CS681: Advanced Topics in Computational Biology

Can Alkan EA509 calkan@cs.bilkent.edu.tr
http://www.cs.bilkent.edu.tr/~calkan/teaching/cs681/

Read Mapping

- When we have a reference genome \& reads from DNA sequencing, which part of the genome does it come from?
- Challenges:
- Sanger sequencing
- Cloning vectors
- Millions of long (~1000 bp reads)
- High throughput sequencing:
- Billions of short reads with low error
- Hundreds of millions of long reads with high error
- Common: contamination
- Typically $\sim 1-2 \%$ of reads come from different sources; e.g., human resequencing contaminated with yeast, E. coli, etc.
- Common: Repeats \& Duplications

Read Mapping

- Accuracy
- Due to repeats, we need a confidence score in alignment
- Sensitivity
- Don't lose information
- Speed!!!!!!!
- Memory usage
- Output
- Keep all needed information, but don't overflow your disks -- SAM/BAM/CRAM format
- All read mapping algorithms perform alignment at some point (read vs. reference)

Sanger vs HTS: cloning vectors

- Sanger reads may contain sequence from the cloning vector; thus mapping needs local alignment.
- No cloning vectors in HTS, global alignment is fine.

Local vs. Global Alignment

- The Global Alignment Problem tries to find the best alignment from start to end for two sequences
- The Local Alignment Problem tries to find the subsequences of two sequences that give the best alignment
- Solutions to both are extensions of Longest Common Subsequence

Local vs. Global Alignment (cont'd)

- Global Alignment

- Local Alignment-better alignment to find conserved segment
tccCAGTTATGTCAGgggacacgagcatgcagagac
\|llllllll|l
aattgccgccgtcgttttcagCAGTTATGTCAGatc

Local Alignment: Example

Sequence 1

Percent Sequence Identity

- The extent to which two nucleotide or amino acid sequences are invariant

70\% identical

Global Alignment

- Hamming distance:
- Easiest; two sequences s_{1}, s_{2}, where $\left|s_{1}\right|=\left|s_{2}\right|$
- HD $\left(\mathrm{s}_{1}, \mathrm{~s}_{2}\right)=$ \#mismatches
- Edit distance
- Include indels in alignment
- Levenstein's edit distance algorithm, simple recursion with match score $=+1$, mismatch=indel=-1; O(mn)
- Needleman-Wunsch: extension with scoring matrices and affine gap penalties; $\mathrm{O}(\mathrm{mn})$

Edit Distance vs Hamming Distance

Hamming distance always compares
$i^{\text {-th }}$ letter of v with
$i^{- \text {th }}$ letter of w

Hamming distance:

$$
d(v, w)=8
$$

Edit distance may compare
$i^{\text {-th }}$ letter of v with
j-th letter of w
$\mathbf{V}=-$ ATATATAT
$\mathbf{w}=$ TATATATA -
Edit distance:
$d(v, w)=2$
(one insertion and one deletion)

The Global Alignment Problem

Find the best alignment between two strings under a given scoring schema

Input : strings \mathbf{v} and \mathbf{w} and a scoring schema Output : Alignment of maximum score
$\uparrow \rightarrow=-\sigma$
$=1$ if match

μ : mismatch penalty
σ : indel penalty

Scoring matrices

- Different scores for different character match \& mismatches
- Amino acid substitution matrices
- PAM
- BLOSUM
- DNA substitution matrices
- DNA is less conserved than protein sequences
\square Less effective to compare coding regions at nucleotide level

Scoring matrices

To generalize scoring, consider a (4+1) $x(4+1)$ scoring matrix δ.
In the case of an amino acid sequence alignment, the scoring matrix would be a $(20+1) \times(20+1)$ size. The addition of 1 is to include the score for comparison of a gap character "-".

This will simplify the algorithm as follows:

$$
s_{i, j}=\max \left\{\begin{array}{l}
s_{i-1, j-1}+\delta\left(v_{i}, w_{j}\right) \\
s_{i-1, j}+\delta\left(v_{i j},-\right) \\
s_{i, j-1}+\delta\left(-, w_{j}\right)
\end{array}\right.
$$

Scoring Indels: Naive Approach

- A fixed penalty σ is given to every indel:
- $-\sigma$ for 1 indel,
$\square-2 \sigma$ for 2 consecutive indels
a -3σ for 3 consecutive indels, etc.

Can be too severe penalty for a series of 100 consecutive indels

Affine Gap Penalties

- In nature, a series of k indels often come as a single event rather than a series of k single nucleotide events:

$$
\begin{aligned}
& \text { ATA__GC } \\
& \text { ATATTGC }
\end{aligned}
$$

This is more likely.

Normal scoring would give the same This is less score for both alignments

Accounting for Gaps

- Gaps- contiguous sequence of spaces in one of the rows
- Score for a gap of length x is:

$$
-(\rho+\sigma x)
$$

where $\rho>0$ is the penalty for introducing a gap:
gap opening penalty
ρ will be large relative to σ :
gap extension penalty
because you do not want to add too much of a penalty for extending the gap.

Affine Gap Penalties

- Gap penalties:
- $-\rho-\sigma$ when there is 1 indel
- $-\rho-2 \sigma$ when there are 2 indels
- $-\rho-3 \sigma$ when there are 3 indels, etc.
- $-\rho-x \cdot \sigma$ (-gap opening - x gap extensions)
- Somehow reduced penalties (as compared to naïve scoring) are given to runs of horizontal and vertical edges

Affine Gap Penalty Recurrences

$$
\begin{aligned}
& \stackrel{\downarrow}{s_{i, j}}=\mathbf{m a x}\left\{\begin{array}{l}
\stackrel{\downarrow}{s}_{i-1, j}-\sigma \\
s_{i-1, j}-(\rho+\sigma)
\end{array}\right. \\
& \text { Continue Gap in w (deletion) } \\
& \text { Start Gap in w (deletion): from } \\
& \text { middle } \\
& \underset{\boldsymbol{s}_{i, j}}{=} \underset{\max }{=}\left\{\begin{array}{l}
\vec{s}_{i, j-1}-\sigma \\
s_{i, j-1}-(\rho+\sigma)
\end{array}\right. \\
& \text { Continue Gap in } v \text { (insertion) } \\
& \text { Start Gap in } v \text { (insertion):from } \\
& \text { middle }
\end{aligned}
$$

$$
\begin{aligned}
& \text { End insertion: from bottom }
\end{aligned}
$$

Ukkonnen's Approximate String

Matching

Regular alignment
Observation:
If max allowed edit distance is small, you don't go far away from the diagonal
(global alignment only)

		\mathbf{A}	\mathbf{U}	\mathbf{U}	\mathbf{G}	\mathbf{A}	\mathbf{C}	\mathbf{A}	\mathbf{G}	\mathbf{G}
	$\mathbf{0}$	1	2	3	4	5	6	7	8	9
\mathbf{A}	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	2	3	4	5	6	7	8
\mathbf{U}	2	1	$\mathbf{0}$	$\mathbf{1}$	2	3	4	5	6	7
\mathbf{C}	3	2	$\mathbf{1}$	1	2	3	3	4	5	6
\mathbf{A}	4	3	2	2	2	2	3	$\mathbf{3}$	4	5
\mathbf{G}	5	4	3	3	2	3	3	4	3	4
\mathbf{G}	6	5	4	4	3	3	4	4	4	3
\mathbf{C}	7	6	5	5	4	4	3	4	5	4
\mathbf{C}	8	7	6	6	5	5	4	4	5	5

AUUGACAGG --
AU---CAGGCC

Ukkonen's alignment

	Sequence 1								
				∞	∞	∞	∞	∞	∞
					∞	∞	∞	∞	∞
						∞	∞	∞	∞
q	∞						∞	∞	∞
n	∞	∞						∞	∞
	∞	∞	∞						∞
	∞	∞	∞	∞					
	∞	∞	∞	∞	∞				
	∞	∞	∞	∞	∞	∞			

If maximum allowed number of indels is \boldsymbol{t}, then you only need to calculate $\mathbf{2 t - 1}$ diagonals around the main diagonal.

The Local Alignment Recurrence

- The largest value of $s_{i, j}$ over the whole edit graph is the score of the best local alignment.
- The recurrence:

there is only this change from the original recurrence of a Global Alignment since there is only one "free ride" edge entering into every vertex

Smith-Waterman

$$
s_{i, j}=\max \left\{\begin{array}{l}
0 \\
s_{i-l, j-j}+\delta\left(v_{j}, w_{j}\right) \\
s_{i, l-j}+\delta\left(v_{j}-\right) \\
s_{i, j-1}+\delta\left(-, w_{j}\right)
\end{array}\right.
$$

- Start from the maximum score $s(i, j)$ on the alignment matrix
- Move to $m(i-1, j), m(i, j-1)$ or $m(i-1, j-1)$ until $s(i, j)=0$ or $i=j=0$
- $\mathrm{O}(\mathrm{mn})$

Faster Implementations

- GPGPU: general purpose graphics processing units
- Should avoid branch statements (if-then-else)
- FPGA: field programmable gate arrays
- SIMD instructions: single-instruction multiple data
- SSE instruction set (Intel)
- Also available on AMD processors
- Same instruction is executed on multiple data concurrently

Alignment with SSE

- Applicable to both global and local alignment
- Using SSE instruction set we can compute each diagonal in parallel
- Each diagonal will be in saved in a 128 bit SSE specific register
- The diagonal C, can be computed from diagonal A and B in parallel
- Number of SSE registers is limited, we can not hold the matrix, but only the two last diagonals is needed anyway.

READ MAPPERS

Mapping Reads

Problem: We are given a read, R, and a reference sequence, S. Find the best or all occurrences of R in S.

Example:
R = AAACGAGTTA
$\mathrm{S}=\mathrm{TTAATGCAAACGAGTTACCCAATATATATAAACCAGTTATT}$

Considering no error: one occurrence.
Considering up to 1 substitution error: two occurrences.
Considering up to 10 substitution errors: many meaningless occurrences!
Don't forget to search in both forward and reverse strands!!!

Mapping Reads (continued)

Variations:

- Sequencing error
- No error: R is a perfect subsequence of S.
- Only substitution error: R is a subsequence of S up to a few substitutions.
- Indel and substitution error: R is a subsequence of S up to a few short indels and substitutions.
- Junctions (for instance in alternative splicing)
- Fixed order/orientation
$R=R_{1} R_{2} \ldots R_{n}$ and R_{i} map to different non-overlapping loci in S, but to the same strand and preserving the order.
- Arbitrary order/orientation
$R=R_{1} R_{2} \ldots R_{n}$ and R_{i} map to different non-overlapping loci in S.

Hash based seed-and-extend aligners

- Hash based seed-and-extend (hash table, suffix array, suffix tree)
- Index the k-mers in the genome
- Continuous seeds and gapped seeds
- When searching a read, find the location of a k-mer in the read; then extend through alignment
- Apply pre-alignment filters
- GateKeeper, adjacency filter, q-gram filters
- Requires large memory; this can be reduced with cost to run time
- mr(s)FAST, RazerS3, MAQ, MOSAIK
- GPGPU and heterogeneous computing implementations: Saruman, Mummer-GPU, CORAL

(pure) BWT-FM aligners

- Burrows-Wheeler Transform \& Ferragina-Manzini Index based aligners
- BWT is a data compression method used to compress the genome index
- Perfect hits can be found very quickly, memory lookup costs increase for imperfect hits
- Less memory
- Reduced sensitivity for high error rate (impractical for long reads)
- BWA-aln, Bowtie, SOAP2

Hybrid aligners

- Seed with BWT-FM, then align
- Apply "chaining" to reduce need-to-align regions (acts as a pre-alignment filter)
- Usable for both short and long reads
- BWA-MEM, Bowtie2 (short reads)
- MashMap and minimap2 (long reads)

Seeding \& chaining

Long read mappers

- PacBio and ONT:
- BLASR (suffix-tree based indexing)
- MashMap and Minimap2 (minimizers + chaining + Smith-Waterman)
- Paper presentation candidate
- NGM-LR (hash table + chaining + alignment w/ convex gap penalty model
- Paper presentation candidate

Hash Based Aligners

Seed and extend

- Break the read into n segments of k-mers.
- For perfect sensitivity under edit distance e
- There is at least one l-mer where $\mathrm{I}=$ floor(L/(e+1)); L=read length
- For fixed $l=k ; n=e+1$ and $k \leq L / n$
- Large k -> large memory
- Small k -> more hash hits
- Lets consider the read length is 36 bp , and $\mathrm{k}=12$.

- if we are looking for 2 edit distance (mismatch, indel) this would guaranty to find all of the hits

Cache oblivious search

Cache oblivious search

- Gl and RI are both sorted
- Scan GI; for all GI[i] = RI[j].sr
- Map all partition/read_number combinations in RI[j]
- All of the above have the same $s r$ and its corresponding GI[i] list; therefore:
- They have the same seed locations: same sequence content in the reference genome to extend
- Once GI[i] and corresponding ref(GI[i].1, GI[i].2, ...) are loaded from main memory to cache memory; then you re-use the faster cache memory contents; minimizing cache hits and main-to-cache transfers

Cache oblivious search

Mapper	Level 2 Cache Misses per Instruction	Instruction per cycle
Bowtie	0.0016	0.94
BWA	0.0016	0.93
MAQ	0.0060	0.56
mrsFAST	0.0008	1.24

Spaced seeds

- Instead of a k-mer with contiguous hit (1111..1); use space seeds
- Seed S is defined by Length and Weight
- 0's are "don't care" characters
- 111111001111111100 requires
- 6 matches + 2 "don't care"s + 8 matches + 2 "don't care"s; a valid hit:

$$
\begin{aligned}
& \text { CGACTAGCTAGCTAGCTA } \\
& \text { CGACTAAGTAGCTAGCGC }
\end{aligned}
$$

- Length $=18$; weight $=14$

Burrows-Wheeler Transform

- Store entire reference genome.
- Align tag base by base from the end.
- When tag is traversed, all active locations are reported.
- If no match is found, then back up and try a substitution.

Burrows-Wheeler Transformation

1. Append to the input string a special char, \$, smaller than all alphabet.

mississippi\$

Burrows-Wheeler Transformation (cnt'd)
2. Generate all rotations.

\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$
\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}
\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}
\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}
\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}
\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}
\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}
\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}
\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}
\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}
\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}
$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}

Burrows-Wheeler Transformation (cnt'd)

3. Sort rotations according to the alphabetical order.

$\$$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}
\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}
\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}
\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}
\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}
\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$
\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}
\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}
\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}
\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}
\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}
\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}

Burrows-Wheeler Transformation (cnt'd)
4. Output the last column.

$\$$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}
\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}
\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}
\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}
\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}
\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\$$
\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}
\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}
\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}
\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}
\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}
\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}

Burrows-Wheeler Transformation (cnt'd)

mississippi\$

ipssm\$pissii

Ferragina-Manzini Index

First column: F
Last column: L
Let's make an L to F map.

Observation:
The $n^{\text {th }} i$ in L is the $\mathrm{n}^{\text {th }} \mathrm{i}$ in F .

$\$$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	i
\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}
\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}
\mathbf{s}	\mathbf{s}										
\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}
\mathbf{s}	\mathbf{s}										
\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}
\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$
\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}
\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}
\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}
\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}
\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}
\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{s}	\mathbf{s}	\mathbf{i}	\mathbf{p}	\mathbf{p}	\mathbf{i}	$\mathbf{\$}$	\mathbf{m}	\mathbf{i}

Ferragina-Manzini Index: L to F map

Store/compute a two dimensional Occ(j, 'c') table of the number of occurrences of char 'c' up to position j (inclusive).
and one
dimensional $\operatorname{Cnt}\left({ }^{\prime} c^{\prime}\right)$ and Rank('c') tables

	$\$$	i	m	p	s
i	0	1	0	0	0
p	0	1	0	1	0
s	0	1	0	1	1
s	0	1	0	1	2
m	0	1	1	1	2
$\$$	1	1	1	1	2
p	1	1	1	2	2
i	1	2	1	2	2
s	1	2	1	2	3
s	1	2	1	2	4
i	1	3	1	2	4
i	1	4	1	2	4

Occ(j,'c')

Cnt('c')

$\$$	i	m	p	s
1	4	1	2	4

Rank('c')

$\$$	i	m	p	s
12	2	1	9	3

Ferragina-Manzini Index: L to F map

Ferragina-Manzini Index: Reverse traversal
(1)
(2) p
(7) p
(8) i
(3) s
(9) s
(11) i
(4) s
(10) s
(12) i
(5) m
(6) $\$$

		m												(i)
2		-												
3						f								
4		s			i	p	p			\$	m	i	s	5 s
5	i	s		s			5		i	p	p	i	\$	\$ m
6	m	i			s	i	s		5	+	p	p	i	\$
7		,		${ }^{\text {}}$	m		.							
8		,			S	m								
9	s	i		p	p	i	\$		m	i	s	s	i	s
10	s				s	i	p		p	i	\$	m		s
11	s				p	p			\$	m	i	s	s	s i
12														

Mapping with BWT-FM

Auxillary data structures for efficient pattern matching: how to find the corresponding chars in the first column efficiently, in terms of both time and space.

Original sequence
BWT

	a	c	g	t
rank	1	5	8	11

	SA	\$agcagcagact	t	a	c	g	t	FM indices
1	9	act\$agcagcag	9	0	0	1	1	
2	7	agact\$agcagc	C	0	1	1	1	
3	4	agcagact\$agc	c	0	2	1	1	
4	1	agcagcagact\$	\$	0	2	1	1	
5	6	cagact\$agcag	g	0	2	2	1	
6	3	cagcagact\$ag	g	0	2	3	1	
7	10	ct\$agcagcaga	a	1	2	3	1	
8	8	gact\$agcagca	a	2	2	3	1	
9	5	gcagact\$agca	a	3	2	3	1	
10	2	gcagcagact ${ }^{\text {a }}$	a	4	2	3	1	
11	11	t\$agcagcagac	c	4	3	3	1	

Mapping with BWT-FM

Auxillary data structures for efficient pattern matching: how to find the corresponding chars in the first column efficiently, in terms of both time and space.

Original sequence

	a	c	g	t
rank	1	5	8	11

Original sequence			BW
		gca	
	SA	\$agcagcagact	t
1	9		g
2	7	agact\$agcagc	C
3	4	agcagact\$agc	C
4	1	- agcagcagact\$	\$
5	6	cagact\$agcag	g
6	3	cagcagact\$ag	g
7	10	ct\$agcagcaga	a
8	8	gact\$agcagca	a
9	5	gcagact\$agca	a
10	2	gcagcagact \mathbf{a}	a
11	11	t\$agcagcagac	c

a	c	g	t
0	0	1	1
0	1	1	1
0	2	1	1
0	2	1	1
0	2	2	1
0	2	3	1
1	2	3	1
2	2	3	1
3	2	3	1
4	2	3	1
4	3	3	1

FM indices

Next block:
From $1+0=1$
to $1+(4-1)=4$

Mapping with BWT-FM

Auxillary data structures for efficient pattern matching: how to find the corresponding chars in the first column efficiently, in terms of both time and space.

Original sequence

	a	c	g	t
rank	1	5	8	11

Original sequence			BW
		gca	
	SA	\$agcagcagact	t
1	9	act\$agcagcag	g
2	7	agact\$agcagc	C
3	4	agcagact\$agc	C
4	1	L agcagcagac \$, i	\$
5	6	- cagact\$agca-g	g
6	3	cagcagact\$ag	g
7	10	ct\$agcagcaga	a
8	8	gact\$agcagca	a
9	5	gcagact\$agca	a
10	2	g cagcagact \mathbf{a}	a
11	11	t\$agcagcagac	c

a	c	g	t
0	0	1	1
0	1	1	1
0	2	1	1
0	2	1	1
0	2	2	1
0	2	3	1
1	2	3	1
2	2	3	1
3	2	3	1
4	2	3	1
4	3	3	1

FM indices

Next block:
From $5+0=5$
to $5+(2-1)=6$

Mapping with BWT-FM

Auxillary data structures for efficient pattern matching: how to find the corresponding chars in the first column efficiently, in terms of both time and space.

Original sequence
BWT

	a	c	g	t
rank	1	5	8	11

a	c	g	t
0	0	1	1
0	1	1	1
0	2	1	1
0	2	1	1
0	2	2	1
0	2	3	1
1	2	3	1
2	2	3	1
3	2	3	1
4	2	3	1
4	3	3	1

FM indices

Next block:
From $8+1=9$
to $8+(3-1)=10$

Inexact match

Mapping Quality

- $\mathrm{MAPQ}=-10 * \log _{10}(\operatorname{Prob}($ mapping is wrong $))$

For reference sequence x; read sequence z :
$\boldsymbol{p}(\mathbf{z} \mid \boldsymbol{x}, \mathbf{u})=$ probability that \boldsymbol{z} comes from position u
$=$ multiplication of p_{e} of mismatched bases of z
For posterior probability $\mathbf{p}(\mathbf{u} \mid \mathbf{x}, \mathbf{z})$ assume uniform prior distribution $\mathbf{p}(\mathbf{u} \mid \mathbf{x})$ $L=|\mathrm{x}|$ and $l=|\mathrm{z}|$. Apply Bayesian formula:

$$
\begin{gathered}
p_{s}(u \mid x, z)=\frac{p(z \mid x, u)}{\sum_{v=1}^{L-l+1} p(z \mid x, v)} \\
Q_{s}(u \mid x, z)=-10 \log _{10}\left[1-p_{s}(u \mid x, z)\right]
\end{gathered}
$$

Further reading

Tools for mapping high-throughput sequencing data •

Nuno A. Fonseca \mathbf{M}, Johan Rung, Alvis Brazma, John C. Marioni Author Notes
Bioinformatics, Volume 28, Issue 24, December 2012, Pages 3169-3177,
https://doi.org/10.1093/bioinformatics/bts605
Published: 11 October 2012 Article history \mathbf{V}

Short Read Mapping: An Algorithmic Tour

This paper discusses the challenge of mapping short DNA reads to an existing target genome, covering the approaches and the current tools for addressing this problem.

By Stefan Canzar and Steven L. Salzberg

