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Read Mapping

 When we have a reference genome & reads from DNA sequencing, 

which part of the genome does it come from?

 Challenges:

 Sanger sequencing

 Cloning vectors

 Millions of long (~1000 bp reads)

 High throughput sequencing:

 Billions of short reads with low error

 Hundreds of millions of long reads with high error

 Common: contamination

 Typically ~1-2% of reads come from different sources; e.g., human 

resequencing contaminated with yeast, E. coli, etc.

 Common: Repeats & Duplications



Read Mapping

 Accuracy

 Due to repeats, we need a confidence score in alignment

 Sensitivity

 Don’t lose information

 Speed!!!!!!!

 Memory usage

 Output

 Keep all needed information, but don’t overflow your 

disks -- SAM/BAM/CRAM format

 All read mapping algorithms perform alignment at 

some point (read vs. reference)



Sanger vs HTS: cloning vectors

 Sanger reads may 

contain sequence 

from the cloning 

vector; thus 

mapping needs 

local alignment.

 No cloning vectors 

in HTS, global 

alignment is fine.

Bacterial DNA

Target DNA

read



Local vs. Global Alignment

 The Global Alignment Problem tries to find 

the best alignment from start to end for two 

sequences

 The Local Alignment Problem tries to find the 

subsequences of two sequences that give the 

best alignment

 Solutions to both are extensions of Longest 

Common Subsequence



Local vs. Global Alignment (cont’d)

• Global Alignment

• Local Alignment—better alignment to find 

conserved segment

--T—-CC-C-AGT—-TATGT-CAGGGGACACG—A-GCATGCAGA-GAC
|  || |  ||  | | | |||    || | | |  | ||||   |

AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG—T-CAGAT--C

tccCAGTTATGTCAGgggacacgagcatgcagagac

||||||||||||

aattgccgccgtcgttttcagCAGTTATGTCAGatc



Local Alignment: Example

Global alignment

Local alignment

Compute a “mini” 

Global Alignment 

to get Local

Sequence 1

S
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q

u
e
n
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 2



Percent Sequence Identity

 The extent to which two nucleotide or amino 

acid sequences are invariant

A C  C  T G  A  G  – A G 
A C  G  T G  – G  C  A G

70% identical

mismatch
indel



Global Alignment

 Hamming distance:

 Easiest; two sequences s1, s2, where |s1|=|s2|

 HD(s1, s2) = #mismatches

 Edit distance

 Include indels in alignment

 Levenstein’s edit distance algorithm, simple 

recursion with match score = +1, 

mismatch=indel=-1; O(mn)

 Needleman-Wunsch: extension with scoring 

matrices and affine gap penalties; O(mn)



Edit Distance vs Hamming Distance

V = ATATATAT

W = TATATATA

Hamming distance: Edit distance: 

d(v, w)=8 d(v, w)=2
(one insertion and one deletion)

W = TATATATA -

V =  -ATATATAT

Hamming distance 
always compares 
i-th letter of v  with
i-th letter of w

Edit distance 
may compare 
i-th letter of v  with
j-th letter of w



The Global Alignment Problem

Find the best alignment between two strings under a given scoring 
schema

Input : strings v and w and a scoring schema

Output : Alignment of maximum score

↑→ = -б

= 1 if match

= -µ if mismatch

si-1,j-1 +1 if vi = wj

si,j =  max      s i-1,j-1 -µ if vi ≠ wj

s i-1,j - σ

s i,j-1 - σ

m : mismatch 

penalty

σ : indel penalty



Scoring matrices

 Different scores for different character match & 
mismatches

 Amino acid substitution matrices

 PAM

 BLOSUM

 DNA substitution matrices

 DNA is less conserved than protein 
sequences

 Less effective to compare coding regions at 
nucleotide level



Scoring matrices 

To generalize scoring, consider a (4+1) x(4+1) 
scoring matrix δ. 

In the case of an amino acid sequence alignment, the 
scoring matrix would be a (20+1)x(20+1) size.  The 
addition of 1 is to include the score for comparison 
of a gap character “-”.

This will simplify the algorithm as follows:

si-1,j-1 + δ (vi, wj)

si,j =    max      s i-1,j + δ (vi, -)

s i,j-1 + δ (-, wj)



Scoring Indels: Naive Approach

 A fixed penalty σ is given to every indel:

 -σ for 1 indel, 

 -2σ for 2 consecutive  indels

 -3σ for 3 consecutive  indels, etc.

Can be too severe penalty for a series of 

100 consecutive indels



Affine Gap Penalties

 In nature, a series of k indels often come as a 

single event rather than a series of k single 

nucleotide events:

Normal scoring 

would give the same 

score for both 

alignments

This is more 

likely.

This is less 

likely.



Accounting for Gaps

 Gaps- contiguous sequence of spaces in one of the 
rows

 Score for a gap of length x is: 

-(ρ + σx)

where ρ >0 is the penalty for introducing a gap: 

gap opening penalty

ρ will be large relative to σ:

gap extension penalty

because you do not want to add too much of a 
penalty for extending the gap.



Affine Gap Penalties

 Gap penalties:

 -ρ-σ when there is 1 indel

 -ρ-2σ when there are 2 indels

 -ρ-3σ when there are 3 indels, etc. 

 -ρ- x·σ (-gap opening - x gap extensions)

 Somehow reduced penalties (as compared to 

naïve scoring) are given to runs of horizontal 

and vertical edges



Affine Gap Penalty Recurrences

si,j =          s i-1,j - σ

max     s i-1,j –(ρ+σ)

si,j =          s i,j-1 - σ

max     s i,j-1 –(ρ+σ)

si,j =         si-1,j-1 + δ (vi, wj)

max     s i,j
s i,j

Continue Gap in w (deletion)

Start Gap in w (deletion): from 

middle

Continue Gap in v (insertion)

Start Gap in v (insertion):from 

middle

Match or Mismatch

End deletion: from top

End insertion: from bottom



Ukkonnen’s Approximate String 

Matching
Regular alignment

AUUGACAGG - -

AU - - - CAGGCC

Observation:

If max allowed edit 

distance is small, 

you don’t go far 

away from the 

diagonal

(global alignment 

only)



Ukkonen’s alignment

If maximum allowed number of indels is t, then you only need to calculate

2t-1 diagonals around the main diagonal.



The Local Alignment Recurrence

• The largest value of si,j over the whole edit 

graph is the score of the best local alignment.

• The recurrence:

0     

si,j = max     si-1,j-1 + δ (vi, wj)
s i-1,j + δ (vi, -)
s i,j-1 + δ (-, wj)

there is only this change 

from the original recurrence 

of a Global Alignment -

since there is only one “free 

ride” edge entering into 

every vertex

Smith-Waterman Algorithm



Smith-Waterman

 Start from the maximum score s(i,j) on the 

alignment matrix

 Move to m(i-1, j), m(i, j-1) or m(i-1, j-1) until 

s(i,j)=0 or i=j=0

 O(mn)

0     

si,j = max     si-1,j-1 + δ (vi, wj)
s i-1,j + δ (vi, -)
s i,j-1 + δ (-, wj)



Faster Implementations

 GPGPU: general purpose graphics 

processing units

 Should avoid branch statements (if-then-else)

 FPGA: field programmable gate arrays

 SIMD instructions: single-instruction multiple 

data

 SSE instruction set (Intel)

 Also available on AMD processors

 Same instruction is executed on multiple data 

concurrently



Alignment with SSE

 Applicable to both global and 
local alignment

 Using SSE instruction set we 
can compute each diagonal in 
parallel

 Each diagonal will be in saved 
in a 128 bit SSE specific 
register

 The diagonal C, can be 
computed from diagonal A and 
B in parallel

 Number of SSE registers is 
limited, we can not hold the 
matrix, but only the two last 
diagonals is needed anyway.

Genome seg(L-k+2)
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READ MAPPERS



Mapping Reads

Problem: We are given a read, R, and a reference sequence, S. Find 

the best or all occurrences of R in S.

Example:

R = AAACGAGTTA

S = TTAATGCAAACGAGTTACCCAATATATATAAACCAGTTATT

Considering no error: one occurrence.

Considering up to 1 substitution error: two occurrences.

Considering up to 10 substitution errors: many meaningless 

occurrences!

Don’t forget to search in both forward and reverse strands!!!



Mapping Reads (continued)

Variations:

 Sequencing error
 No error: R is a perfect subsequence of S.

 Only substitution error: R is a subsequence of S up to a few 
substitutions.

 Indel and substitution error: R is a subsequence of S up to a few 
short indels and substitutions.

 Junctions (for instance in alternative splicing)
 Fixed order/orientation

R = R1R2…Rn and Ri map to different non-overlapping loci in S, 
but to the same strand and preserving the order.

 Arbitrary order/orientation

R = R1R2…Rn and Ri map to different non-overlapping loci in S.



Hash based seed-and-extend aligners

 Hash based seed-and-extend (hash table, suffix array, 

suffix tree)

 Index the k-mers in the genome

 Continuous seeds and gapped seeds

 When searching a read, find the location of a k-mer in the 

read; then extend through alignment

 Apply pre-alignment filters

 GateKeeper, adjacency filter, q-gram filters

 Requires large memory; this can be reduced with cost to run 

time

 mr(s)FAST, RazerS3, MAQ, MOSAIK

 GPGPU and heterogeneous computing implementations: Saruman, 

Mummer-GPU, CORAL



(pure) BWT-FM aligners

 Burrows-Wheeler Transform & Ferragina-Manzini Index 

based aligners
 BWT is a data compression method used to compress the genome 

index

 Perfect hits can be found very quickly, memory lookup costs increase 

for imperfect hits

 Less memory

 Reduced sensitivity for high error rate (impractical for long reads)

 BWA-aln, Bowtie, SOAP2



Hybrid aligners

 Seed with BWT-FM, then align

 Apply “chaining” to reduce need-to-align regions 

(acts as a pre-alignment filter)

 Usable for both short and long reads

 BWA-MEM, Bowtie2 (short reads)

 MashMap and minimap2 (long reads)



Seeding & chaining



Long read mappers

 PacBio and ONT:

 BLASR (suffix-tree based indexing)

 MashMap and Minimap2 (minimizers + chaining + 

Smith-Waterman)

 Paper presentation candidate

 NGM-LR (hash table + chaining + alignment w/ 

convex gap penalty model

 Paper presentation candidate



Hash Based Aligners



Seed and extend
 Break the read into n segments of k-mers.

 For perfect sensitivity under edit distance e

 There is at least one l-mer where l = 

floor(L/(e+1)); L=read length

 For fixed l=k; n = e+1 and k ≤ L / n

 Large k -> large memory 

 Small k -> more hash hits 

 Lets consider the read length is 36 bp, and k=12.

 if we are looking for 2 edit distance (mismatch, indel) 

this would guaranty to find all of the hits



Cache oblivious search

aaaaaaa

aaaaaac

aaaaaag

aaaaaat

aaaaaca

ttttttt

12 679

180

1909

987

GI: Genome Index

aaaccaa

caacata

ggggaaa

ttaacaa

ttaacat

ttttttt

aaaccaa ttaacat ttaacaa

tttttttaaaccaaggggaaa

read1

read4

Partitions              1                 2                   3

1/1 2/4

2/100

1/4

3/1

2/1

3/4

RI: Read Index [sr;(part#, read#)]

sr

Hach et al, Nat Methods 2010



Cache oblivious search

 GI and RI are both sorted

 Scan GI; for all GI[i] = RI[j].sr

 Map all partition/read_number combinations in RI[j]

 All of the above have the same sr and its 

corresponding GI[i] list; therefore:

 They have the same seed locations: same sequence content 

in the reference genome to extend

 Once GI[i] and corresponding ref(GI[i].1, GI[i].2, …) are loaded 

from main memory to cache memory; then you re-use the 

faster cache memory contents; minimizing cache hits and 

main-to-cache transfers

Hach et al, Nat Methods 2010



Cache oblivious search

Mapper Level 2 Cache 

Misses per 

Instruction

Instruction per 

cycle

Bowtie 0.0016 0.94

BWA 0.0016 0.93

MAQ 0.0060 0.56

mrsFAST 0.0008 1.24

Hach et al, Nat Methods 2010



Spaced seeds

 Instead of a k-mer with contiguous hit 

(1111..1); use space seeds

 Seed S is defined by Length and Weight

 0’s are “don’t care” characters

 111111001111111100 requires

 6 matches + 2 “don’t care”s + 8 matches + 2 “don’t 

care”s; a valid hit:

 Length = 18;  weight = 14

CGACTAGCTAGCTAGCTA

CGACTAAGTAGCTAGCGC



Burrows-Wheeler Transform

 Store entire reference 

genome.

 Align tag base by base 

from the end.

 When tag is traversed, all 

active locations are 

reported.

 If no match is found, then 

back up and try a 

substitution.



Burrows-Wheeler Transformation

1. Append to 
the input 
string a 
special char, 
$, smaller 
than all 
alphabet.

mississippi$



Burrows-Wheeler Transformation (cnt’d)

2. Generate 

all 

rotations.

m i s s i s s i p p i $

i s s i s s i p p i $ m

s s i s s i p p i $ m i

s i s s i p p i $ m i s

i s s i p p i $ m i s s

s s i p p i $ m i s s i

s i p p i $ m i s s i s

i p p i $ m i s s i s s

p p i $ m i s s i s s i

p i $ m i s s i s s i p

i $ m i s s i s s i p p

$ m i s s i s s i p p i



Burrows-Wheeler Transformation (cnt’d)

3. Sort 

rotations 

according to 

the 

alphabetical 

order.

$ m i s s i s s i p p i

i $ m i s s i s s i p p

i p p i $ m i s s i s s

i s s i p p i $ m i s s

i s s i s s i p p i $ m

m i s s i s s i p p i $

p i $ m i s s i s s i p

p p i $ m i s s i s s i

s i p p i $ m i s s i s

s i s s i p p i $ m i s

s s i p p i $ m i s s i

s s i s s i p p i $ m i



Burrows-Wheeler Transformation (cnt’d)

4. Output 

the last 

column.

$ m i s s i s s i p p i

i $ m i s s i s s i p p

i p p i $ m i s s i s s

i s s i p p i $ m i s s

i s s i s s i p p i $ m

m i s s i s s i p p i $

p i $ m i s s i s s i p

p p i $ m i s s i s s i

s i p p i $ m i s s i s

s i s s i p p i $ m i s

s s i p p i $ m i s s i

s s i s s i p p i $ m i



Burrows-Wheeler Transformation (cnt’d)

ipssm$pissii

mississippi$



Ferragina-Manzini Index

First column: F

Last column: L

Let’s make an 

L to F map.

Observation:

The nth i in L is

the nth i in F.

$ m i s s i s s i p p i

i $ m i s s i s s i p p

i p p i $ m i s s i s s

i s s i p p i $ m i s s

i s s i s s i p p i $ m

m i s s i s s i p p i $

p i $ m i s s i s s i p

p p i $ m i s s i s s i

s i p p i $ m i s s i s

s i s s i p p i $ m i s

s s i p p i $ m i s s i

s s i s s i p p i $ m i



Ferragina-Manzini Index: L to F map

Store/compute

a two 

dimensional 

Occ(j,‘c’) table

of the number of

occurrences of

char ‘c’ up to

position j

(inclusive).

and one

dimensional

Cnt(‘c’) and 
Rank(‘c’) 
tables 

$ i m p s

i 0 1 0 0 0

p 0 1 0 1 0

s 0 1 0 1 1

s 0 1 0 1 2

m 0 1 1 1 2

$ 1 1 1 1 2

p 1 1 1 2 2

i 1 2 1 2 2

s 1 2 1 2 3

s 1 2 1 2 4

i 1 3 1 2 4

i 1 4 1 2 4

$ i m p s

1 4 1 2 4

Occ(j,‘c’)

Cnt(‘c’)

$ i m p s

12 2 1 9 3

Rank(‘c’)



Ferragina-Manzini Index: L to F map

[Cnt(‘$’) +

Cnt(‘i’) +

Cnt(‘m’) +

Cnt(‘p’) = 8]

+ [Occ(9, ‘s’)= 3]

= 11

1 $ m i s s i s s i p p i

2 i $ m i s s i s s i p p

3 i p p i $ m i s s i s s

4 i s s i p p i $ m i s s

5 i s s i s s i p p i $ m

6 m i s s i s s i p p i $

7 p i $ m i s s i s s i p

8 p p i $ m i s s i s s i

9 s i p p i $ m i s s i s

10 s i s s i p p i $ m i s

11 s s i p p i $ m i s s i

12 s s i s s i p p i $ m i

‘s’ section

before ‘s’

$ i m p s

1 4 1 2 4

Cnt(‘c’)



Ferragina-Manzini Index: Reverse traversal

(1) i

(2) p

(7) p

(8) i

(3) s

(9) s

(11) i

(4) s

(10) s

(12) i

(5) m

(6) $

1 $ m i s s i s s i p p i

2 i $ m i s s i s s i p p

3 i p p i $ m i s s i s s

4 i s s i p p i $ m i s s

5 i s s i s s i p p i $ m

6 m i s s i s s i p p i $

7 p i $ m i s s i s s i p

8 p p i $ m i s s i s s i

9 s i p p i $ m i s s i s

10 s i s s i p p i $ m i s

11 s s i p p i $ m i s s i

12 s s i s s i p p i $ m i



Mapping with BWT-FM

$agcagcagact

act$agcagcag

agact$agcagc

agcagact$agc

agcagcagact$

cagact$agcag

cagcagact$ag

ct$agcagcaga

gact$agcagca

gcagact$agca

gcagcagact$a

t$agcagcagac

a c g t

rank 1 5 8 11

9

7

4

1

6

3

10

8

5

2

11

1

2

3

4

5

6

7

8

9

10

11

SA t

g

c

c

$

g

g

a

a

a

a

c

Auxillary data structures for efficient pattern matching: how to find 

the corresponding chars in the first column efficiently, in terms of 

both time and space.

BWT

a c g t

0 0 1 1

0 1 1 1

0 2 1 1

0 2 1 1

0 2 2 1

0 2 3 1

1 2 3 1

2 2 3 1

3 2 3 1

4 2 3 1

4 3 3 1

FM indices

Original sequence



Mapping with BWT-FM

$agcagcagact

act$agcagcag

agact$agcagc

agcagact$agc

agcagcagact$

cagact$agcag

cagcagact$ag

ct$agcagcaga

gact$agcagca

gcagact$agca

gcagcagact$a

t$agcagcagac

a c g t

rank 1 5 8 11

9

7

4

1

6

3

10

8

5

2

11

1

2

3

4

5

6

7

8

9

10

11

SA t

g

c

c

$

g

g

a

a

a

a

c

BWT

a c g t

0 0 1 1

0 1 1 1

0 2 1 1

0 2 1 1

0 2 2 1

0 2 3 1

1 2 3 1

2 2 3 1

3 2 3 1

4 2 3 1

4 3 3 1

FM indices

gca

Next block:

From 1 + 0 = 1 

to 1 + (4-1) = 4

Auxillary data structures for efficient pattern matching: how to find 

the corresponding chars in the first column efficiently, in terms of 

both time and space.

Original sequence



Mapping with BWT-FM

$agcagcagact

act$agcagcag

agact$agcagc

agcagact$agc

agcagcagact$

cagact$agcag

cagcagact$ag

ct$agcagcaga

gact$agcagca

gcagact$agca

gcagcagact$a

t$agcagcagac

a c g t

rank 1 5 8 11

9

7

4

1

6

3

10

8

5

2

11

1

2

3

4

5

6

7

8

9

10

11

SA t

g

c

c

$

g

g

a

a

a

a

c

BWT

a c g t

0 0 1 1

0 1 1 1

0 2 1 1

0 2 1 1

0 2 2 1

0 2 3 1

1 2 3 1

2 2 3 1

3 2 3 1

4 2 3 1

4 3 3 1

FM indices

gca

Next block:

From 5 + 0 = 5 

to 5 + (2-1) = 6

Auxillary data structures for efficient pattern matching: how to find 

the corresponding chars in the first column efficiently, in terms of 

both time and space.

Original sequence



Mapping with BWT-FM

$agcagcagact

act$agcagcag

agact$agcagc

agcagact$agc

agcagcagact$

cagact$agcag

cagcagact$ag

ct$agcagcaga

gact$agcagca

gcagact$agca

gcagcagact$a

t$agcagcagac

a c g t

rank 1 5 8 11

9

7

4

1

6

3

10

8

5

2

11

1

2

3

4

5

6

7

8

9

10

11

SA t

g

c

c

$

g

g

a

a

a

a

c

BWT

a c g t

0 0 1 1

0 1 1 1

0 2 1 1

0 2 1 1

0 2 2 1

0 2 3 1

1 2 3 1

2 2 3 1

3 2 3 1

4 2 3 1

4 3 3 1

FM indices

gca

Next block:

From 8 + 1 = 9 

to 8 + (3-1) = 10

Auxillary data structures for efficient pattern matching: how to find 

the corresponding chars in the first column efficiently, in terms of 

both time and space.

Original sequence



Inexact match



Mapping Quality

 MAPQ = -10 * log10(Prob(mapping is wrong))

For reference sequence x; read sequence z:

p(z | x,u) = probability that z comes from position u 

= multiplication of pe of mismatched bases of z

For posterior probability p(u | x,z) assume uniform prior distribution p(u|x)

L=|x| and l=|z|. Apply Bayesian formula:

Calculated for one “best” hit Li et al., Genome Research, 2008



Further reading


