CS681: Advanced Topics in Computational Biology

Can Alkan
EA224
calkan@cs.bilkent.edu.tr
http://www.cs.bilkent.edu.tr/~calkan/teaching/cs681/

RNA-RNA Interactions

- Two RNA molecules form an RNA-RNA complex through forming base pairs between each other
- The RNA molecules also have internal base pairs
- RNAi: RNA interference (Nobel 2006)
- miRNA: microRNAs (21-22 bases)
- Important for RNA function
- Gene silencing
- Developmental stage
- Non-coding RNA that deactivates/activates another RNA: antisense RNA

Breakthrough of the year

Science, 20 December 2002

Central dogma and RNAi

Central dogma and RNAi

DNA Polymerase

Antisense RNA

Genomic or Plasmid DNA

"Sense" RNA

"Antisense" RNA

Joint structure, and gene-knockout

Gene silencing: CopT-CopA

Gene silencing: CopT-CopA

CopA-CopT Complex in 3D

RNAi: Repression

ncRNA Oxys

5^{\prime} aguUagucanu aúacaccgaúggaca 3^{\prime}
fhlA
mRNA

5' aguugucaadauacacceagcgaca 3^{\prime} fhlA

OxyS-fhlA Interaction

RNAi: Activation

Repoila et al., Mol. Microbiol, 2003

RNA based drugs?

- RNAi is shown to effectively turn off the mutated Fibulin 5 gene responsible for wet macular generation (a disease that effects 30 million elderly people in the world).
- The siRNA called Cand5 (by Acuity Pharmaceuticals) which targets the mutated Fibulin 5 gene can be directly injected into a patient's eye - can be used as a drug. FDA approval expected.
- Can revolutionize drug design: all currently used drugs are small molecules.
- Delivery and unwanted interactions are key problems.

RNA-RNA interaction prediction

- The algorithms aim to capture the joint secondary structure of interacting RNA pairs by computing the minimum total free energy
- Alkan et al, RECOMB 2005:
- Developed a model for capturing the 3-D structure of the kissing complexes and an approximation to the thermodynamic parameters
- Proved NP-hardness under the presence of zig-zags, internal or external pseudoknots
- $O\left(n^{3} m^{3}\right)$ time algorithm for determining the optimal structure and its free energy

RNA-RNA interaction prediction

RNA-RNA Interaction Prediction Problem (RIPP): Given two RNA sequences S and R (e.g. an antisense RNA and its target), find the joint structure formed by these RNA molecules with the minimum free energy.

The general problem is NP-hard

Assumptions

No pseudoknots in either S or R.

No external pseudoknots between S and R.

No zigzags are allowed.

PairFold

- Concatenate S and R; and predict secondary structure as if it is a single sequence
- No kissing hairpins; as they will be same with a pseudoknot
- $\mathrm{O}\left(\mathrm{n}^{3}\right)$ time and $\mathrm{O}\left(\mathrm{n}^{2}\right)$ space

NUPACK

- Similar to PairFold
- Concatenate S and R, calculate folding
- Consider special cases of pseudoknots
- No kissing hairpins
- $\mathrm{O}\left(\mathrm{n}^{4}\right)$ running time

Others

- Avoid intramolecular base pairing
- No internal structure
- RNAcofold: Bernhart et al., Alg Mol Biol, 2006
- RNAhybrid: Rehmsmeier et al, 2004
- UNAfold: Markham et al., 2008
- Predict binding site (one only)
- RNAup (Muckstein et al., 2008)
- intaRNA (Busch et al., 2008)

Both internal \& intramolecular

- IRIS: Pervouchine et al., 2004
- inteRNA: Alkan et al., 2005
- Grammatical approach: Kato et al., 2009
- All computationally expensive
- $O\left(n^{6}\right)$ time and $O\left(n^{4}\right)$ space

Alkan, Karakoç, et al., RECOMB 2005 INTERNA

inteRNA: Basepair Energy Model

- Basepair Energy Model
- Similar to Nussinov's RNA folding
- Tries to maximize number of base pairs
- $O\left(n^{3} m^{3}\right)$ time and $O\left(n^{2} m^{2}\right)$ space

Basepair energy model: CopA+CopT

 aaacccc gauaaucuucuucaacuungôc aguacgaaaagautuaco $\widehat{g g g c c c a c}$

Prediction
alaccocgauaucuucuucaaculuggcgaguacgaaaagautuaccggggccoc

UUUUggggcuauuagaagaaguugaaaccgcucaugcuuuucuaauggccccoggug

Known

Basepair energy model: OxyS+fhlA

inteRNA: Stacked Pair Energy Model

- Stacked Pair Energy Model
- Based on the free energies of stacked pairs of nucleotides (mfold, RNAfold, etc.)
- "Stacking pairs" model favors forming the same type of bonding in two adjacent base pairs, thus considers geometrical constraints,
- $O\left(m^{3} n^{3}\right)$ time and $O\left(m^{2} n^{2}\right)$ space

Stacked Pair Energy Model for RIPP

Stacked Pair Energy Model for RIPP

Stacked Pair Energy Model for RIPP

uuuggggcuauuagaagaaguugaaaccgcucaugcuuuucuaauggccccgggug

Liliuggggcuauuagaagaaguugaaaccgcucaugcuuuucuaauggccccgggug

Stacked Pair Energy Model for RIPP

Loop Energy Model for RIPP

- Observation: Interactions are in the form of kissing hairpins, and original RNAs fold before they interact
- Based on free energies of structural elements.
- Preprocessing step computes the single strand folding of the two RNAs, and extracts independent subsequence information,
- Possible interactions between the independent subsequences are computed via stacked pair energy model,
- Run time is reduced to $O\left(n m \kappa^{4}+n^{2} m^{2} / \kappa^{4}\right)$.

Independent subsequences

- Independent Subsequence $I S_{\mathrm{R}}(\mathrm{i}, \mathrm{j})$ of an RNA sequence R is a subsequence of R that has no interaction with the rest of R. $I S_{R}(i, j)$ satisfies:
$-R[i]$ is bonded with $R[j]$,
- $\mathrm{j}-\mathrm{i} \leq \mathrm{K}$ for some user specified parameter K ,
- There exists no $i^{\prime}<i$ and $j^{\prime}>j$ such that $R\left[i^{\prime}\right]$ is bonded with $R\left[j^{\prime}\right]$ and $j^{\prime}-i^{\prime} \leq K$.

Loop Energy Model for RIPP

R

Initial folding of S and R

Loop Energy Model for RIPP

Independent subsequences determined

Loop Energy Model for RIPP

Interactions between independent subsequences

Loop Energy Model for RIPP

uuuggggcuauuagaagaaguugaaaccgcucaugcuuuucuaauggccocggguig

Prediction

aaaccccgauaaucuucuucaaculuggc gaguacgaaaagauuaccggggcccac

UUUVggggcuaunagaaOaaguugaaaccgc cucaugcuuuucuaauggccccgggug

Loop Energy Model for RIPP

Prediction

Target Search

Interaction Prediction

Good Hit

$$
\begin{gathered}
l_{1}, l_{2}, l_{3}, l_{4}>\xi \\
d_{1} \leq(1+\epsilon) \cdot d_{2}+\delta \text { if } d_{1} \geq d_{2} ;(\epsilon<1 \text { and } \delta>0) .
\end{gathered}
$$

www.bioalgorithms.info PROTEINS

Proteins

- Building blocks of the cells
- Metabolism depends on proteins
- Enzymes
- DNA polymerase, RNA polymerase, methyl transferase, etc.
- Hormones
- Primary structure made up of amino acids
- $|\Sigma|=20$
- 3D structure is important for function

Translation

- The process of going from RNA to polypeptide.
- Three base pairs of RNA (called a codon) correspond to one amino acid based on a fixed table.
- Always starts with Methionine and ends with a stop codon

			SECON	POSITIO		
		U	C	A	G	
	U	phenylalanine	serine	tyrosine	cysteine	U
		leucine		stop	stop	A
				stop	tryptophan	G
	C	leucine	proline	histidine	arginine	U
						C
				glutamine		A
						G
	A	isoleucine	threonine	asparagine	serine	U
						C
				lysine	arginine	A
		* methionine				G
	G	valine	alanine	aspartic	glycine	U
						C
				glutamic acid		A
						G

Translation, continued

- Catalyzed by Ribosome
- Using two different sites, the Ribosome continually binds tRNA, joins the amino acids together and moves to the next location along the mRNA
- ~10 codons/second, but multiple translations

can occur simultaneously

Polypeptide v. Protein

- A protein is a polypeptide, however to understand the function of a protein given only the polypeptide sequence is a very difficult problem.
- Protein folding an open problem. The 3D structure depends on many variables.
- Current approaches often work by looking at the structure of homologous (similar) proteins.
- Improper folding of a protein is believed to be the cause of mad cow disease.

PROTEIN SEQUENCING

Masses of Amino Acid Residues

Aspartate
$133.1 \mathrm{~g} / \mathrm{mol}$

Leucine $131.17 \mathrm{~g} / \mathrm{mol}$

AA masses

Small

Glycine (Gly, G) MW: 57.05

Alanine (Ala, A)
MW: 71.09

Nucleophilic

Serine (Ser, S) MW: 87.08, $\mathrm{pK}_{\mathrm{a}} \sim 16$

Leucine (Leu, L) MW: 113.16

Isoleucine (lle, I) MW: 113.16

Threonine (Thr, T) MW: 101.11, $\mathrm{pK}_{\mathrm{a}} \sim 16$

Methionine (Met, M) MW: 131.19

Acidic

Aspartic Acid (Asp, D) MW: 115.09, $\mathrm{pK}_{\mathrm{a}}=3.9$

ysine (Lys, K) MW: 128.17, $\mathrm{pK}_{\mathrm{a}}=10.79$

Cysteine (Cys, C) MW: 103.15, $\mathrm{pK}_{\mathrm{a}}=8.35$

Proline (Pro, P) MW: 97.12

Glutamic Acid (Glu, E) MW: 129.12, $\mathrm{pK}_{\mathrm{a}}=4.07$
 Arginine (Arg, R)
MW: $156.19, \mathrm{pK}_{\mathrm{a}}=12.48$

Protein Backbone

Peptide Fragmentation

Collision Induced Dissociation

- Peptides tend to fragment along the backbone.
- Fragments can also loose neutral chemical groups like NH_{3} and $\mathrm{H}_{2} \mathrm{O}$.

Breaking Protein into Peptides and Peptides into Fragment Ions

- Proteases, e.g. trypsin, break protein into peptides.
- A Tandem Mass Spectrometer further breaks the peptides down into fragment ions and measures the mass of each piece.
- Mass Spectrometer accelerates the fragmented ions; heavier ions accelerate slower than lighter ones.
- Mass Spectrometer measure mass/charge ratio of an ion.

N - and C-terminal Peptides C $\square \backsim N A$

Terminal peptides and ion types

Peptide

Mass (D) $57+97+147+114=415$

Peptide

Mass (D) $57+97+147+114-18=397$

N - and C-terminal Peptides

N - and C-terminal Peptides

N - and C-terminal Peptides

486

N - and C-terminal Peptides

Reconstruct peptide from the set of masses of fragment ions

Peptide Fragmentation

Mass Spectra

- The peaks in the mass spectrum:
\square Prefix and Suffix Fragments.
\square Fragments with neutral losses $\left(-\mathrm{H}_{2} \mathrm{O},-\mathrm{NH}_{3}\right)$
\square Noise and missing peaks.

Protein Identification with MS/MS

Tandem Mass-Spectrometry

Breaking Proteins into Peptides

protein
peptides

Mass Spectrometry

Matrix-Assisted Laser Desorption/Ionization (MALDI)

Figure 2. The soft laser desorption process.

From lectures by Vineet Bafna (UCSD)

Tandem Mass Spectrometry

Ion Source

MS/MS

Protein Identification by Tandem Mass Spectrometry

MS/MS instrument

Database search
-Sequest
de Novo interpretation

-Sherenga

Tandem Mass Spectrum

- Tandem Mass Spectrometry (MS/MS): mainly generates partial N - and C-terminal peptides
- Spectrum consists of different ion types because peptides can be broken in several places.
- Chemical noise often complicates the spectrum.
- Represented in 2-D: mass/charge axis vs. intensity axis

De Novo vs. Database Search

De Novo vs. Database Search: A Paradox

- The database of all peptides is huge $\approx O\left(20^{n}\right)$.
- The database of all known peptides is much smaller \approx $\mathrm{O}\left(10^{8}\right)$.
- However, de novo algorithms can be much faster, even though their search space is much larger!
- A database search scans all peptides in the database of all known peptides search space to find best one.
- De novo eliminates the need to scan database of all peptides by modeling the problem as a graph search.

De novo Peptide Sequencing

Building Spectrum Graph

- How to create vertices (from masses)
- How to create edges (from mass differences)
- How to score paths
- How to find best path

noise

MS/MS Spectrum

Some Mass Differences between Peaks
Correspond to Amino Acids

Peptide Sequencing Problem

Goal: Find a peptide with maximal match between an experimental and theoretical spectrum.
Input:

- S : experimental spectrum
- Δ : set of possible ion types
a m: parent mass
Output:
- P: peptide with mass m, whose theoretical spectrum matches the experimental S spectrum the best

Ion Types

- Some masses correspond to fragment ions, others are just random noise
- Knowing ion types $\Delta=\left\{\delta_{1}, \delta_{2}, \ldots, \delta_{k}\right\}$ lets us distinguish fragment ions from noise
- A δ-ion of an N-terminal partial peptide P_{i} is a modification of P_{i} that has mass $m_{i}-\delta$
- We can learn ion types δ_{i} and their probabilities q_{i} by analyzing a large test sample of annotated spectra.

Example of Ion Type

- $\Delta=\left\{\delta_{1}, \delta_{2}, \ldots, \delta_{k}\right\}$
- Ion types

$$
\left\{b, b-\mathrm{NH}_{3}, b-\mathrm{H}_{2} \mathrm{O}\right\}
$$

correspond to

$$
\Delta=\{0,17,18\}
$$

*Note: In reality the δ value of ion type b is -1 but we will "hide" it for the sake of simplicity

Vertices of Spectrum Graph

- Masses of potential N-terminal peptides
- Vertices are generated by reverse shifts corresponding to ion types

$$
\Delta=\left\{\delta_{1}, \delta_{2}, \ldots, \delta_{k}\right\}
$$

- Every N-terminal peptide can generate up to k ions

$$
m-\delta_{1}, m-\delta_{2}, \ldots, m-\delta_{k}
$$

- Every mass s in an MS/MS spectrum generates k vertices

$$
V(s)=\left\{s+\delta_{1}, s+\delta_{2}, \ldots, s+\delta_{k}\right\}
$$

corresponding to potential N -terminal peptides

- Vertices of the spectrum graph:
$\{$ initial vertex $\} \cup V\left(s_{1}\right) \cup V\left(s_{2}\right) \cup \ldots \cup V\left(s_{m}\right) \cup\{$ terminal vertex $\}$

Reverse Shifts

Shift in $\mathrm{H}_{2} \mathrm{O}$
Shift in $\mathrm{H}_{\mathbf{2}} \mathbf{O}+\mathrm{NH}_{3}$

Edges of Spectrum Graph

- Two vertices with mass difference
corresponding to an amino acid A :
- Connect with an edge labeled by A
- Gap edges for di- and tri-peptides

Paths

- Path in the labeled graph spell out amino acid sequences
- There are many paths, how to find the correct one?
- We need scoring to evaluate paths

Path Score

- $p(\boldsymbol{P}, \boldsymbol{S})=$ probability that peptide \boldsymbol{P} produces spectrum $\boldsymbol{S}=\left\{s_{l}, s_{2}, \ldots s_{q}\right\}$
- $p(\boldsymbol{P}, s)=$ the probability that peptide P generates a peak s
- Scoring = computing probabilities
- $p(\boldsymbol{P}, \boldsymbol{S})=\pi_{s e S} p(\boldsymbol{P}, s)$

Peak Score

- For a position \boldsymbol{t} that represents ion type d_{j} :

$$
p\left(\boldsymbol{P}, s_{t}\right)=\left\{\begin{array}{l}
q_{j}, \text { if peak is generated at } t \\
1-q_{j}, \text { otherwise }
\end{array}\right.
$$

Peak Score (cont'd)

- For a position t that is not associated with an ion type:

$$
p_{R}\left(\boldsymbol{P}, s_{t}\right)=\left\{\begin{array}{l}
q_{R}, \text { if peak is generated at } \boldsymbol{t} \\
1-q_{R}, \text { otherwise }
\end{array}\right.
$$

- $q_{R}=$ the probability of a noisy peak that does not correspond to any ion type

Finding Optimal Paths in the Spectrum Graph

- For a given MS/MS spectrum \boldsymbol{S}, find a peptide \boldsymbol{P} ' maximizing $p(\boldsymbol{P}, \boldsymbol{S})$ over all possible peptides P :

$$
p\left(P^{\prime}, S\right)=\operatorname{nax}_{P} p(P, S)
$$

- Peptides = paths in the spectrum graph
- $\boldsymbol{P}^{\prime}=$ the optimal path in the spectrum graph

