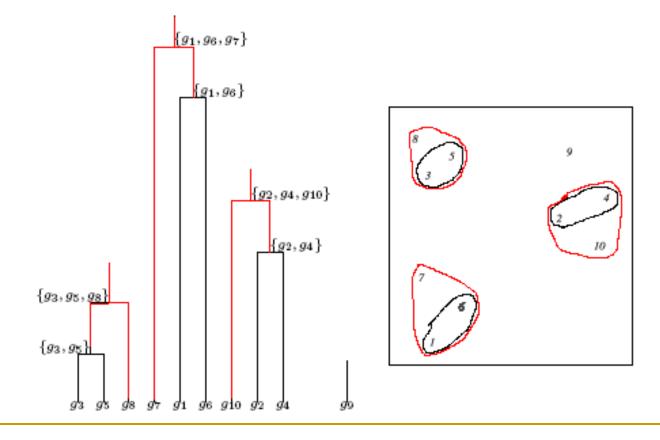


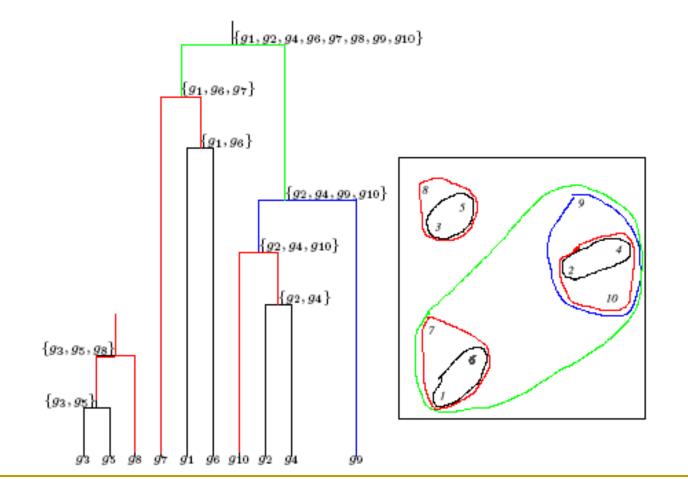
Hierarchical Clustering

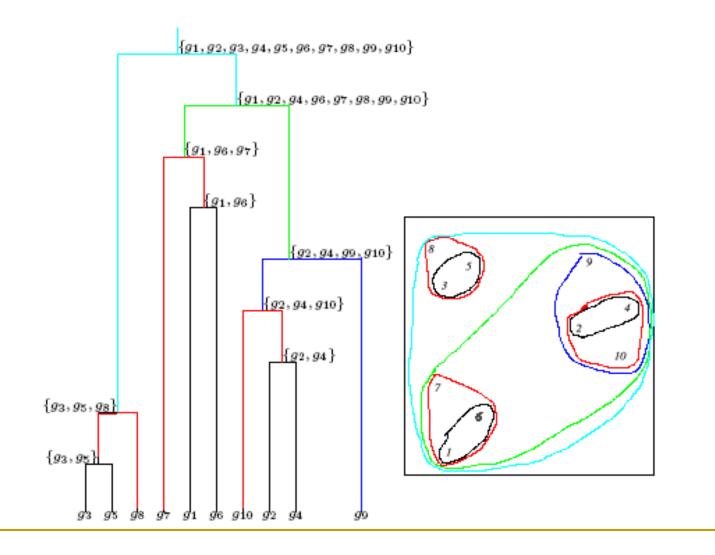












Hierarchical Clustering Algorithm

- 1. <u>Hierarchical Clustering</u> (*d*, *n*)
- 2. Form *n* clusters each with one element
- 3. Construct a graph *T* by assigning one vertex to each cluster
- 4. while there is more than one cluster
- 5. Find the two closest clusters C_1 and C_2
- 6. Merge C_1 and C_2 into new cluster C with $/C_1 / + /C_2 /$ elements
- 7. Compute distance from *C* to all other clusters
- 8. Add a new vertex C to T and connect to vertices C_1 and C_2
- 9. Remove rows and columns of *d* corresponding to C_1 and C_2
- 10. Add a row and column to *d* corrsponding to the new cluster *C*
- 11. return *T*

The algorithm takes a *nxn* distance matrix *d* of pairwise distances between points as an input.

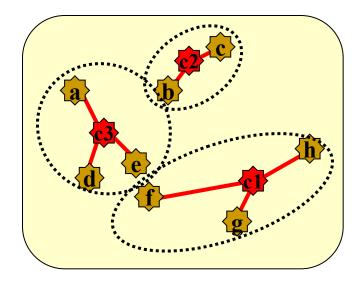
Hierarchical Clustering Algorithm

- 1. <u>Hierarchical Clustering</u> (*d*, *n*)
- 2. Form *n* clusters each with one element
- 3. Construct a graph *T* by assigning one vertex to each cluster
- 4. while there is more than one cluster
- 5. Find the two closest clusters C_1 and C_2
- 6. Merge C_1 and C_2 into new cluster C with $/C_1 / + /C_2 /$ elements
- 7. Compute distance from *C* to all other clusters
- 8. Add a new vertex C to T and connect to vertices C_1 and C_2
- 9. Remove rows and columns of *d* corresponding to C_1 and C_2
- 10. Add a row and column to *d* corrsponding to the new cluster *C*
- 11. return *T*

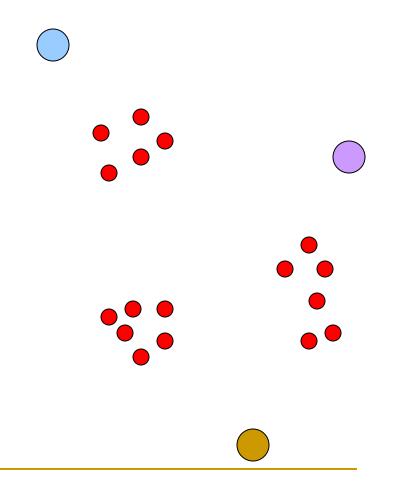
Different ways to define distances between clusters may lead to different clusterings

K-Means Clustering Algorithm

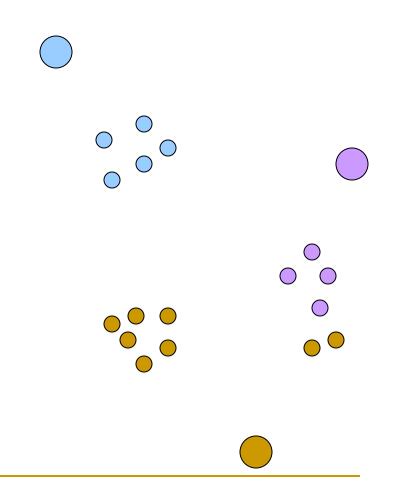
- Each cluster X_i has a center c_i
- Define the clustering cost criterion
- $COST(X_1,...,X_k) = \sum_{X_i} \sum_{x \in X_i} |x c_i|^2$
- Algorithm tries to find clusters X₁...X_k and centers c₁...c_k that minimize COST
- K-means algorithm:
 - Initialize centers
 - Repeat:
 - Compute best clusters for given centers
 - \rightarrow Attach each point to the closest center
 - Compute best centers for given clusters
 - \rightarrow Choose the centroid of points in cluster
 - Until the changes in COST are "small"



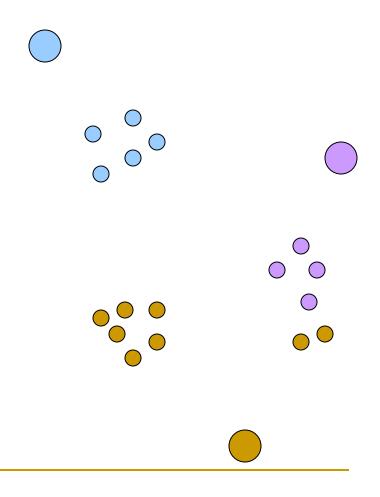
 Randomly Initialize Clusters



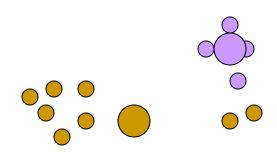
 Assign data points to nearest clusters



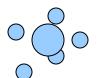
Recalculate Clusters

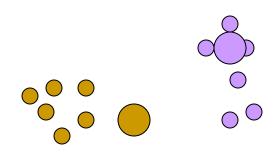


Recalculate Clusters

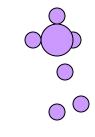


Repeat





Repeat



Repeat ... until convergence

Time: O(KNM) per iteration

N: #genes M: #conditions

K-Means Greedy Algorithm

- 1. <u>ProgressiveGreedyK–Means(k)</u>
- 2. Select an arbitrary partition *P* into *k* clusters
- 3. while forever
- *4. bestChange* ← 0
- 5. **for** every cluster *C*
- 6. **for** every element *i* not in *C*
- 7. **if** moving *i* to cluster *C* reduces its clustering cost
- 8. **if** $(cost(P) cost(P_i \rightarrow C) > bestChange$
- 9. $bestChange \leftarrow cost(P) cost(P_{i \rightarrow C})$
- $11. C^* \leftarrow C$
- **if** *bestChange* > 0
- 13. Change partition *P* by moving i^* to C^*
- 14. else
- 15. return *P*

Clustering: Gene ontology (GO)

- Catalogue for genes, gene products, gene annotations across all species
- Clustered genes with respect to biological processes they were involved in
- Single gene can appear in multiple processes

GO-Biological Process categories

		# annotated genes (mouse)
Very Broad	metabolism	1548
	development	2341
Broad	vision	163
	CNS development	137
	eye morphogenesis	21
<u>Mid-level</u>	ATP biosynthesis	36
	pigment metabolism	25
	striated muscle contraction	33
<u>Narrow</u>	eye pigment metabolism	3
	insulin secretion	4