
CS681: Advanced Topics in

Computational Biology

Can Alkan

EA509

calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs681/

Read Mapping

 When we have a reference genome & reads from DNA sequencing,

which part of the genome does it come from?

 Challenges:

 Sanger sequencing

 Cloning vectors

 Millions of long (~1000 bp reads)

 High throughput sequencing:

 Billions of short reads with low error

 Hundreds of millions of long reads with high error

 Common: contamination

 Typically ~1-2% of reads come from different sources; e.g., human

resequencing contaminated with yeast, E. coli, etc.

 Common: Repeats & Duplications

Read Mapping

 Accuracy

 Due to repeats, we need a confidence score in alignment

 Sensitivity

 Don’t lose information

 Speed!!!!!!!

 Memory usage

 Output

 Keep all needed information, but don’t overflow your

disks -- SAM/BAM/CRAM format

 All read mapping algorithms perform alignment at

some point (read vs. reference)

Sanger vs HTS: cloning vectors

 Sanger reads may

contain sequence

from the cloning

vector; thus

mapping needs

local alignment.

 No cloning vectors

in HTS, global

alignment is fine.

Bacterial DNA

Target DNA

read

Local vs. Global Alignment

 The Global Alignment Problem tries to find

the best alignment from start to end for two

sequences

 The Local Alignment Problem tries to find the

subsequences of two sequences that give the

best alignment

 Solutions to both are extensions of Longest

Common Subsequence

Local vs. Global Alignment (cont’d)

• Global Alignment

• Local Alignment—better alignment to find

conserved segment

--T—-CC-C-AGT—-TATGT-CAGGGGACACG—A-GCATGCAGA-GAC
| || | || | | | ||| || | | | | |||| |

AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG—T-CAGAT--C

tccCAGTTATGTCAGgggacacgagcatgcagagac

||||||||||||

aattgccgccgtcgttttcagCAGTTATGTCAGatc

Local Alignment: Example

Global alignment

Local alignment

Compute a “mini”

Global Alignment

to get Local

Sequence 1

S
e
q

u
e
n

c
e
 2

Percent Sequence Identity

 The extent to which two nucleotide or amino

acid sequences are invariant

A C C T G A G – A G
A C G T G – G C A G

70% identical

mismatch
indel

Global Alignment

 Hamming distance:

 Easiest; two sequences s1, s2, where |s1|=|s2|

 HD(s1, s2) = #mismatches

 Edit distance

 Include indels in alignment

 Levenstein’s edit distance algorithm, simple

recursion with match score = +1,

mismatch=indel=-1; O(mn)

 Needleman-Wunsch: extension with scoring

matrices and affine gap penalties; O(mn)

Edit Distance vs Hamming Distance

V = ATATATAT

W = TATATATA

Hamming distance: Edit distance:

d(v, w)=8 d(v, w)=2
(one insertion and one deletion)

W = TATATATA -

V = -ATATATAT

Hamming distance
always compares
i-th letter of v with
i-th letter of w

Edit distance
may compare
i-th letter of v with
j-th letter of w

The Global Alignment Problem

Find the best alignment between two strings under a given scoring
schema

Input : strings v and w and a scoring schema

Output : Alignment of maximum score

↑→ = -б

= 1 if match

= -µ if mismatch

si-1,j-1 +1 if vi = wj

si,j = max s i-1,j-1 -µ if vi ≠ wj

s i-1,j - σ

s i,j-1 - σ

m : mismatch

penalty

σ : indel penalty

Scoring matrices

 Different scores for different character match &
mismatches

 Amino acid substitution matrices

 PAM

 BLOSUM

 DNA substitution matrices

 DNA is less conserved than protein
sequences

 Less effective to compare coding regions at
nucleotide level

Scoring matrices

To generalize scoring, consider a (4+1) x(4+1)
scoring matrix δ.

In the case of an amino acid sequence alignment, the
scoring matrix would be a (20+1)x(20+1) size. The
addition of 1 is to include the score for comparison
of a gap character “-”.

This will simplify the algorithm as follows:

si-1,j-1 + δ (vi, wj)

si,j = max s i-1,j + δ (vi, -)

s i,j-1 + δ (-, wj)

Scoring Indels: Naive Approach

 A fixed penalty σ is given to every indel:

 -σ for 1 indel,

 -2σ for 2 consecutive indels

 -3σ for 3 consecutive indels, etc.

Can be too severe penalty for a series of

100 consecutive indels

Affine Gap Penalties

 In nature, a series of k indels often come as a

single event rather than a series of k single

nucleotide events:

Normal scoring

would give the same

score for both

alignments

This is more

likely.

This is less

likely.

Accounting for Gaps

 Gaps- contiguous sequence of spaces in one of the
rows

 Score for a gap of length x is:

-(ρ + σx)

where ρ >0 is the penalty for introducing a gap:

gap opening penalty

ρ will be large relative to σ:

gap extension penalty

because you do not want to add too much of a
penalty for extending the gap.

Affine Gap Penalties

 Gap penalties:

 -ρ-σ when there is 1 indel

 -ρ-2σ when there are 2 indels

 -ρ-3σ when there are 3 indels, etc.

 -ρ- x·σ (-gap opening - x gap extensions)

 Somehow reduced penalties (as compared to

naïve scoring) are given to runs of horizontal

and vertical edges

Affine Gap Penalty Recurrences

si,j = s i-1,j - σ

max s i-1,j –(ρ+σ)

si,j = s i,j-1 - σ

max s i,j-1 –(ρ+σ)

si,j = si-1,j-1 + δ (vi, wj)

max s i,j
s i,j

Continue Gap in w (deletion)

Start Gap in w (deletion): from

middle

Continue Gap in v (insertion)

Start Gap in v (insertion):from

middle

Match or Mismatch

End deletion: from top

End insertion: from bottom

Ukkonnen’s Approximate String

Matching
Regular alignment

AUUGACAGG - -

AU - - - CAGGCC

Observation:

If max allowed edit

distance is small,

you don’t go far

away from the

diagonal

(global alignment

only)

Ukkonen’s alignment

If maximum allowed number of indels is t, then you only need to calculate

2t-1 diagonals around the main diagonal.

The Local Alignment Recurrence

• The largest value of si,j over the whole edit

graph is the score of the best local alignment.

• The recurrence:

0

si,j = max si-1,j-1 + δ (vi, wj)
s i-1,j + δ (vi, -)
s i,j-1 + δ (-, wj)

there is only this change

from the original recurrence

of a Global Alignment -

since there is only one “free

ride” edge entering into

every vertex

Smith-Waterman Algorithm

Smith-Waterman

 Start from the maximum score s(i,j) on the

alignment matrix

 Move to m(i-1, j), m(i, j-1) or m(i-1, j-1) until

s(i,j)=0 or i=j=0

 O(mn)

0

si,j = max si-1,j-1 + δ (vi, wj)
s i-1,j + δ (vi, -)
s i,j-1 + δ (-, wj)

Faster Implementations

 GPGPU: general purpose graphics

processing units

 Should avoid branch statements (if-then-else)

 FPGA: field programmable gate arrays

 SIMD instructions: single-instruction multiple

data

 SSE instruction set (Intel)

 Also available on AMD processors

 Same instruction is executed on multiple data

concurrently

Alignment with SSE

 Applicable to both global and
local alignment

 Using SSE instruction set we
can compute each diagonal in
parallel

 Each diagonal will be in saved
in a 128 bit SSE specific
register

 The diagonal C, can be
computed from diagonal A and
B in parallel

 Number of SSE registers is
limited, we can not hold the
matrix, but only the two last
diagonals is needed anyway.

Genome seg(L-k+2)

R

E

A

D
(L-K)

x

x

x

x x

x

xx

x

x x

x

x

Cxx

x

x x

xxxC x

xxxxx

x x xxx

x x x x x

A

A

A

B

B C

READ MAPPERS

Mapping Reads

Problem: We are given a read, R, and a reference sequence, S. Find

the best or all occurrences of R in S.

Example:

R = AAACGAGTTA

S = TTAATGCAAACGAGTTACCCAATATATATAAACCAGTTATT

Considering no error: one occurrence.

Considering up to 1 substitution error: two occurrences.

Considering up to 10 substitution errors: many meaningless

occurrences!

Don’t forget to search in both forward and reverse strands!!!

Mapping Reads (continued)

Variations:

 Sequencing error
 No error: R is a perfect subsequence of S.

 Only substitution error: R is a subsequence of S up to a few
substitutions.

 Indel and substitution error: R is a subsequence of S up to a few
short indels and substitutions.

 Junctions (for instance in alternative splicing)
 Fixed order/orientation

R = R1R2…Rn and Ri map to different non-overlapping loci in S,
but to the same strand and preserving the order.

 Arbitrary order/orientation

R = R1R2…Rn and Ri map to different non-overlapping loci in S.

Hash based seed-and-extend aligners

 Hash based seed-and-extend (hash table, suffix array,

suffix tree)

 Index the k-mers in the genome

 Continuous seeds and gapped seeds

 When searching a read, find the location of a k-mer in the

read; then extend through alignment

 Apply pre-alignment filters

 GateKeeper, adjacency filter, q-gram filters

 Requires large memory; this can be reduced with cost to run

time

 mr(s)FAST, RazerS3, MAQ, MOSAIK

 GPGPU and heterogeneous computing implementations: Saruman,

Mummer-GPU, CORAL

(pure) BWT-FM aligners

 Burrows-Wheeler Transform & Ferragina-Manzini Index

based aligners
 BWT is a data compression method used to compress the genome

index

 Perfect hits can be found very quickly, memory lookup costs increase

for imperfect hits

 Less memory

 Reduced sensitivity for high error rate (impractical for long reads)

 BWA-aln, Bowtie, SOAP2

Hybrid aligners

 Seed with BWT-FM, then align

 Apply “chaining” to reduce need-to-align regions

(acts as a pre-alignment filter)

 Usable for both short and long reads

 BWA-MEM, Bowtie2 (short reads)

 MashMap and minimap2 (long reads)

Seeding & chaining

Long read mappers

 PacBio and ONT:

 BLASR (suffix-tree based indexing)

 MashMap and Minimap2 (minimizers + chaining +

Smith-Waterman)

 Paper presentation candidate

 NGM-LR (hash table + chaining + alignment w/

convex gap penalty model

 Paper presentation candidate

Hash Based Aligners

Seed and extend
 Break the read into n segments of k-mers.

 For perfect sensitivity under edit distance e

 There is at least one l-mer where l =

floor(L/(e+1)); L=read length

 For fixed l=k; n = e+1 and k ≤ L / n

 Large k -> large memory

 Small k -> more hash hits

 Lets consider the read length is 36 bp, and k=12.

 if we are looking for 2 edit distance (mismatch, indel)

this would guaranty to find all of the hits

Cache oblivious search

aaaaaaa

aaaaaac

aaaaaag

aaaaaat

aaaaaca

ttttttt

12 679

180

1909

987

GI: Genome Index

aaaccaa

caacata

ggggaaa

ttaacaa

ttaacat

ttttttt

aaaccaa ttaacat ttaacaa

tttttttaaaccaaggggaaa

read1

read4

Partitions 1 2 3

1/1 2/4

2/100

1/4

3/1

2/1

3/4

RI: Read Index [sr;(part#, read#)]

sr

Hach et al, Nat Methods 2010

Cache oblivious search

 GI and RI are both sorted

 Scan GI; for all GI[i] = RI[j].sr

 Map all partition/read_number combinations in RI[j]

 All of the above have the same sr and its

corresponding GI[i] list; therefore:

 They have the same seed locations: same sequence content

in the reference genome to extend

 Once GI[i] and corresponding ref(GI[i].1, GI[i].2, …) are loaded

from main memory to cache memory; then you re-use the

faster cache memory contents; minimizing cache hits and

main-to-cache transfers

Hach et al, Nat Methods 2010

Cache oblivious search

Mapper Level 2 Cache

Misses per

Instruction

Instruction per

cycle

Bowtie 0.0016 0.94

BWA 0.0016 0.93

MAQ 0.0060 0.56

mrsFAST 0.0008 1.24

Hach et al, Nat Methods 2010

Spaced seeds

 Instead of a k-mer with contiguous hit

(1111..1); use space seeds

 Seed S is defined by Length and Weight

 0’s are “don’t care” characters

 111111001111111100 requires

 6 matches + 2 “don’t care”s + 8 matches + 2 “don’t

care”s; a valid hit:

 Length = 18; weight = 14

CGACTAGCTAGCTAGCTA

CGACTAAGTAGCTAGCGC

Burrows-Wheeler Transform

 Store entire reference

genome.

 Align tag base by base

from the end.

 When tag is traversed, all

active locations are

reported.

 If no match is found, then

back up and try a

substitution.

Burrows-Wheeler Transformation

1. Append to
the input
string a
special char,
$, smaller
than all
alphabet.

mississippi$

Burrows-Wheeler Transformation (cnt’d)

2. Generate

all

rotations.

m i s s i s s i p p i $

i s s i s s i p p i $ m

s s i s s i p p i $ m i

s i s s i p p i $ m i s

i s s i p p i $ m i s s

s s i p p i $ m i s s i

s i p p i $ m i s s i s

i p p i $ m i s s i s s

p p i $ m i s s i s s i

p i $ m i s s i s s i p

i $ m i s s i s s i p p

$ m i s s i s s i p p i

Burrows-Wheeler Transformation (cnt’d)

3. Sort

rotations

according to

the

alphabetical

order.

$ m i s s i s s i p p i

i $ m i s s i s s i p p

i p p i $ m i s s i s s

i s s i p p i $ m i s s

i s s i s s i p p i $ m

m i s s i s s i p p i $

p i $ m i s s i s s i p

p p i $ m i s s i s s i

s i p p i $ m i s s i s

s i s s i p p i $ m i s

s s i p p i $ m i s s i

s s i s s i p p i $ m i

Burrows-Wheeler Transformation (cnt’d)

4. Output

the last

column.

$ m i s s i s s i p p i

i $ m i s s i s s i p p

i p p i $ m i s s i s s

i s s i p p i $ m i s s

i s s i s s i p p i $ m

m i s s i s s i p p i $

p i $ m i s s i s s i p

p p i $ m i s s i s s i

s i p p i $ m i s s i s

s i s s i p p i $ m i s

s s i p p i $ m i s s i

s s i s s i p p i $ m i

Burrows-Wheeler Transformation (cnt’d)

ipssm$pissii

mississippi$

Ferragina-Manzini Index

First column: F

Last column: L

Let’s make an

L to F map.

Observation:

The nth i in L is

the nth i in F.

$ m i s s i s s i p p i

i $ m i s s i s s i p p

i p p i $ m i s s i s s

i s s i p p i $ m i s s

i s s i s s i p p i $ m

m i s s i s s i p p i $

p i $ m i s s i s s i p

p p i $ m i s s i s s i

s i p p i $ m i s s i s

s i s s i p p i $ m i s

s s i p p i $ m i s s i

s s i s s i p p i $ m i

Ferragina-Manzini Index: L to F map

Store/compute

a two

dimensional

Occ(j,‘c’) table

of the number of

occurrences of

char ‘c’ up to

position j

(inclusive).

and one

dimensional

Cnt(‘c’) and
Rank(‘c’)
tables

$ i m p s

i 0 1 0 0 0

p 0 1 0 1 0

s 0 1 0 1 1

s 0 1 0 1 2

m 0 1 1 1 2

$ 1 1 1 1 2

p 1 1 1 2 2

i 1 2 1 2 2

s 1 2 1 2 3

s 1 2 1 2 4

i 1 3 1 2 4

i 1 4 1 2 4

$ i m p s

1 4 1 2 4

Occ(j,‘c’)

Cnt(‘c’)

$ i m p s

12 2 1 9 3

Rank(‘c’)

Ferragina-Manzini Index: L to F map

[Cnt(‘$’) +

Cnt(‘i’) +

Cnt(‘m’) +

Cnt(‘p’) = 8]

+ [Occ(9, ‘s’)= 3]

= 11

1 $ m i s s i s s i p p i

2 i $ m i s s i s s i p p

3 i p p i $ m i s s i s s

4 i s s i p p i $ m i s s

5 i s s i s s i p p i $ m

6 m i s s i s s i p p i $

7 p i $ m i s s i s s i p

8 p p i $ m i s s i s s i

9 s i p p i $ m i s s i s

10 s i s s i p p i $ m i s

11 s s i p p i $ m i s s i

12 s s i s s i p p i $ m i

‘s’ section

before ‘s’

$ i m p s

1 4 1 2 4

Cnt(‘c’)

Ferragina-Manzini Index: Reverse traversal

(1) i

(2) p

(7) p

(8) i

(3) s

(9) s

(11) i

(4) s

(10) s

(12) i

(5) m

(6) $

1 $ m i s s i s s i p p i

2 i $ m i s s i s s i p p

3 i p p i $ m i s s i s s

4 i s s i p p i $ m i s s

5 i s s i s s i p p i $ m

6 m i s s i s s i p p i $

7 p i $ m i s s i s s i p

8 p p i $ m i s s i s s i

9 s i p p i $ m i s s i s

10 s i s s i p p i $ m i s

11 s s i p p i $ m i s s i

12 s s i s s i p p i $ m i

Mapping with BWT-FM

$agcagcagact

act$agcagcag

agact$agcagc

agcagact$agc

agcagcagact$

cagact$agcag

cagcagact$ag

ct$agcagcaga

gact$agcagca

gcagact$agca

gcagcagact$a

t$agcagcagac

a c g t

rank 1 5 8 11

9

7

4

1

6

3

10

8

5

2

11

1

2

3

4

5

6

7

8

9

10

11

SA t

g

c

c

$

g

g

a

a

a

a

c

Auxillary data structures for efficient pattern matching: how to find

the corresponding chars in the first column efficiently, in terms of

both time and space.

BWT

a c g t

0 0 1 1

0 1 1 1

0 2 1 1

0 2 1 1

0 2 2 1

0 2 3 1

1 2 3 1

2 2 3 1

3 2 3 1

4 2 3 1

4 3 3 1

FM indices

Original sequence

Mapping with BWT-FM

$agcagcagact

act$agcagcag

agact$agcagc

agcagact$agc

agcagcagact$

cagact$agcag

cagcagact$ag

ct$agcagcaga

gact$agcagca

gcagact$agca

gcagcagact$a

t$agcagcagac

a c g t

rank 1 5 8 11

9

7

4

1

6

3

10

8

5

2

11

1

2

3

4

5

6

7

8

9

10

11

SA t

g

c

c

$

g

g

a

a

a

a

c

BWT

a c g t

0 0 1 1

0 1 1 1

0 2 1 1

0 2 1 1

0 2 2 1

0 2 3 1

1 2 3 1

2 2 3 1

3 2 3 1

4 2 3 1

4 3 3 1

FM indices

gca

Next block:

From 1 + 0 = 1

to 1 + (4-1) = 4

Auxillary data structures for efficient pattern matching: how to find

the corresponding chars in the first column efficiently, in terms of

both time and space.

Original sequence

Mapping with BWT-FM

$agcagcagact

act$agcagcag

agact$agcagc

agcagact$agc

agcagcagact$

cagact$agcag

cagcagact$ag

ct$agcagcaga

gact$agcagca

gcagact$agca

gcagcagact$a

t$agcagcagac

a c g t

rank 1 5 8 11

9

7

4

1

6

3

10

8

5

2

11

1

2

3

4

5

6

7

8

9

10

11

SA t

g

c

c

$

g

g

a

a

a

a

c

BWT

a c g t

0 0 1 1

0 1 1 1

0 2 1 1

0 2 1 1

0 2 2 1

0 2 3 1

1 2 3 1

2 2 3 1

3 2 3 1

4 2 3 1

4 3 3 1

FM indices

gca

Next block:

From 5 + 0 = 5

to 5 + (2-1) = 6

Auxillary data structures for efficient pattern matching: how to find

the corresponding chars in the first column efficiently, in terms of

both time and space.

Original sequence

Mapping with BWT-FM

$agcagcagact

act$agcagcag

agact$agcagc

agcagact$agc

agcagcagact$

cagact$agcag

cagcagact$ag

ct$agcagcaga

gact$agcagca

gcagact$agca

gcagcagact$a

t$agcagcagac

a c g t

rank 1 5 8 11

9

7

4

1

6

3

10

8

5

2

11

1

2

3

4

5

6

7

8

9

10

11

SA t

g

c

c

$

g

g

a

a

a

a

c

BWT

a c g t

0 0 1 1

0 1 1 1

0 2 1 1

0 2 1 1

0 2 2 1

0 2 3 1

1 2 3 1

2 2 3 1

3 2 3 1

4 2 3 1

4 3 3 1

FM indices

gca

Next block:

From 8 + 1 = 9

to 8 + (3-1) = 10

Auxillary data structures for efficient pattern matching: how to find

the corresponding chars in the first column efficiently, in terms of

both time and space.

Original sequence

Inexact match

Mapping Quality

 MAPQ = -10 * log10(Prob(mapping is wrong))

For reference sequence x; read sequence z:

p(z | x,u) = probability that z comes from position u

= multiplication of pe of mismatched bases of z

For posterior probability p(u | x,z) assume uniform prior distribution p(u|x)

L=|x| and l=|z|. Apply Bayesian formula:

Calculated for one “best” hit Li et al., Genome Research, 2008

Further reading

